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Generalized effective-medium approximation for particle transport
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We present here a generalization of the effective-medium approximation to include weighted in-
itial conditions. The implementation of the method is demonstrated on a random-trap model with
bias where some exact results are available. Our results provide a closed form and accurate inter-
polation between the short- and long-time regimes. The connection of these results with continu-

ous-time random-walk theory is discussed.

The problems encountered in studies of particle trans-
port in disordered media have been met with intense
research.!-3 This labor has concentrated on master-
equation descriptions of the particle’s motion with the
transition rates, appearing as phenomenological coeffi-
cients, being random variables. This level of modeling has
resulted in some exact results on ensemble-averaged
transport properties for specific models.> Complete solu-
tions for most models, especially for dimensions greater
than unity, are still lacking.

To make further progress, it is important to have
methods which can provide accurate estimates of average
transport properties for a wide variety of models. For the
so-called random-bond models, the effective-medium ap-
proximation* (EMA) has been successful in providing re-
sults which, although not in general exact, are accurate
enough to be indistinguishable from numerical simula-
tions of the models®>~7 in parameter regimes where pertur-
bation theory fails completely, and in higher dimensions
where other methods give no results.* Especially worthy
of mention are the long-time tails of the velocity auto-
correlation functions which behave as 1 ~@*22 in D di-
mensions.

The EMA procedure, as it was formulated in the past,
must fail for problems where the initial state is weighted
in some manner by the random transition weights appear-
ing in the master equation. For instance, most models
have stationary states whose occupation probabilities are
determined by the transition rates. One of these models,
the random-trap model, has a velocity autocorrelation

|

function which has no frequency dependence at all,>® and
the usual averaging procedure would predict a complicat-
ed time dependence. It is the goal of this Brief Report to
describe a scheme to generalize the EMA to apply to
problems of this type.

A general procedure for providing an equivalence be-
tween a master-equation description of transport in disor-
dered systems and a continuous-time random-walk theory
is given by the projection-operator method. Klafter and
Silbey® have established this equivalence for the case of
uniform initial conditions. The projection operator
method is a well-known tool which we do not develop in
detail; instead we refer to the review of Haake.!© The
projection operator D is taken as an ensemble average
over the set of disordered transition rates, for any quantity
A, DA =(A) and the brackets denote the disorder average.
The master equation is symbolically written as

dP/dt=LP , 4]

where P is the conditional probability and L a matrix con-
taining the transition rates. The disorder-averaged master
equation can be written in the form®!°

d/dt{P(¢))= DLDexp(Lt)P(0)
+DL(1—D)exp(Lt)P(0) . )

The second term on the right-hand side can be expressed
differently by using the solution of a suitable differential
equation,

(1—D)exp(Lt)P(0) =expl(1 —D)Lt1(1—D)P(0) +J:)ldt'exp[(l—Q)L (t—t")1Q—D)LDexp(Lt')P(0) . 3)

The first term vanishes when the initial conditions are uni-
form, and it was omitted by Klafter and Silbey. The final
result of the procedure can be written as

%(P(t»-(L)(P(t))
+fo'dx'x(z—z')<P(z')>+1(t) Y
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The kernel X is the disorder average

KG@—t")=(Lexpl(l—D)L(t—1")]1(1—D)L) , (5)
and the inhomogeneous term is
I(t)=(Lexpl(1—D)L:1(1L—D)P(0)) . 6)

We note that the averaged master equation contains an
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inhomogeneous term when the initial conditions are
nonuniform. The generalized master equation with an in-
homogeneous term is equivalent to a continuous-time ran-
dom walk where the first transition is treated differently.!!

The projection-operator method illustrates the necessity
of considering the initial conditions; in practice this
method is difficult to implement. A practical method is
the effective-medium theory, generalized to include
nonuniform initial conditions. With the exception of the
random-barrier models, all other models will have nonuni-
form occupation of the sites in the stationary state. The
generalized effective-medium approximation is demon-
strated here by considering the random-trap model
defined by the following set of master equations:

dP(n t) _Zlb

where P(n,t) is the conditional probability of being on

FayeP(n+8&,2) —bIwPn,)l , (7)

|

site n at time ¢, given that the particle was on site 0 at
time zero; the dependence on the latter site index and the
initial time is suppressed. The variable € denotes the
nearest-neighbor unit vectors. Here we discuss only sim-
ple Bravais lattices (i.e., chain, square, cubic, etc.). The
{I'a} are independently distributed random transition rates
and b, is the set of positive parameters characterizing the
application of an external dc field, i.e., a bias. For
definiteness, the bias is taken along the positive x axis, SO
thatb~=lfore==+ej,j¢x b; =b,and b _ —b_

The master equatlons, Eq. (7 possess a 51mple steady-
state solution given by py =TI, ‘/N(F 1), where (I' ™1) is
the average of the transition rates over a suitable distribu-
tion W(I") and N is the number of sites on the lattice.

In the EMA, a cluster of sites, whose nearest-neighbor
transition rates are random, is embedded into an averaged
medium with an associated time-dependent transition rate
I'(¢). The set of approximate master equations is now

dP(n,t) _ ! n
= —§ [ J:) diT(t — )1 = A )b _:P(n+&,7) — (1 —AR)b;P(n,1)]
+An+ 2b _él"n+éP(n+é,t) —AnbéFnP(n,t) s (8)
where
1 if n has random transition rates,
2= |0 otherwise. ©®

These equations are partially diagonalized by Fourier transforming with respect to n and Laplace transforming with
respect to the time variable. The initial conditions are taken as P(n,0); the solution may be written as

Pk,s) =Pk,0)+Y ™Y [A, 14D -

where 6Ia=T,—TI(s), and all Laplace-transformed
quantities are denoted by a tilde, and physical quantities
in Fourier-transformed variables are written with script
letters. .

The quantities P(n,s) appearing on the right-hand side
of Eq. (10) can be obtained by inverse Fourier transfor-
mation and diagonalization of a set of inhomogeneous
linear equations (i.e., equations for the finite set of sites in
the embedded cluster). These results can then be substi-
tuted back into Eq. (10).

The average transition rate I'(¢) must be determined by
a self-consistency condition and it should not depend on
the particular initial conditions. We can infer this proper-
ty on the average transition rate by examining the kernel,
K (¢), given by the projection-operator method. As in pre-
vious formulations of the EMA, I'(¢) is determined by us-
ing uniform initial conditions, namely P(k,0) =1 in Eq.
(10). The conditional probability, averaged over the ran-
dom transition rates, is called the Green’s function.

We implement this procedure using site 0 as the cluster
with its jump rate I'g to nearest-neighbor sites. In this
sample only Ag=1 and the explicit form of Eq. (10) is

ST+ :P(n+8,5) — Agb 6T P (n, s)]/

s+I“(s)Zb (1—e'*®) (10)

now

- 1+6I" ~(0, ) '-(b._é _ik.e'—bé)
Pk,s) = of s LR — .
s+T(s) Y bs(1 —e®€)

The Green’s functions of the averaged medium in D di-
mensions are denoted by

dee —ik'm

- 1
G(m,s) = = —
SNy f sHIG) T ib:(1 —e®®)

, (12)

and they satisfy a homogeneous generalized master equa-
tion.?> Inverse Fourier transforming Eq. (10) yields the
solution

G(0,s)

= = (13)
1= 8T Y ;65[G (@,5) —G(0,s)]

P(0,s) =

The sum in the denominator is equal to [sG(0,s) —11/
I'(s). As discussed, we determine I'(s) by averaging Eq.
(13) over the distribution of transition rates, W(I'g). The
left-hand side of Eq. (13) is the Green’s function G(0,s).
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The self-consistency condition in D dimensions is written
as

6o
0=(= ). 14
I'(s)+6Te(1 —sG(0,s))

This resembles the self-consistency condition of the
random-barrier model in a single-bond approximation for
one dimension. The noteworthy difference here is that it
is valid for all dimensions. In the case where the inverse
moments of I'g exist, i.e.,

fdl“o—l—W(I“o) <o, 15)

rg

I'(s) can be expanded as a function of s, the form of the
asymptotic expansion s — 0 depends on the dimension and
the presence of bias. However, in all dimensions and in-
cluding bias, the leading term of this expansion is

~ = 1\ -

ro =r=<—> T,

) T

0

(16)

This gives an exact result for the diffusion coefficient of
the unbiased random-trap model in any dimension.?

The quantity we are interested in is the disorder-
averaged conditional probability where initial conditions
are used which reflect the occupation probabilities of the
different sites in a stationary state. For example, a deep
trap site will have a larger-than-average occupation prob-
ability in the stationary state, and thus contribute more
strongly to the average. The conditional probability, when
averaged over the disordered transition rates and includ-
ing the corresponding weighting of the initial states, will
be called a response function. Following Ref. 1, we will
use the notation F(n,z) for this double average in the
response function.

The response functions for the steady-state conditions
can be calculated by inserting 2 (k,0) =I'/Tg into Eq. (10)
and averaging over Ip. For this model, only P(0,0) de-
pends on the cluster transition rate I'g. In more general
models the stationary occupation probabilities are affected
by the transition rates of the cluster; these probabilities
must be included in the average as well. A calculation of
the right-hand side of Eq. (10) gives the following average
after some algebra:

(8ToP(0,5)) = 17)

r—I()
s
The response functions for the averaged medium are
1= :b:(1—e™&)T—T(s)/s
s+T(s) Y b (1 —e™™8)

F(k,s)= 18)

The expression in Eq. (18) can be put into the form of a
generalized master equation, Eq. (4). The 1 in the right-
hand side’s numerator represents an effective initial condi-
tion for the response functions, F(0,0) =1. The second
term in the numerator of Eq. (18) is an inhomogeneous
contribution in the generalized master equation. This
term is solely due to the inhomogeneous occupation of the
initial sites in the disordered configurations. It is interest-
ing to note that for the random-trap model studied here,
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the inhomogeneity has the form required by the single-
state continuous-time random-walk theory treated as a
renewal process. !

The usefulness of the results can best be shown by
deriving moments of the response functions and compar-
ing expressions of the moments with exact asymptotic re-
sults. The first moments of the displacement and mean-
square displacement calculated from the response func-
tions are

@) =2 (=) (192)
S
and
(Ix]2()=2LZD0 L T -1y
S R
T —pH —1)2
S 2@ G=b? (196)
S

The first moment is a linear function of time as required
for stationary initial conditions and the expression is ex-
act. The mean-square displacement may have a compli-
cated time dependence due to the appearance of I'(s) in
the last term. The application of bias removes the symme-
try of the transition rates and the velocity autocorrelation
function can be a smooth function of ¢ for # > 0. For
times when the drift terms are dominant in Eq. (19b), i.e.,
t>1,=2(b+b"1)/(b—b 1), the velocity autocorre-
lation function has no algebraic long-time dependence. At
intermediate times 1 <I't <Tt,, the velocity autocorrela-
tion function exhibits an al(gebraic time dependence pro-
portional to (b—b ~1)2 ~@+D)2 which is weaker than
that for the random-barrier model. This result was found
in D=1 by Lehr, Machta, and Nelkin;'? they provided
the first analysis of the biased model. Furthermore, we
note that the amplitude of the velocity autocorrelation
function is proportional to (b —b ~!)? so that it would be
more difficult to detect if the fields were small. Of course,
the fields must be small to give a reasonably long-
intermediate-time regime. Nevertheless, when the bias is
removed, this expression is a linear function of time in all
dimensions, which is also an exact result for this model.®

It is instructive to calculate the initial site occupation
probability (b =1):

[sG(0,s) —1] [T—T(s)]

F(0,5)=G(0,s)+
0,5) =G(0,s) TG) . (20)
The leading corrections to I'(s) are
X 1/2
1+=(<| ,bp=1,
2 \T
TG oy X2 1S | p=p, Q@
r 8 T 4T
s 3/2
1+60,0 | <[ --%|Z| , D=3,
L r 4n | T

where x, =([(T'/Ty) —112).
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The asymptotic time dependence for F(0,t) is
F(0,1) =(1+x,)(@rlt) ~P2/2 (22)

in agreement with the results of Denteneer and Ernst.!
This result is a consequence of the disorder in the medi-
um, and the traps create a larger-than-expected occupa-
tion of the initial site at long times. The result obtained
here is a direct consequence of the previously discussed in-
homogeneous term generated from the generalized EMA.
It cannot be obtained by only using the Green’s function.
Our results are accurate for long and short times and pro-
vide a useful interpolation between these two regimes.

The generalized effective-medium approximation dis-
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cussed here can be applied to a wide variety of problems.
Two examples of applications of this method are the
random-barrier model with bias and the model with ran-
domly blocked sites. The method systematically includes
an inhomogeneous term in the generalized master equa-
tions. Although for the random-trap model this term has
the form of a renewal process, this need not be the case for
more general models. In summary, the procedure out-
lined here should provide an accurate representation of
more general models for transport in disordered media.
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