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High-temperature series expansion for spin glasses. II. Analysis of the series
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We discuss the critical behavior of an Ising spin glass with a +J distribution. The results are
based on an extensive analysis of the high-temperature series carried out for two-, three-, and four-

dimensional systems. The estimates for the transition temperature and the exponents y, g, and v are
presented.

I. INTRODUCTION

For many years the study of disordered magnetic sys-
tems has been a very active area of research. ' By now, it
is well understood, that the presence of disorder and frus-
tration in a system gives rise to a new type of thermo-
dynamic state, called a spin-glass state. In recent years,
one of the most debated questions has been the existence
of an equilibrium phase transition, at a finite temperature,
in three-dimensional Ising spin glasses. Recent numerical
simulations and high-temperature series expansions have
produced overwhelming evidence in favor of a finite tem-
perature transition. The agreement between the two
methods in the estimates of the critical parameters was
found to be very good. Since the two methods face prob-
lems of very different types, one is led to believe that these
results give a very effective description of the underlying
physics.

The purpose of this paper is to explain the details of the
high-temperature series analysis in these systems. In an
earlier paper we have discussed in detail how the series
were generated. A short account of the analysis of the
Edwards-Anderson (EA) susceptibility for the +J distri-
bution Ising spin glasses in two, three, and four dimen-
sions was already presented in Ref. 4. Since then, we
have derived another high-temperature series for a
different susceptibility. On the basis of a simple scaling
assumption, this has allowed us to determine the ex-
ponents g and v. These exponents are also in good agree-
ment with the numerical simulations.

The organization of this paper is as follows. In Sec. II
we shall give an introduction to the use of series analysis
in the study of disordered systems. In Sec. III we shall
define the quantities of interest and explain how the vari-
ous exponents can be obtained. In Sec. IV we shall
present the detailed analysis of the various series. Finally,
in Sec. V we shall present our conclusions.

II. SERIES ANALYSIS IN DISORDERED SYSTEMS

In the study of critical phenomena, high-temperature
series expansions have played a very important role. For
several lattice models, such as the pure Ising model, this
method has led to the most accurate and reliable estimates
of the critical parameters. The method involves extrapo-
lating from a finite number of coe%cients in the high-

temperature series expansion of some thermodynamic
function to its asymptotic coefficients. The asymptotic
form of the series contains the information on the singu-
larities of the function. The existence of a phase transi-
tion at a critical temperature T, implies that the function
should be nonanalytic at that point. Hence, by locating
the position of the singularity on the real axis, and study-
ing the nature of the singularity, the critical parameters
are determined.

These extrapolation techniques are not rigorous in the
strict sense of the word. To a certain extent, one' s

confidence in them to give the right critical behavior is
based on experience. The methods, however, are well
tested on test functions where the singularities are known.
They also give excellent results for statistical models
where the exact solutions are available, such as in the
two-dimensional (2D) Ising model. Nevertheless, one can
question the use of these extrapolation techniques in

disordered systems, where the complete singularity struc-
ture of the function may be very complicated. For exam-
ple, these could be Griffiths-type singularities. Any ex-
trapolation of the series to obtain the critical behavior
represents an analytic continuation which ignores any
such subtle singularities in the high temperature phase.
We still hope that the series analysis is able to locate the
dominant singularity which marks the onset of a new type
of broken symmetry in the system. Other effects simply
contribute to the noise in the estimates. To make sure
that one is not seeing a spurious effect, one can check
one's analysis on the basis of several criteria.

(i) Convergence of the analysis Most an. alysis tech-
niques allow for several determinations of the critical pa-
rameters. From these one can study how good the con-
vergence of the analysis is. Furthermore, one can study
whether adding more and more terms to the series leads
to an improved estimate or not. In this way the method
of analysis itself provides a check.

(ii) Agreement between different methods of analysis
The same series can be analyzed by different methods.
One can then check if they give the same answer.

(iii) Analysis of more than one series If, for a giv. en
model, one can obtain more than one series, which are ex-
pected to have a singularity at the same point, then that
can also be a useful check.

(iv) Veri@cation of universality The notion of. universal-

ity of critical exponents is a very important concept in the
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study of phase transitions. In this regard, one can study a
given model on various lattices and see if the results ob-
tained are consistent with universality.

(v) Veri+cation of scaling relations. On the basis of re-
normalization group theory, one expects certain scaling
relations to hold between the exponents. If one can ob-
tain independent estimates for these exponents, one can
check if these scaling relations hold.

(vi) Agreement with other studies. One of the most use-
ful consistency checks on an approximate study of a com-
plicated problem is to see that cIiAerent ways of approach-
ing the problem give rise to the same answer.

(vii) Agreement with experiments Th. e ultimate test of
any theoretical study is its agreement with experiments.
However, as a prerequisite for such a comparison it is im-
portant to make sure that the model actually represents
the physical system.

In the next few sections we shall analyze the critical be-
havior of Ising spin glasses and see how the results fare
compared to the criteria discussed above.
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151 11976
720 676 72

421 464 680
185 160 3192

118 105 832 08
463 466 253 20

347 729 503 368

TABLE I. Coefficients a„ for d-dimensional "cubic" lattices.

III. BASIC DEFINITIONS

The Ising spin-glass is defined by the Hamoltonian

—P&= g J,,S;S, ,
(i,j)

(3.l)

the expressions

(3.3)

P(J;, ) = —,
' [5(J;, —J)+6(J;, +J)] . (3.2)

We shall be interested in the Edwards-Anderson suscepti-
bility (XE&) and an auxilliary susceptibility (X ) given by

where the sum runs over each nearest neighbor pair once.
5, is the Ising spin at site i which takes values +1, and J;
is the nearest-neighbor interaction which is a quenched
random variable distributed with the probability

and

(3.4)

Here the angular brackets refer to thermal averaging and
the square brackets refer to an average with respect to the
distribution of J;~'s. The series are obtained in powers of
w [= tanh (JlkT)]. The X' series for three dimensions
was found to be

g' = 1+6w + 102w —192w -+ 1998w —7584w +42 822w —221 856w + 114787 8w ' —598 060 8w "
+323 189 10w ' —167 464 128w ' +906 131 742w ' —484 995 830 4w ' +259 528 897 98w ' —141 648 771 168w '

The series for P has already been reported, but for the sake of completeness we give it in Table I, where

&= 1+ ga„w" .

(3.&)

(3.6)

We also give the free-energy series for three dimensions which we have, so far, found dificult to analyze:

Fi /X = —1.5w —11w + 36w —83.25w +656w —2250w ' +9852w "—54767w '

+213 276w ' —112 917 3w ' + 553 872 8w ' —253 367 86. 125w '6+ 137 498 784w '7 .

Let us characterize the divergence of the two susceptibili-
ties by the exponents y and y', respectively. That is

lim X —(T T,)—T~T

We shall assume a scaling relation of the form

(3.8)

lim X' —(T T,)—T~T
(3.7) where r is the distance between the points i and j. g is the

correlation length. As usual the correlation-length ex-
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ponent v is given by

(3.9)

Then from Eqs. (3.3)—(3.8) we get

y=(2 —g)v

and

(3.10)

y'=(4 —d —2g)v . (3.1 1)

We shall analyze the series for 7+A and 7 and use the re-
lations (3.10) and (3.11) to obtain the exponents 7) and v.

coefficients with the lower-order ones. If the value of b is
chosen to be large, then the higher-order terms in the
original series are almost entirely suppressed. Hence, an
apparent convergence on the basis of such an analysis
may be misleading. We have avoided such a change of
variables in our analysis.

The method that we found to be most suitable to this
problem is that of first-order inhomogeneous differential
approximants. ' In this method the function, whose
power series is known, is expressed as the solution to a
first-order inhomogeneous differential equation. Let us
consider the function whose first X + 1 terms in the
power series are known as

IV. SERIES ANALYSIS
N

f(w)= g a„w" . (4.1)

In this section we shall discuss the analysis of the sus-
ceptibilities and obtain the critical temperature and the
critical exponents. We are interested in locating power-
law divergences of the functions, such as the one given in
Eq. (3.9). The nature of these singularities is hidden in
the asymptotic form of the series. Also, the asymptotic
behavior is ultimately dominated by the closest singularity
to the origin. In cases where the physical singularity is
the closest to the origin, the task for estimating the critical
parameters becomes easier. One can obtain the critical
temperature and the critical exponents by studying the ra-
tio of successive terms in the series. However, in the
present problem, as we shall see, the singularity which
controls the radius of convergence of the series lies in the
complex plane. Hence, the critical parameters become
harder to estimate.

If one had knowledge about the exact analytic behavior
of the function, one could make a change of variables
such that in terms of the new variable the physical singu-
larity became the closest to the origin. Then the series
could be analyzed much more easily. In practice, one
may adopt the following procedure. By using a method
such as the d-log Pade method (described below) one first
determines the approximate locations of the dominant
singularities close to the origin. One then makes a change
of variables to move the unphysical singularities away,
hoping that it would bring the physical singularity closest
to the origin. One then analyzes the transformed series in
terms of the new variable. In the next paragraph we
would like to argue that such a procedure is filled with
uncertainties and that in the present problem it can lead
to incorrect answers.

For our susceptibility series the first few terms contain
little information on spin-glass ordering. In fact one can-
not hope to see any spin-glass behavior until one gets con-
tributions from diagrams involving closed loops. This is
because frustration is an essential feature of spin glass and
only occurs in closed loops. Also, the coefficients of the
first three terms of the series for the EA susceptibility are
identical to those for the susceptibility series for the pure
Ising model. Hence, any analysis which depends very
sensitively on the first few terms in determining the criti-
cal behavior is likely to give incorrect answers. It has
been shown by Nickel that the use of an Euler transform
of the form z =wl(1+bw) to go from a series in w to a
series in z amounts to weighting all the higher-order

n=0

We demand that this function satisfy the differential equa-
tion

P, (w) +P, (w)f=P, (w)+O(w + + +'), (4.2)
d
dw

where

Pi(w)=1+ g p, ;w', (4.3a)

L
P2(w) = g p~;w'

i =0
(4.3b)

J
P3(w)= g p3;w

i =0
(4.3c)

The coefficients P; (a=1,2, 3) are obtained by equating
the coefficients of w~ with 0 &j & M+L +J+ 1 in Eq.
(4.2). Since only the first %+1 terms of the series are
known and Eq. (4.2) contains a derivative (df/dw) we
can choose L,M,J such that L +M +J +2 & N.

One can also show that at points w„where Pi(w, )=0,
the solution to the differential equation (4.2) has a singu-
larity of the form (w, —w) i' with y by

y =Pz(w, )/P i (w, ) . (4.4)

Here the prime refers to a derivative. We now find the
polynomials P&, P2, and P3 by solving the linear equa-
tions obtained by equating the coefficients of w' in Eq.
(4.2). Then we get the zeros of the polynomial P, . The
zero of P& on the real axis is identified as the critical
point. The exponent ) is evaluated using Eq. (4.4).

It is useful to compare this method with the more fre-
quently used d-log Pade method. In this method one
represents f as the solution to the differential equation

P, (w) +P, (w)f =0 .df
dw

(4.5)

Here Pj and P2 are polynomials of order M and L, re-
spectively, with P, (0)=1. They are constructed by equat-
ing the coefficients of w' with 0&i &M +L in Eq. (4.5).
Here, again, at points w, where P, (w, ) =0, the solution to
the difFerential equation has a singularity of the type
(w, —w) r with y =Pi (w, )/P i(w, ).

In the method of inhomogeneous approximants, the
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term P3 only affects the coefficients of m
' with i &j.

Hence, P& and Pz are entirely determined by demanding
that

P, (w) +Pp(tv)f =0d
de

(4.6)

A. Analysis of 3D series

For the 3D series we construct all approximants with
4&M &7, 2&L &5, and 2&J &6. We discard the defec-
tive and ill-behaved approximants. In Table II we give a
listing of the well behaved approximants. On the basis of
fifteenth- and higher-order approximants we get

be satisfied for coefficients of w' with J + 1 &i & M
+L +1+1. Comparing Eqs. (4.5) and (4.6) we see the

similarity of the two methods. By allowing for an inho-
mogeneous term in the differential equation, one allows
for a smoothly varying background term. This makes the
critical behavior less sensitive to the first few terms of the
series. The stability of inhomogeneous differential ap-
proximants against changes in the first few terms of the
series has been observed by Fisher and Au- Yang.

For a series of given length a large number of approxi-
mants with different values of L, M, and J can be con-
structed. The order of the series used by an approximant
is equal to L +M +J +2. This number will be called the
order of the approximant. All the approximants are not
equally well behaved. Hunter and Baker' showed that
the approximants of the type (M, L =M —2, 1=M —2)
are invariant under Euler transformation. They also stud-
ied the convergence of these approximants for several test
functions. They then suggested the use of approximants
with values of L, M, and J close to the Euler invariant
ones. We have studied all the approximants and our re-
sults are based on those which are the best behaved. In
addition, the following type of approximants are con-
sidered defective and hence are discarded.

(i) Approximants where a zero of Pq comes very close
to the physical singularity, giving rise to an anomalously
small value of the exponent y.

(ii) Approximants where a zero of P, occurs close to
the origin on the positive real axis hence hindering the in-
tegration of the diff'erential equation in Eq. (4.2) from the
origin to the critical region.

(iii) Approximants where a zero of P& and a zero of Pz
occur within a distance of 0.001 anywhere in the complex
plane.

After we make our preliminary estimates of w, and y
from the unbiased approximants we also study biased
differential approximants. In this case one of the zeros of
P& is constrained to be at a predetermined value of m, .
The exponent y is then obtained using Eq. (4.4). We find
that the same approximants which were well behaved be-
fore biasing are also well behaved after biasing. However,
some of these approximants develop a zero of P, on the
positive real axis closer than m, . These are very poorly
behaved and are not considered. There are also some ap-
proximants where a zero of P, and a zero of Pz come
very close to each other. These approximants are also not
utilized in estimating y.

TABLE II. Unbiased estimates for w, and y for the 3D 7«
series. The number of terms of the series used in the approxi-
mant (L,J,M) is L +J+M+2.

0.410
0.410
0.438
0.436
0.409
0.521
0.426
0.502
0.456
0.473
0.465
0.450
0.465
0.464
0.447
0.482
0.590
0.486
0.465

2.03
2.04
2.49
2.42
2.02
4.94
2.31
3.25
2.79
2.85
2.84
2.51
2.76
3.47
2.44
2.81
4.07
2.94
2.20

w, =0.48+0.04 (T, = 1.2+0. 1),
y=2. 9+0.5 .

(4.7)

Here the uncertainty refers to the standard deviation.
It should be remarked that this uncertainty gives a mea-
sure of the spread in the values of T, and y obtained in
our analysis. However, since there are no underlying sta-

3.11

2.91

2.92
3.85

2.95
3.19
2.92
3.00
3.01
2.94
3 ~ 84
2.60
2.83
3.02
2.90

TABLE III. Biased estimates of y for the 3D g«series. T,
is biased at 1.175 (w, =0.478). An asterisk indicates a defective
approximant as explained in the text. A dagger indicates that a
zero of Pl and a zero of P~ come very close to each other in the
complex plane.
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5.0

4.0—

3.0—

~ l7 terms
& l6terms
& 15 terms

o~~ ~0

TABLE IV. Biased estimates of y' in three dimensions. T, is
biased at 1.175 (w, =0.4/8).

1.98
1.98
2.00
1.59
2.00
2.00
2.27
2.06
2.04
1.72

2.0
0.40 0.50 0.60

In Table III we present the estimates of y for T, biased at
1.175. From these, our estimate, based on fifteenth- and
higher-order approximants is

y =2.94+0. 15 . (4.9)
FIG. 1. The unbiased estimates of w, and y obtained from

the various approximants for 3D GAEA series. The inset indicates
the results quoted in the text.

tistical distributions, it is not a measure of the conver-
gence of the approximants. It has been suggested by Bak-
er and Greves-Morris, " that the systematic errors in T,
and y are in the ratio 6T, /T, : 6y = 1:X, where X is the
number of terms of the series used. By this criteria, the
uncertainty in y could be 4 times larger than those quot-
ed.

Our result can be compared with the Monte Carlo
calculations "

In Fig. 1 we present the scatter of the various approxi-
mants for w, and y. All the estimates seem to lie on a
curve, which suggests that the estimation of w, is well
correlated with the estimation of y. This is also rejected
in the fact that the estimates for y from biased approxi-
mants have a much smaller uncertainty. In Fig. 2 we give
a representative plot of the inverse susceptibility as a
function of temperature, obtained by integrating the
differential equation (4.2).

B. Analysis of the P' series

In Table IV we present the well-behaved estimates for
the exponent y', which characterizes the divergence of the

Tc = 1.175+0.025

y=2. 9+0.3 .

0.09-
0.08-
0.07-
0.06—

—
I

0.05
0.04-
0.03—
0.02—
O.O I

0.00
I. I l.2

(4.8)

I I

l.3 I .4 l.5 I.6 I .7 I .8 I .9
T

3.0—

2.0—

I

~ I5 terms
o l4 terms
& I3 terms

0
~ Q)

I I I I

0.20 0.2 I 0.22 0.23 0.24
FIG. 2. A representative plot for YEA' in three dimensions, ob-

tained by integrating (L =5, M =6, J=3 ) differential equation
in Eq. (4.2) with the boundary condition f(0)=1. On the sca)e
of the plot ten different approximants essentially coincide with
the curve. The maximum deviation occurs near T = 1.5.

FKs. 3. The unbiased estimates of w, and y obtained from
the various approximants for the 4D GAEA series. The inset indi-
cates the results quoted in the text.
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TABLE V. Unbiased estimates of te, and y for the 4D LEA series. The number of terms of the series
used in the approximants (L,J,M) is L +J +M +2.

2
2
2
3
5

2
2
2
2
3
3
4
4
5
2
2

0.224
0.205
0.239
0.216
0.238
0.201
0.217
0.214
0.222
0.216
0.217
0.210
0.221
0.220
0.207
0.206

2.62
1.84
3.55
2.26
3.39
1.55
2.27
2. 14
2.55
2.26
2.30
1.94
2.53
2.38
1.80
1.74

0.211
0.212
0.206
0.210
0.210
0.210
0.209
0.210
0.200
0.199
0.230
0.215
0.193
0.211
0.201
0.200

2.02
2.02
1.74
1.94
1.95
1.95
1.85
1.95
1.47
1.45
3.14
2.24
1.18
2.03
1.66
1.50

7' series, with T, biased at 1.175. We estimate

y' = 1.96+0.19 . (4.10)

listing of all the well-behaved approximants. On the basis
of thirteenth and higher-order approximants we estimate'

From these we can now obtain the estimates for v and g
as

v= 1.3+0.2,
g= —0.25+0. 17 .

This can be compared with Monte Carlo result "
v = 1.3+0.1,
g= —0.22+0.05 .

(4. 1 1)

(4.12)

(4.13)

(4. 14)

C. Analysis of the 40 series

For the 4D series we construct all approximants with
4&M &9, 2&L &6, and 1&J &5. In Table V we give a

m, =0.21+0.01 (T, =2.02+0.06),

y =2.0+0.4 ~

(4. 15)

Our result is in sharp contrast to the earlier work of Fisch
and Harris, ' who on the basis of a ten term series con-
cluded that y~~ in four dimensions. Indeed, we find
larger values of y (y & 10) if we consider only ten terms.
However, these approximants are mostly defective. The
uncertainty in estimating y from a short series is again a
result of incorrect estimation of w, . In Fig. 3 we present
the scatter of w, and y. The points again lie on a curve.
In Table VI we present the results for the biased estimates
for w, =0.208. It is clear that from twelfth- to fifteenth-
order there is good agreement between the estimates. Our

TABLE VI. Biased estimates of y for the 40 gEA series. T, is biased at 2.03 (w, =0.208). An aster-
isk indicates a defective approximant as explained in the text.

2. 10
1.92

)fc

1.82
1.96
1.84
1.95
1.94
2.03
1.93
1.95
1.88
1.91
1.96
1.88
1.86

1.88
1.89
1.86
1.84
1.85
1.85
1.79
1.86
1.89
1.88

1.89
1.86
1.74
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y =1.ass+0. 041 . (4.16)

estimate based on fourteenth- and fifteenth-order approxi-
mants is

TABLE VII. Estimate of y for the zero-temperature transi-
tion in two dimensions. Asterisks imply that the Pade approxi-
mant has a pole on the real axis. A dagger implies that there is
a pole-zero pair on top of each other.

D. Analysis of the 2D series

A similar analysis in two dimensions does not show
any convergent singularity in the region of interest. We
interpret this as an absence of finite temperature transition
or an essential singularity at zero temperature. The vari-
able m, then, is not the appropriate expansion variable, as
it has an essential singularity at T =0. Hence, we express
the series in terms of a new variable z (=1/T ). We esti-
mate y for the zero-temperature transition using a method
due to Baker et aI. ' We expect that

Estimate for
the quantity

d in+
limz- d lnz

d lnA
limi~ oo d 1Ilz

Order M of the
[M/M] Pade approximant Estimates y

1.43

14.44
4.14
4.97

6.02

5.63
)fc

5.54

lim X(z)~z r ~2

+~ oo

(4.17)
V. CONCLUSION

or

d in'
lim

z d Inz 2
(4.18)

d in'
limz- d 1nz 2

(4.19)

Our estimates of y from diagonal [M/M] Fade approxi-
mant of d lnA/dlnz are also shown in Table VII. Our
best guess is

y=5. 3+0.3 . (4.20)

The uncertainties in our analysis are much larger than
the corresponding uncertainties for a series of the same
length for the pure Ising model. A better analysis of the
problem may require a deeper understanding of the singu-
larities in the complex plane, Griffiths singularities,
corrections to scaling, etc.

We construct a power series in z for the expression
d in+/d lnz. Since we wish to estimate the value of this
expression in the limit z~ ~, we must use an analytic
continuation of the series that goes to a constant for large
z. This is done by a diagonal [M/M] Pade approximant.
However, those Fade estimates which develop singularity
along the positive real axis, hence hindering the analytic
continuation to large z, are ignored. Our estimates from
various diagonal Pade approximants are shown in Table
VII. This method only uses series of even orders. To get
estimates from series of odd orders we consider the func-
tion 2 (z) ( =dX/dz). Then

In Sec. II of this paper we laid down several criteria to
check the effectiveness of the series analysis. We find that
our analysis fulfills many of the criteria well. Although
the convergence of the analysis is not good, it still consti-
tutes an evidence in favor of a finite temperature transi-
tion in 30 Ising spin glass. We have analyzed two
different series, which together give estimates of the ex-
ponents v and g. The agreement with the numerical
simulations is good. If we combine the numerical simula-
tions and the series analysis, the scaling relations are
shown to hold. In the future, we hope to check the
universality of critical exponents by studying the EA sus-
ceptibility on other lattices. A preliminary analysis of a
13-term bcc series gives similar results.

To conclude, we would like to summarize our work.
We have obtained the critical behavior of Ising spin-
glasses in two, three, and four dimensions. We hope our
work would stimulate further interest in the use of series
analysis in studying the critical behavior of disordered
systems.
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Note added. Recently, in an independent work, a novel
Monte Carlo simulation by Swendsen and Wang' has led
to Xs~- T in two dimensions. This is in agreement
with our estimate of y which is also 5.3.
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