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The phase diagram for the two-dimensional Coulomb-gas model is deduced from a set of renor-
malization equations. For small fugacities the well-known Kosterlitz-Thouless phase transition is
regained. For larger fugacities a new phase-transition line is found. It is argued that the phase
transition across this new line is discontinuous in contrast to the continuous Kosterlitz-Thouless
transition. From a physical point of view, the new transition line reflects new aspects of the
charge unbinding in the Coulomb-gas system, with possible implications for related models.

The two-dimensional Coulomb gas may be regarded as
the prototype for a system undergoing a Kosterlitz-
Thouless transition. ' It consists of equal numbers of posi-
tive and negative two-dimensional Coulomb-gas charges
interacting with the logarithmic Coulomb interaction in
two dimensions. The phase transitions taking place in
the Coulomb gas may intuitively be interpreted in terms
of charge unbinding: for low enough temperatures the gas
consists of neutral bound pairs of Coulomb-gas charges
while for higher temperatures it consists of a mixture of
free charges and bound pairs.

For small dipole-pair fugacities the critical properties of
the charge-unbinding transition are contained in the Kos-
terlitz renormalization-group equations and the transi-
tion characterized by these renormalization-group equa-
tions is usually referred to as the Kosterlitz-Thouless tran-
sition. ' It is a continuous transition of infinite order.

Most predictions and conclusions concerning the
charge-unbinding transition have so far been based on the
Kosterlitz renormalization-group equations. ' For exam-
ple, these renormalization-group equations lead to the
famous universal-jump prediction for the superfluid densi-
ty in case of He films. However, it has recently been
suggested, on the basis of a new set of renormalization
equations for the two-dimensional Coulomb gas, that the
conclusions based on the Kosterlitz renormalization-group
equations may break down for larger dipole-pair fugaci-
ties. As a consequence charge-unbinding transitions with
nonuniversal jumps may, in principle, be possible and it
has been suggested that some frustrated XYmodels might
be possible candidates for such charge-unbinding transi-
tions.

In this Brief Report we present the new and unexpected
phase diagram contained in the renormalization equations
constructed by Minnhagen. A more detailed account
will be given in a separate paper.

The two-dimensional Coulomb-gas model is defined
through the grand partition function Z (modulo precise
cutoff prescriptions)

~-p i a (2 ~!)
1x exp g s;s, 1n (r;, /a )

l&J

—exp[U, a. (r)/Tll, (2)

where (An(r)An(0)) is the charge-density correlation for
the Coulomb gas [An (r) =g;s;8(r —r; ) l, z,tr is an
effective fugacity, and U,z+ (r) =U,z (r) [U,z (r) l is
the effective interaction between two Coulomb-gas
charges of equal (opposite) sign. To lowest order in

charge the eff'ective particle interactions reduce to
U,tr+(r) =U,+a. (r) =VL(r), where VL(r) is the linearly
screened potential and to this order Eq. (2) reduces to
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where z is the fugacity associated with creating one of the
particles in a neutral pair with separation a. The
linearly screened potential is related to the charge-density
correlation function (An (r)An (0)) through standard
linear-response theory

V(k) = 1
— (An(k)An( —k))
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where V and h, n are the Fourier transforms of V and h, n,
respectively. Equations (3) constitute a self-consistent set
of equations.

Equations (3) are exact in three independent limits:
T ~, r ~, and z 0. For the z 0 limit this
means that Eqs. (3) reduce to the Kosterlitz renormal-
ization-group equations for T( 4 and for T & 4 to the
z 0 results derived earlier by sine-Gordon field-theory

where N is the number of particles in a neutral
configuration (only neutral configurations contribute to
the partition function ), i and j numerate the particles, r;i.
is the distance between particles i and j, a is the linear di-
mension of a particle, s; = ~ 1 is the charge of a particle, z
is the fugacity, and T is the temperature. The object is to
determine the phase diagram for the Coulomb gas with T
and z as variables.

The basis for the renormalization equations, to be used
in the present paper in order to construct the phase dia-
gram, is the exact relation

2Z2
(An (r)An (0)) = [exp[ —U,+tr+ (r)//Tla4
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diagrammatics. Our confidence in the results inferred
from Eqs. (3) is based on the fact that they reproduce all
known results in the z 0 limit and are exact in the two
limits T ~ and r ~ irrespective of the value of z. In
addition, they are based on a very natural approximation
of the exact Eq. (2).

The Fourier transform of the linearly screened potential
VL (r ) has the leading small-k dependence VL

' (k )
-i(k +A, )/2n, where X is the Debye screening length
and 8 is a dielectric constant, which in the intuitive
charge-unbinding picture describes the polarization due to
bound pairs. z Within the charge-unbinding picture the
screening length A, may be related to the density of free
particles nF by X -2zrnF/ZT We. will use Eqs. (3) to
calculate X as a function of T and z.

In the case A. ~ (which corresponds to no free
charges) Eqs. (3) may be transformed into

d l
dl T(1)

2z'(1)~'
T2 (4a)

d zO) '

dl
[z(1)] 4 — dxe "x/T(1+x/2), (4b)Jp

where 1 ln(r/a), (T(0) z(0)) (T z), and (T(~),
z(~)) (iT,O). The flow diagram for Eqs. (4) is shown
in Fig. 1; the arrows indicate increasing 1 direction. Solu-
tions with X. ~ exist only in the shadowed region of the
(T,z) plane. 6 The dashed border of the shadowed region
is the line of starting points for the flow trajectories of
Eqs. (4).6 The dashed line ends at the special point
(T*,z*) (= (0.144, 0.054)t which is denoted by an aster-
isk in Fig. 1. For higher temperatures the boundary of the
shadowed region is made up of the trajectory flowing from
(T*,z ) into (T,z) ( 4,0). The phase transition

across this later part of the boundary (solid line in Fig. 1)
is the usual Kosterlitz-Thouless transition.

The solutions for A, a~ may be obtained from Eqs. (3)
by first transcribing them into
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Equattons (5) may be solved numerically by interating
Eqs. (sa) and (sb) from r/L, -~ to r/A, -a/k with
VL(x) Ce "/Jx, where Cis a positive constant, as the
boundary condition for large x =r/), . This is just the De-
bye screening condition in two dimensions. The solutions
are obtained by solving for all possible values of C. The
corresponding values of T and z are then obtained from
Eqs. (5c) and (sd). Solutions with Xe~ exist in the re-
gion of the (T,z) plane which is shadowed in Fig. 2. Note
that this region overlaps the region of solutions with k
(the boundary for this latter region is also shown in Fig.
2). This means that in some regions of the (T,z) plane
more than one X solution exists for Eqs. (3) for a given
(T,z) point, and each solution corresponds to a diFerent
boundary condition at r ~. We conjecture that the
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FIG. 1. Region of solutions with k . The shadowed region
is the part of the (T,z) plane where k cx solutions exist. The
full drawn line with arrows are flow trajectories for Eqs. (4), the
arrows indicate the direction of increasing I values. The dashed
line is the line of starting points for the flow trajectories. The
asterisk is the special point (T,z*) where the critical trajecto-
ry starts. The phase transition across the critical trajectory is
the Kosterlitz-Thouless transition. The phase transition across
the dashed line is nonuniversal since every point on this line cor-
responds to a different flow trajectory.
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FIG. 2. Region of solutions with k~. The shadowed region
is the part of the (T,z) plane where solutions with A.a~ exist.
The full drawn lines with arrows are the flow trajectories of Eqs.
(5), arrows indicate the direction of increasing a/X. The special
point (T*,z*) is denoted by an asterisk and lies on the critical
trajectory which also passes through the point (T,z) ( —,',0)
(denoted by a dot). The dashed line constitutes part of the
boundary for solutions with X cx (compare Fig. 1), whereas the
dotted line is part of the boundary for solutions with X&. The
remaining parts of these two boundaries are made up of parts of
the critical trajectory going through the points (T,z) -(T,z )
and (T,z) ( —,',0).
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correct boundary condition at r ~ in such a case is the
one corresponding to the largest A, . Within the charge-
unbinding picture this means that the correct solution is
the one corresponding to the largest fraction of bound
neutral pairs. Figure 2 also shows some typical Bow tra-
jectories for Eqs. (5), i.e., trajectories connecting solutions
with the same large r behavior of VL(r/X). The flow
direction indicated in Fig. 2 corresponds to increasing a/X.

The phase diagram for the two-dimensional Coulomb
gas may be inferred from the solutions of Eqs. (4) and (5)
together with the conjecture that the correct physical
solution is the one corresponding to the largest possible
fraction of bound neutral pairs. The phase diagram in the
(T,z) plane is shown in Fig. 3. It contains two phase-
transition lines; one is the full drawn line in Fig. 3. lt goes
from the point (T*,z*) (denoted by an asterisk in Fig. 3)
to the point (T = —,', z =0) (denoted by a dot). The transi-
tion across this line is the usual Kosterlitz-Thouless transi-
tion. Within the charge-unbinding picture this transition
may, in the thermodynamic limit, be associated with the
breaking of an infinitesimal fraction of bound pairs on
crossing the transition line from below. The other transi-
tion line is the dashed line in Fig. 3. This line goes from
zero temperature and ends at the special point (T,z )
[=(0.20, 0.03)] denoted by an open circle in Fig. 3.
Within the charge-unbinding picture the transition across
this line from below is, in the thermodynamic limit, asso-
ciated with the breaking of a finite fraction of bound
pairs. It is, hence, a discontinuous transition and is conse-
quently expected to be associated with a discontinuity in

the free energy. The two transition lines join smoothly
(i.e., with the same tangents) at the special point
(T*,z*). This means that for T (T* the transition from
the low-temperature X =~ phase to the high-temperature
X&~ phase is discontinuous, while for T& T* it is the
usual continuous Kosterlitz- Thouless transition. For T in

the interval T* & T & T the discontinuous transition
comes as an additional transition between two phases both
with X&~ ~here the low-temperature phase has a larger
X than the high-temperature phase. Within the charge-
unbinding picture this again means that a finite fraclion
of bound pairs breaks as this transition line is crossed
from below.

In summary, the approximate equations (3) lead to the
prediction that the Kosterlitz-Thouless transition ceases
below a certain temperature and goes over into a discon-
tinuous transition belov this temperature. This prediction
is corroborated by Monte Carlo simulations of the two-
dimensional Coulomb gas. ' ' ' The Monte Carlo
confirmation suggests that Eqs. (3) are basically sound
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FIG. 3. Phase diagram for the two-dimensional Coulomb gas.
The phase diagram in the (T,z) plane consists of two phase
transition lines. The full drawn line is the Kosterlitz-Thouless
phase transition line which is associated with the breaking of an
infinitesimal fraction of bound pairs: it starts at the point
(T*,z*) (denoted by an asterisk) and ends at the point
(T,z) =( —,',0) (denoted by a dot). The dashed line is the phase
transition line for a discontinuous transition associated with the
breaking of a finite fraction of pairs, it starts at zero tempera-
ture and ends at the special point (T,z ) (denoted by an open
circle). The two phase transition lines join smoothly (with the
same tangents) at the point (T*,z*) (denoted by asterisk).

and may be trusted at least as far as one is concerned with
qualitative features. '

The high-temperature tail of the discontinuous transi-
tion from (T*,z*) to (T,z ) (compare Fig. 3) leads to
the new possibility of having two consecutive distinct tran-
sitions with increasing temperature; a Kosterlitz-Thouless
transition followed by a discontinuous transition.

Finally, we note that if the presented phase diagram for
the two-dimensional Coulomb gas is the correct one, then
an interesting question is what consequences this could
have for all other two-dimensional models displaying
Kosterlitz-Thouless-type transitions. ' For example, vari-
ous simulations for dislocation-mediated melting in two
dimensions sometimes give evidence in favor of a discon-
tinuous transition and sometimes in favor of a continuous
one, seemingly depending on the precise definition of the
model. ' This might be connected to the fact that the
charge-unbinding transition in itself may be either discon-
tinuous or continuous.

iFor a review, see, e.g. , J. M. Kosterlitz and D. J. Thouless, in

Progress in Lo~ Temperature Physics, edited by D. F.
Brewer (North-Holland, Amsterdam, 1978), Vol. VII-B, p. 1;
B. I. Halperin, in Physics of Low Dimensiona-l Systems,
Proceedings of the Kyoto Summer Institute, 1979, edited by
Y. Nagaoka and S. Hikami (Physical Society of Japan,
Research Institute for Fundamental Physics, Kyoto, 1979), p.

53; D. R. Nelson, in Phase Transitions and Critical Phenorn-
ena 7, edited by C. Domb and J. L. Lebowitz (Academic,
London, 1983), p. 1.

See, e.g., P. Minnhagen, in Percolation, Localization, and Su-
perconductivity, edited by A. M. Goldman and S. A. Wolf,
NATO Advanced Study Institute, Series B Physics (Plenum,
New York, 1984, Vol. 109, p. 287.
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