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Wetting on a spherical surface
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It is shown in the framework of the Cahn model [J. Chem. Phys. 66, 3667 (1977)l that the
wetting layer, which forms on a spherical surface, always has a finite thickness I-lnR where R is
the radius of a sphere. The temperature T of a first-order wetting transition is higher in a
spherical geometry than in a Hat one. The shift of the -transition temperature T is proportional
to InR/R for large R.

It was argued by Cahn in his pioneering paper' that if
two critical phases a and P are in contact with a third non-
critical phase y, which forms a flat wall, one can expect, at
coexistence conditions, a wetting transition at some tem-
perature T„below the critical temperature T, . At T the
contact angle 0 becomes equal to zero, which means that
one of the critical phases intrudes between the wall and
the other critical phase, forming a layer of macroscopic
thickness I. In the Cahn model, I grows infinitely when
the a-P coexistence line is approached above T„,and it is
found that l ——ln

~
8p ~, where hp is the departure of the

chemical potential from its coexistence value.
There has been much of literature on wetting phenome-

na since Cahn's discovery (for recent reviews, see Refs.
2-4). While much is known about wetting in the presence
of a flat wall, only recently has more attention been devot-
ed to wetting on curved surfaces.

In this paper we are concerned with ~etting of a sphere
by a liquid in the context of the Cahn mean-field theory. '

It is a simple observation that if a wetting layer is to form
on a spherical surface it cannot be infinitely thick. This is
because of the Antonoff rule for the solid-vapor (y, „),
solid-liquid (y, 1), and liquid-vapor (yt „)surface tensions
which reads

2I
y, ,=y, I+yI „1+

R
(2)

~here y, „y,~, yI „and I are generally functions of R
and I/R ~ 0 as R~ ~, as we must recover the case of a
flat wall y, , y, I+ yI, . It follows immediately from Eq.
(2) that the wetting temperature should shift upwards for
a finite R. In this paper we shall be mainly interested in
the asymptotic, large-R behavior of various quantities.

We consider the surface part of the grand thermo-
dynamic potential 0, as a functional of the density profile
p(r)

2

n, (p1 -4tc„co(p)—co(pb)+ ,'L—
dr

+4ttR @(p,),

+R ys-U +R ys-l ++A+I yl-U

where A~ and A~+I are the areas of spheres with the radii
R and R+1, respectively. Equation (I) can be satisfied
only if l is finite. For large R, one has

where co(p) f(p) —pp, f is the free-energy density,
pb p(r ~), and we assume that the vapor is the bulk
phase; L is a constant. @(p,) is the contribution to the
surface energy due to the interaction between the fluid
and the spherical surface and has a form of a contact po-
tential

e(p, ) - —h, p, + —,
' a,p,', (4)

dp 1, 1—@'(p, ) -—( —h)+a(p, ),dr, ~ L L

p(r ~~) ~p
(6)

Equation (5) can be considered as an equation of motion
where p plays the role of a dynamical variable and r plays
the role of time. d, co(p) can be regarded as an external
potential. The second term in Eq. (5) introduces a fric-
tion, with the friction coefficient decreasing like the in-
verse of time r. The energy is not conserved and an extra
work is needed to move the particle against friction forces.

For our subsequent analysis, we assume hp 0 and fol-
lowing special form for Aco(p)

aco(p) - '
—,
' LQ(p —p, ) 2 for p (p,

,' La/(p pt)' for p& p—, — (7)

where p p„+(X/2X„)(pt—p„)is the point where the
two parabolas cross each other forming a cusp. The two
coefficients k„,k$ are proportional to the inverse of the va-
por and liquid compressibility, respectively. This is quite
a good approximation in the region of the two minima of
hco, thus in the region important for the wetting phenome-

where p, -p(r -R). Depending on the values of parame-
ters h i and a ~, wetting by liquid or drying by vapor of first
or second order can occur in a flat geometry. We confine
ourselves to the situation when the parameters, h i, a i give
a first-order wetting transition. The minimization of Eq.
(3) with respect to p(r) leads to the Euler-Lagrange equa-
tion

d p+2 dp I 8hco (5)
dr2 r dr L Bp

where &co-co(p) —co(pb), together with the boundary
conditions
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na. It breaks down when the temperature is too close to
the bulk critical temperature. This type of approximation
can also be found either in the context of the Cahn
theory or in the context of the Sullivan theory. With
the assumed form of d, rp(p), Eq. (5) becomes linear and
easy to solve. The general solution is a linear combination
of exp(+ A,, Ir)/r. There are two possibilities:

I. For all r, p(r) & p . Then the solution of Eq. (5),
satisfying the boundary conditions, has the following
form:

where p,' p'(R) must be less than p . The solid-vapor
surface tension is given by

y,
' „-fI, [p']/4xR'

2 LX„(p,' —p„) 1+ +@(p,') .

II. The profile p(r) passes through p at some point
r r p. The continuity conditions at r p for p(r) and its
derivative must be satisfied; hence

p
II (r )

X,ro
p. + l (pl —p. ) exp[ —k„(r—rp)] for r &rp,

vt

pl
— "

[(1+&rp)exp[XI(r —rp)l —exp[ 1v(r —rp—)l] for R & r & rp,
(pi —p. )

2~1r

(i0)

where

2 1 1+
XU

We interpret rp as the location of the liquid-vapor interface. By substituting Eq. (10) into Eq. (6), we arrive at the equa-
tion for ro.

I+ + u —2 1+ xRu+ (I +krp) 1—1 a1 1

R X(L X(L R
a1

for which

x(1 —a I/xIL )
2x(i+a, /Z, L)

2x
&I(I+aIA, IL)

rp=-R+ ln(2xR),1 (i3)

where we have included only the leading terms. It follows
immediately from Eq. (13) that the thickness of the wet-
ting film l(R) diverges logarithmically. Having the solu-
tion for ro, we are able to analytically calculate the sur-

where

u exp[A, I(rp R)]
and

1I I
—alpl

L(pl p. )(I+aI/AIL)

Because of our choice of the parameters h1, a1 corre-
sponding to wetting by the liquid in a flat geometry, we
have x & 0 in the interesting range of temperatures
T & T T„(R-~). Equation (11) can have up to
three solutions for rp. One of them gives u & 1, and the
second one does not give a proper asymptotic behavior for
large R, in that sense that 1(R) rp —R does not diverge
as R ~. We interpret that solution as belonging to the
unstable branch of 0,. We do not analyze Eq. (11) in de-
tail here as we are only interested in the asymptotic limit
of XIR»1 and xR»1. In this limit there always exists
one stable solution

y,".(R) -y, l(R)+yl „(R)1+,(14)
(

where

ys-I (R) l LXI (ps pl) 1+ +@(p~~), (15)
X(R

hl alpl

AIL (1+1@I R) +a I

(i6)

yl „(R) yI-v(l —2b/R) with 8- —I/X .

The surface density p,' corresponds to the profile similar in
shape to p'(r) but with pb pl. The expression for
y, l(R) is exact, but it is understood that it should be ex-
panded up to the order I/R before substitution into Eq.
(14). For some range of temperatures there is a competi-
tion between the profiles p'(r) and p"(r). The wetting
temperature T (R) is the temperature at which

y,', (R)-y,"„(R).For higher temperatures, y,"„&yi,
and the generalized Antonoff rule holds. Eventually,
when the temperature is high enough, the inequality
p,' & p can be no longer satisfied and p"(r) becomes the
only stable profile. Each of the surface tensions y,

' „y,(,
yl „canbe expressed as a suin of its value for R ~ (flat
geometry) plus some correction term of the order 1/R. It
is worth mentioning that although we do not consider here

t

face tension y,"„O,{p"]/4xR . In all calculations of
surface tensions we keep only the leading terms propor-
tional to lnR/R and 1/R. We find that
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~Tw 2yl
q R

I RT
W

where

q/ T„=((By,'"„/BT)., (By,"."—
/B T). ,& T T

(i9)

(20)

The derivative of y, , along the coexistence line is given

by

(By, ,/BT) „=—tb+I As/hp, (2i)

where g, is the surface entropy, I stands for the adsorp-
tion, and ds, dp are, respectively, the changes of the bulk
entropy density and the density at the liquid-vapor transi-
tion. It is easy to see that also for the wetting film

(By, ,/BT),
„

is finite even though rl, and I diverge. The
left-hand side of Eq. (19) can be considered as a thermal
equivalent of the work that has to be done to build up a
wetting film of thickness I. Here one point is worth men-
tioning. Since it is the presence of a surface potential that
curves the liquid-vapor interface and p corresponds to the
bulk liquid-vapor coexistence, we should not expect
any total pressure difference. The pressure difference p
=2yt, /R occurring in the case of a curved free liquid-
vapor interface is here balanced by the pressure difference
due to the surface potential. "

Formula (19) has been obtained only from the thermo-

a free liquid-vapor interface, we are able to extract the
dependence of yt „on the radius of curvature, since
1/ro =1/(R+ l) —1/R for large R. In our model 8
= —I/X & 0 as usually expected. '

To calculate the shift of the wetting transition tempera-
ture, we leave only the leading term 21n(2xR)/R in Eq.
(14); hence the equation for T„(R)reads as follows:

y,'".(T„)= y,"„(R,T„)
21(R,T„)

=-y,",(T.)+yt".(T.) i+ ' ", (is)
R

where T„(R) T„+/J.T„(R).The expansion around T„
gives

dynamics supplemented by the assumption that the
corrections to y,

' „,y, t, yi „areof the order 1/R and it
should be rather generic. In our model IJ.T„—lnR/R for
large R. For a long-range solid-fluid potential, an algebra-
ic decay of l(R)/R should be expected in three dimen-
sions.

Another interesting quantity is the jump of p, at the
bulk liquid-vapor transition. In a flat geometry it is finite
and of the order (pi —p„) for T & T„and zero for
T & T„.A curved geometry introduces a weak discon-
tinuity even for T )T„(R).We find that in our model
that discontinuity is given by

gp p
II

pl
~ 2 yl-v

(h 1
—a )pi)Xt R

(22)
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A similar problem of wetting on thin cylinders has been
studied by Brochard and Levinson, Jouffroy, and Bro-
chard. Our conclusions concerning formation of a finite
wetting film are in line with their results. The condition
for partial or complete wetting can be expressed in terms
of the spreading coefficient S = y, „—y, i

—yt, . In a flat
geometry the wetting transition occurs at S 0 (cos8 =1).
However, this is not true in the case of a curved geometry.
A wetting film can form on a curved surface if S & S, & 0
(Ref. 6) where S, is some critical value of the spreading
coefficient, and in our model S, =2 yt „I(R)/R.

Finally, we would like to notice that there is some anal-
ogy between the presented problem and the problem of
phase transitions in systems which are limited by two
parallel walls, thus, being finite in one direction. Such
systems have been recently studied by a few authors. '

In the case of short-range wall-fluid interactions and a
first-order wetting transition on a single wall, one finds for
a large wall separation D a similar asymptotic behavior,
i.e., l(D) —lnD and d p, (D) —1/D. We think that this is a
rather general manifestation of finite size effects.
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