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Multifractal structure of the incipient infinite percolating cluster
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By analyzing the voltage distribution of a random resistor network, we show that the backbone
of the percolating cluster can be partitioned into an infinity of subsets, each one characterized by a
fixed value of x =InV /InV ., where V is the voltage across each bond and V., is its maximum
value. Each subset is characterized by a distinct value of the fractal dimension ¢(x), and as a
consequence an infinite set of order parameters is required to describe the backbone structure. A
new scaling approach and a real-space renormalization-group treatment are presented to treat the
novel aspects of this problem. The mechanism for multifractality based on an underlying multipli-
cative process is illustrated on a hierarchical model.

The percolation problem has received considerable at-
tention, particularly for its simplicity and great utility in
describing a wide variety of geometrical problems.! In
the bond percolation, each bond of a d-dimensional lat-
tice is occupied with probability p and vacant with prob-
ability 1—p. As p approaches the percolation threshold
P., the linear dimension of finite clusters, £, diverges as
&~(p —p.)~". The order parameter, P _, i.e., the densi-
ty of sites in the infinite cluster, approaches zero as
P_ ~(p —p.)?, and the kth moment of the cluster num-
ber  distribution, S(k)zzss"n (s), diverges as
(p —p.)""®, where n(s) is the number of clusters of
size s per site. The exponents y(k) are not independent
but rather obey a constant “gap” relation

vk /v=kd;—d , (1)

where dy=d —B/v is the fractal dimension of the inci-
pient infinite cluster and v~! is the fractal dimension of
the singly connected bonds in the backbone.? Thus all
the critical exponents may be expressed in terms of these
two fractal dimensions only. The simple linear depen-
dence of (k) on k in (1) follows from the standard scal-
ing form' n (s)~s ~"f(s(p —p.)?), with 7=1 +d/d; and

The description of percolation in terms of only two ex-
ponents contrasts with what has been found recently for
various physical properties of random systems at the
percolation threshold. For example, in a dilute Ising
model, the correlation length diverges with the critical
exponent v, while in the dilute Heisenberg model, the
correlation length diverges with an exponent £, which is
identical to the resistivity exponent of a random resistor
network.? In apparently unrelated applications, the am-
plitude of the resistance noise has been found to diverge®
near the percolation threshold with an exponent &,
while the mean-square first-passage time for tracer parti-
cles to traverse through a random resistor network at
the percolation threshold diverges* with an exponent
Erpr. These apparently diverse problems can be unified
within the framework of the voltage distribution.>>~7
In this context, it has been found that the kth moments
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of the voltage distribution scale with an infinite hierar-
chy of independent exponents, and that for k =—1, 2, 4,
and o, they are related, respectively, to Egpr» &5 Croiser
and 1/v.

In this Brief Report, we will show that these indepen-
dent exponents can be related to a novel ‘“multifractal”
structure of the percolating backbone, in which the
backbone bonds can be partitioned in an infinity of sub-
sets (see Fig. 1). Each subset can be characterized by a
unique value of a parameter x = InV /InV,,, in the cor-
responding resistor network problem. Here V is the ab-
solute value of the voltage drop across the bonds in the
subset and V,, is the maximum value of V (i.e., the
voltage across the singly connected bonds). Each subset
is characterized by its own fractal dimension ¢(x), and
different subsets play dominant roles in various physical
problems. Examples of related multifractal behavior
where critical behavior is governed by a hierarchy of
critical exponents include, e.g., turbulence,®~° nonlinear
dynamics,!! growth phenomena,'?~!# localization,!®* and
the absorption of diffusive particles on a polymer
chain.!®

We will also argue, in contrast to ordinary critical
phenomena, that this multifractal structure of the back-
bone leads naturally to the introduction of infinitely
many order parameters corresponding to the infinity of
fractal sets. This description in terms of infinitely many
order parameters is also reminiscent of spin glasses,
where an infinity of order parameters is also required to
describe the system adequately.!” A new scaling ap-
proach is presented to describe the multifractality of the
backbone, and a real-space renormalization-group
method is also developed to treat this problem. Our pre-
dictions are supported both by analytic calculations on a
hierarchical model, and also by computer simulations on
a two-dimensional random resistor network at p..

Consider a random resistor network of linear dimen-
sion L at p.. We characterize each bond by the absolute
value of the voltage drop V across it, when a unit poten-
tial is applied across the opposite edges of the network.
At the percolation threshold, the maximum voltage drop
in any bond, V., occurs in the links,>!'® or singly con-
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FIG. 1. Illustration of the fractal sets within the percolating backbone. The links (shown in red) carry the entire current, and
are characterized by a value of x =1, while bonds deep within blobs (violet) are characterized by larger values of x. The backbone
bonds have been divided into several fractal sets of equal ranges of the variable x = In ¥ /1In V,,, increasing in value in the follow-
ing order of colors: red, brown, orange, yellow, light blue, dark blue, and violet.

nected bonds, which are the bonds which could render
the network disconnected if they are cut. Therefore,
these bonds carry the total current I passing through the
network so that V., =I=G, where G is the conduc-
tance of the network. Since G scales as L _Z, with £ the
conductance exponent, V., ~L - Moreover, the num-
ber of links, Ny, scales as L!/Y. Thus, the subset of
bonds characterized by the value x =1 has a fractal di-
mension 1/v and a * singularity exponent” Z.

Next, we partition all the other backbone bonds into
different subsets, each with its own fractal dimension
and singularity exponent. A natural way of accomplish-
ing this task is suggested by considering the following
moments and their critical behavior at p,:

M (k)= 3 n(V)Vk—L PR/, 2
4

where n (V) is the number of bonds with an absolute
value of the voltage drop V across them. In contrast to
conventional scaling, it has been found that the p (k)
form an infinite independent set of exponents.>>~7 This
leads us to a new type of scaling ansatz to describe the
scaling of the voltage distribution. If V*=VF (k) is the
value of ¥ which maximizes the summand in (2) for each
value of k, we write

V(k)~ A (k)L ~2% (3)
n(V(k))~B(k)L/*) | 4)

where A4 (k) and B (k) are amplitudes which depend on
k. From (2) we obtain :

p(k)/v=kalk)—f(k), (5)
while the condition that V* is the maximum implies that
d plk) _
T =a(k) (6a)
and
da(k)
0.
k< (6b)

Therefore, given p (k), one can calculate a(k) and f(k),
and vice versa. Similar approaches leading to (5) and (6)
were first developed by Halsey et al.'! We now show
that the voltage distribution n (V) is a scaling function of
the basic variable x = InV /InV ,,. From (3) we have

InV(k)=1InAd (k)—a(k)InL . (7)
Therefore as L — « we may write
x=alk)/alw) . (8)

Since a(k) is monotonic, from (6b), we can invert (8) and
we obtain k =k (x), so that (4) becomes

n(V)=C(x)L**® | (9)

where ¢(x)=f(k(x)) and C(x)=B(k(x)). Alternative-
ly, we can express the n (V) in terms of V alone, by elim-
inating L through the relation InV,,,=—¢InL to ob-
tain

n(V)~V-"C(x), (10)
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with ¥(x)=¢(x)/xE. Thus, we see that the voltage dis-
tribution can be written as a power law in ¥V, but with an
exponent that is also voltage dependent.!® Equation (9)
expresses the fact that the bonds in the network divide
naturally into different sets characterized by a given
value of x. Each set has an independent fractal dimen-
sion ¢(x), directly related to the moment exponents
p (k).

Above p., it is convenient to work with quantities
which are independent of L in the L — « thermodynam-
ic limit. Therefore we define a new intensive voltage
variable V=LV. By standard scaling, V(k)~&! =% a5
L — «, where £ is the correlation length. Correspond-
ing to the infinity of fractal sets, there are infinitely
many conjugate order parameters, defined as the density
of bonds, p(V,p), characterized by the value of the quan-
tity y=InV/InV=[1—a(k)]/[l—alw)]. Using
scaling, it is easy to show that p(¥,p)~(p —p.)PY),
where the order parameter critical exponent,
B(y)=d — f(k(y)),and k(y) are defined by inverting the
relation between y and k.

An important question that multifractal scaling raises
is how can one adapt renormalization-group ideas to cal-
culate the fractal dimensions of all the bond sets that
comprise the backbone. One simple way to renormalize
geometrical quantities is by mapping a b X b cell into a
single bond.?® For example, to find the fractal dimension
d; of the backbone, one may evaluate the mass rescaling
of the backbone, m’'=Am,, where A is the average num-
ber of bonds in the backbone of the spanning cluster in
the b Xb cell at p.. The fractal dimension is then ob-
tained from the eigenvalue A=dm'/dm,, by
ds=1InA/InL. This same procedure cannot be applied
directly to each fractal subset of bonds in order to calcu-
late the spectrum of fractal dimensions, since there are
only a small number of bonds in a small cell, and this
cannot be representative of the infinity of fractal sets.
Thus it appears that a direct renormalization procedure
is inadequate for understanding multifractal behavior.

A very simple alternative is to renormalize the mo-
ments in Eq. (2), which in fact can be considered as a
partition function of the problem. If the voltage across
the cell to be rescaled is V,,;, the voltage across the re-
normalized bond is still V,,; therefore the renormalized
moments are M'(k)=(V,,)*. These are related to the
moments M (k) of the voltage distribution in the cell by
M'(k)=AM (k), with the eigenvalue A=57%, In prac-
tice, by choosing V.,=1, one finds —pl(k)
= InM(k)/Inb, and ultimately the fractal dimension of
all the fractal sets by using (5). Therefore, the small cell
apparently contains all the information of the large sys-
tem, but instead of renormalizing n (V) directly, one
considers the infinite set of relevant variables M (k).

The voltage distribution can be calculated exactly on
the hierarchical model® of the percolating backbone
shown in Fig. 2. On this model, we found that the mo-
ments scale with an infinite set of exponents p (k). Once
the decomposition of p(k) into a(k) and f(k) is per-
formed via (5) and (6), we also find that a(k) and f (k)
coincide with the scaling exponents defined in (3) and (4),
and obtained independently by the method of steepest

descents. Finally, the voltage distribution can be cast in
the scaling from (9) and (10), thus supporting our general
predictions. Instead of presenting the details of the cal-
culations here (they can be found in Ref. 19) we shall il-
lustrate on the hierarchical model the basic mechanism
which produces multifractality. The hierarchical model
is obtained by successive iterations, substituting each
bond of the previous iteration with the unit cell. If
AV =1 is the voltage drop across the cell, the voltage
across the two bonds in the blob is V;=1, while the
voltage drop across the links is ¥, =2. From the invari-
ance of Kirchhoff’'s laws under the transformation
V — AV, it follows that if the voltage across the system is
AV =A, the voltages across the individual bonds are AV,
and AV,. At the next iteration, N =2, the network is
made of four unit cells. Due to self-similarity, the volt-
age across the two cells generated by the links is V.
Therefore, within each cell one obtains two bonds with
voltage V|V, and two bonds with voltage V;V,, and
similarly for the other two cells as shown in Fig. 2. Due
to this multiplicative process, the kth moments at the
Nth iteration are given by

M(k)=QViq2vhy . (1
Since V=1 and V,=1%, we find the infinite set of criti-
cal exponents

_Ln]u_(l_(_).__ 1)k 2k
pk)=—F = =14 I[(44(3)4)/In2 (12)

where we have used the relation L =2, with L the
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FIG. 2. The first few levels of iteration in the hierarchical
lattice model and schematic representation of the multiplica-
tive process (from Ref. 5). The N =1 level is the “unit cell”
which is rescaled into a single bond in our renormalization
procedure.
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linear dimension and 2V the number of links. For a
more general hierarchical model, obtained by successive
iterations of a unit cell with n bonds, with voltage drops
Vi,...,V,, the moments are given by

M) =VEi4 - VOV,

In conclusion, we see that multifractality arises in self-
similar structures when the field (in our case V) associat-
ed with each element satisfies a multiplicative rule. The
rule is satisfied when the equation obeyed by the field is
invariant under the scaling transformation ¢ —A¢. The
importance of the multiplicative process was also
stressed in Refs. 11 and 21.

Next we illustrate our renormalization approach for
the voltage moments by rescaling the unit cell of the
hierarchical model (Fig. 2) into a single bond. If the
voltage across the cell is unity, the moments M (k) are

M (k)=2[(L)¥+(2)]=2r0, (13)

where for iteration index N =1, L 1/*=2. This result for
p (k) coincides with the result found by the exact calcu-
lation in (11). Notice also that by renormalizing the mo-
ments in the unit cell we were able to obtain the fractal
dimensions of all the fractal sets, although in the unit
cell only two fractal sets, the hottest and coldest bonds,
are present originally.

The theoretical picture of multifractality has also been
confirmed by numerical simulations on the square lattice
at p. for various system sizes. From the voltage mo-
ments found numerically, one finds that the p(k) are
indeed independent. Alternatively, we have evaluated
the p (k) by an exact rescaling of a 4X4 into a 33 cell.
The two sets of results for p(k) agree extremely well,
lending support for our renormalization-group approach.
In addition, from p (k) one can calculate a(k) and f (k),
and finally the fractal dimension ¢(x)=f(k (x)) (Fig. 3).
We have also calculated the fractal dimensions of the
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FIG. 3. Numerical estimates of the fractal dimension ¢(x)
obtained from simulations of the square-lattice resistor net-
work at the percolation threshold.

various fractal sets directly, by computing the number of
bonds corresponding to a given value of x on large cells.
The agreement of the fractal dimension obtained by
these two methods provides additional confirmation of
our scaling theory.

In conclusion, we have shown that the bonds in the
percolating cluster can be partitioned into an infinity of
fractal subsets, each with a distinct value of the fractal
dimension. This partitioning offers a visually appealing
and a conceptually novel description of the structure of
the percolating backbone.
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FIG. 1. Illustration of the fractal sets within the percolating backbone. The links (shown in red) carry the entire current, and
are characterized by a value of x =1, while bonds deep within blobs (violet) are characterized by larger values of x. The backbone
bonds have been divided into several fractal sets of equal ranges of the variable x = In ¥ /In V', increasing in value in the follow-
ing order of colors: red, brown, orange, yellow, light blue, dark blue, and violet.



