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Universal conductance fluctuations as a probe of chaotic behavior
in mesoscopic metallic spin glasses
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%e study the conductance fluctuations in mesoscopic metallic spin glasses with Ruderman-
Kittel-Kasuya-Yosida (RKKY) interactions at low temperatures. It is found that the conduc-
tance of the system is sensitive to the configurations of the spins in the system. As a result, the
chaotic nature of spin reorganizations, as temperature is varied, manifests itself in the form of
measurable conductance fluctuations. Thermal-conductance fluctuations at a fixed temperature
are shown also to be directly related to the corresponding thermal spin fluctuations.

Two seemingly unconnected developments have recent-
ly attracted much attention in the condensed-matter phys-
ics community. First, it has been demonstrated both
theoretically' and experimentally that, when the size
of a given disordered metallic system is small and the tem-
perature is low enough so that both kit T/h and the inelas-
tic scattering rate I/r;„are less than the inverse of the
time it takes electrons to diA'use across the sample, there
exist large sample-to-sample fluctuations in the system's
electrical conductance. This phenomenon is understood as
the result of quantum interference among the many
diA'erent multiple-elastic-scattering paths which a conduc-
tion electron undergoes in traversing the sample. Second,
there has been proposed a new approach to understand
the various properties of spin-glass systems with short-
range [or Ruderman-Kittel-Kasuya-Yosida (RKKY)] in-
teractions, based on the scaling properties of a T =0 fixed
point, as opposed to the solutions of the infinite-range
Sherrington-Kirkpatrick (SK) model. The basic claims of
this "zero-temperature scaling theory" are the existence
of a true phase transition in three dimensions, the chaotic
nature of spin reorganizations at diAerent temperatures,
and the absence of a replica-symmetry breaking.

In this paper, we show that the universal conductance
fluctuations are a powerful probe of the microscopic spin
configurations of metallic spin-glass systems. In fact, we
shall show that at low enough temperature, as the temper-
ature changes, the equilibrium (or quasiequilibrium) con-
ductance G(T) of a mesoscopic metallic spin-glass sample
fluctuates, in the absence of any applied magnetic field, in
reflection of the chaotic nature of the spin-glass phase.
Observation of these fluctuations would provide a critical
test of the scaling theory of the spin-glass phase. We
shall also show that the conductance at a fixed tempera-
ture undergoes thermal fluctuations, which are related
directly to the corresponding thermal spin fluctuations in
the system due to spontaneous spin-droplet formation,
which has been shown before to have a quasi-I/f-noise

form. '
We consider a three-dimensional metallic alloy system

with magnetic impurities, such as AuFe, of size L. Ideal
conducting leads are attached on two opposing sides,
which defines the current direction z. The exchange in-
teraction between the localized moments IS;j and the con-
duction electrons is given by

H,„=—Jgo(r;) S;,

where o(r) is the spin density of the conduction electrons,
and J is an exchange constant. It is well known that an in-
teraction of this type induces an eA'ective exchange cou-
pling among the localized moments, by the so-called
RKKY mechanism, ' i.e., the Hamiltonian describing the
eff'ective spin-spin interaction can be written

HCfr g JRKKY(ri,j )Si ' Sj (2)
1,J

where JRKKv(r) = (J /sF)cos(2kFr)/(2kFr) . It is well
known "' that various sources of anisotropy (e.g. , dipo-
lar coupling, or Dzyaloshinskii-Moriya anisotropy arising
from spin-orbit coupling) induce crossover to Ising spin-
glass behavior at su%ciently large length scales L ~L, .
For simplicity of presentation we will assume here that
L, ~b, where b =n, ' is the typical spacing between 10-
calized moments and n, is their density. (This condition is
more easily achieved for more anisotropic spin glasses,
such as AuFe. ) Up to logarithmic corrections, ' the tran-
sition temperature is then approximately given by
T, =J /ktteF(kFb) . In the case J & 0, another tempera-
ture scale comes in, namely, the Kondo temperature
Ttt = (sF/ktt)exp[ —eF/( —J)]. For T & Tt„ the Kondo
eAect becomes important. We restrict our attention to the
temperature range Tk & T & T„ i.e. , we concentrate on
the usual spin-glass phase.

The central notion of the recent scaling theory of
short-range (or RKKY) Ising spin glasses based on the
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where g d, /2 —y, such that the equilibrium spin
configurations corresponding to the two temperatures are
totally uncorrelated on length scales L & L . Fisher and
Huses used the same scheme to obtain the spin autocorre-
lation function of Ising spin glasses due to the equilibrium
thermal fluctuations of the spins, because of the spontane-
ous formation of spin droplets. Since the system under
consideration is Ising-like at large length scales, one ob-
tains, for Heisenberg spin glasses with anisotropy, the
Fisher-Huse-like result

c(t) =[&s,(t) s, (o)&, —&s, (t)&, &s, (o)&,],

qEA(T) T
Y(T)

~(T)
T ln(t/to)

(4)

where & &T stands for the thermodynamic average at tem-
perature T, [ ], stands for an average over the ensemble of
spin configurations, to is a microscopic time, and
qEA(T)= [&S;&T], is the Edwards-Anderson order param-
eter.

The above results are all obtained for a system in true
thermodynamic equilibrium In realist. ic experimental
situations, this is rarely achievable, i.e., a system is usually
"stuck" in some metastable configuration. This situation
can nonetheless still be dealt with in our theoretical
framework. For a given waiting time t, there is associat-
ed a length scale L =b(Tln(t /to)/5)'t", such that all
the droplets of size smaller than L„have chances to equili-
brate, whereas the ones with size larger than L are
"frozen" in some metastable states. We term this case a
"quasiequilibrium" state. Equation (4) holds only for
t & t„. If one now changes temperature by an amount
ST, which has an associated length scale L, then it is ap-
parent that for L & L, no significant spin reorganization
can occur for times t (t; but for L* &L„, substantial
spin reorganization will take place on time scales
t ~ t*= toexp[(h/T)(L /b) "], resulting in a new
"quasiequilibrium" state with spin arrangements signi-
ficantly different from the old state on length scales
greater than L*. If one measures the thermal spin noise

T 0 fixed point is that the characteristic free energy SF,
which can be thought of as the free energy of a typical
droplet of size L, scales as BF—Y(T)(L/b)», and the
maximum activation barrier scales as B—h(T)(L/b) ~.

Numerical studies suggest that in three dimensions,
y=0.2. The value of y is not known, although McMil-
lan6 has argued that y y. The amplitude function Y has
values ' Y(T~ 0) = T„and Y(T~ T, ) CL (1 —T/
T, )»". Similarly, B(T 0) = T„and B(T T, ) ~ (1—T/T, ) ~". The fact that in three dimensions (3D)
y = 0.2 is much smaller than d —1 2, which is the corre-
sponding exponent for a plane interface, implies that a
typical domain wall in a spin glass is a rough, fractal-like
interface. In fact, one can write the typical surface area
of a droplet as L ', with 2 ~ d, ~ 3. Bray and Moore re-
cently showed that as temperature changes from T to
T+ 6'T below T„ there exists a "coherence length"

]/gT2
C (3)

The justification for this approximation is that at temper-
atures much below T„ the spins are in an ordered phase.
Thus as far as conductance is concerned, one can regard
the spins as fixed vectors. Let us denote G(T) as the con-
ductance of the system at temperature T. Now if we
change to a new temperature, T+ BT, and wait for a time
t' t*, the system will approach a new quasiequilibrium
state with a conductance G(T+bT). To see how the new
conductance correlates with the old one, we define a corre-
lation function

~(aT) -[[G(T)—G(T+ST)I'], .

Following Al'tshuler and Spivak, ' this correlation func-
tion can be readily computed to the lowest order in the
disorder parameter 1jkFl, with the result'

(ST) 48 e 1 ~ 1

8 &2L4 q4

with

(7)
[q ~+ a(bT)/1 z] 2

n, Ja(BT)- ', [(&S;&T &S(&T+sT) '], , —
2ng Q

where q (n/L) (m,2+m„+m»2)+1/L;„, m, 1,2, . . . ,
m„, m~ 0, 1,2, . . . , n; is the density of elastic scatters,
and u is the total average elastic-scattering potential per
scatterer. Thus, we see that the conductance correlation
function provides direct information on the way spins are
correlated at diferent temperatures. For hT 0, we have
a(0) 0, which leads to A(0) 0. From the scaling
theory, spins do not change appreciably for t & t,
as long as L* &L, or equivalently, BT & BT*

after a waiting time t„' at the new temperature, Eq. (4)
will still hold, as long as t & t„'

Returning to the conductance fluctuations, we define as
usual the elastic mean free path l UF~ for elastic scatter-
ing from static impurities. Inelastic scattering processes,
such as electron-electron and electron-phonon interactions
are described by an inelastic scattering time r;„. The in-
elastic diffusion length is then given by L;„(Dr;„)'t2,
with D—:vF!/3. We assume that the disorder is
sufficiently strong that i «L;„,L. We also assume that the
sample size L is somewhat larger than L;„, as is true in
most experimental situations. [Note that since we are
dealing with the ordered spin-glass phase (T & T, ), the
spin-flip process is effectively frozen out, despite the rela-
tively high concentration of magnetic impurities. Thus, it
is possible to have a regime with L;„/L of order unity at
low enough temperatures. ]

Let us consider the system being in quasiequilibrium at
temperature T, after a waiting time t„. To see how the
conductance of the sample couples to the configuration of
the spins, we introduce a mean-field approximation.
Specifically, we replace the spin variables in Eq. (1) by
the corresponding thermal average values, and regard the
exchange Hamiltonian as an effective scattering potential
for the conduction electrons, in addition to the static im-
purity scatterings, i.e.,

8'- —Jgcr(r;). &S;&T .
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(T, /T)(L /b) ~. Whereas for bT & bT* and a wait-
ing time t ' » t *, spins at two different temperatures differ
completely on scales longer than L*, and one has approxi-
mately a(bT) = (n, J /n;u )qE~. So if

n, J T kFl
2 gEA- & l ('LIn

8F

we find that

G)L

a generalization of Eq. (7) gives

a(t) =6 e 1 1

h2 L4 4

where

[q'+ p(t )/i '] ' (10)

n J
P(t) - ', [([S(t)—S(0)]'),],

2niu

n, J
, [1 —

qEp,
—C(t)] .

For the unsaturated case

n, J kFlT
p(t) ~ ', (1 —qE~)- &i'/L. ,

8F

which is most likely to be true in experimental situations,
Eq. (10) can be expanded to yield for the overall temporal
conductance fluctuation BG, = e /h (kFL;„/IL) T/sF,
and for the conductance autocorrelation function

D (t ) —= [(G (t )G (0))r —(G (t ) )r(G (0))r ],
e kFLin T
h 2 lL 8F

Note that BG, is smaller than the corresponding fluctua-
tions with changing temperatures bGr by a factor T/T„
which allows one to experimentally separate these two
effects. Note also that as the spin autocorrelation func-
tion C(t) gives rise to a quasi-1/f form in its Fourier
transform, the same is rue for the function D(t). Thus,
we see again that the conductance thermal noise provides
a direct measure of the corresponding noise in the spins
A schematic picture of our predictions is given in Fig. 1.

A(bT & BT„*)=BGr2 =
lL sF

If kpl T,/cF ~ l /L;„, we have the saturation regime
bGr = 2(e /h )L;„/L. Therefore we conclude that when
temperature is changed in a mesoscopic metallic spin-
glass sample, the system's conductance changes randomly,
in reflection of the chaotic nature of the spin-glass phase,
provided the temperature change bT exceeds bT„. This
dependence of BT* on t„provides important information
about the length scale of equilibration in the system. This
established the conductance fluctuation as a unique probe
of the quasiequilibrium spin configurations in metallic
spin-glass systems.

Similarly, we can study how the quasiequilibrium
thermal noise in conductance relates to the corresponding
noise in the spins. Defining a temporal conductance corre-
lation function as

a(t) = [([G(t)-G(O)]'),], ,

0

FIG. l. A schematic picture of the conductance fluctuations
in a metallic spin-glass system. The system is first prepared in a
quasiequilibrium state after waiting time t . It should exhibit
thermal fluctuations about a mean conductance with a noise
magnitude BGt. A temperature change BT is applied at time
t 0. We assume b T exceeds the correlation temperature b T„*.
On time scale t* = toexp[(A/T)(L*/b) "], where L*= b(T2/
ThT)'tt, massive spin reorganizations occur. On time scales
t ((t & t, the system approaches to a new quasiequilibrium
state with a diff'erent average conductance, undergoing the same
temporal fluctuations as in the beginning state. The typical
diA'erence between the two average conductances is of order
6G~) BG„ in reflection of the chaotic nature of the spin-glass
phase.

All of the above discussions have been restricted to the
regime L;„&Ir = (hD/kg—T)'/. If the opposite is true,
an additional thermal averaging factor (Lr/L;„) should
be included in all the results. We have so far neglected
the possibility of impurity migration, via either quantum
tunneling or thermal activation, which has been demon-
strated both theoretically' and experimentally' to give
rise to conductance fluctuations, and which can also be
shown to induce changes in the RKKY exchange interac-
tions. ' The justification for this is that these migration
events are relatively rare at low tempertures in mesoscopic
samples, ' and the sensitivity of the conductance to these
migrations is relatively weak in three dimensions. ' How-
ever, they may explain the rounding of the spin-glass tran-
sition observed in recent experimental studies. '

We now provide some rough numerical estimates for an
experimentally realizable sample (AuFe). Let us suppose
the sample size is L = 1 pm. The values of the other pa-
rameters are assumed as follows: n, =6x10 cm
(which leads to b = 12 A), sF = 6 eV, T, = 10 K, 1 = 100
A., L;„= 2000 A, g= 1, y= 0.2, and to = 10 ' s. At a
temperature T = 1 K and with a waiting time t„=1 h at
each temperature, we then estimate b T„*= 0.2 K,
bG, = O. le /h, and BGr has the saturated value =0.2e2/
h. We feel that these numbers are well within the reach of
current experimental tools. The major source of uncer-
tainty in the above estimates is the value of the exponent
y, which clearly deserved further study.
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