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Surface magnons for ferromagnets with single-ion uniaxial anisotropy
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We consider a semi-infinite Heisenberg ferromagnet with nearest-neighbor exchange interactions in

a simple-cubic lattice. A single-ion uniaxial anisotropy is taken for the free surface, which is different
from that of the bulk. The Green functions at finite temperature are employed to evaluate the mag-
netization of each layer as well as the surface- and bulk-magnon spectrum up to the bulk critical tem-

perature. We show that the onset of the surface ordering occurs when the energy of the surface mag-
nons begins to be greater than the energy of either bulk mode.

I. INTRODUCTION

The use of Green's functions in the study of surface
magnetism is interesting because it can give us informa-
tion about the spectrum of the surface magnons and
simultaneously the layer magnetization of Heisenberg fer-
romagnets. ' Recent experimental investigations ' on
this subject have stimulated the studies on those systems
where the lack of full translational symmetry is crucial.

In this paper we consider a semi-infinite Heisenberg fer-
romagnetic model in a simple-cubic lattice with a (010)
free surface. We have also included a single-ion uniaxia1
anisotropy with the value Dz for the surface and D for the
other planes. We have employed Green's function tech-
niques within the random-phase approximation (RPA) to
evaluate self-consistently the layer magnetizations of the
first three planes from the surface. We have also assumed
for simplicity that the bulk magnetization value is reached
at the third plane. ' In this approximation we have deter-
mined the surface magnetization for selected values of the
parameters D and D&. Our main goal in this paper is to
show that the onset of the surface ordering occurs when
the surface magnon modes start to become more energetic
than any bulk mode. In Sec. EI we present the model
Hamiltonian and the calculations for the Green's func-
tions of interest. In Sec. IIE we discuss the results ob-
tained for the surface-magnon excitations and for the lay-
er magnetization.

II. HAMII. TONIAN AND SURFACE
GREEN'S FUNCTIONS

+2(s/') y &jIG, (E) =—(S/'),
j(&I)

where G& (E) are the Fourier transform of the Green's
functions and we have employed the RPA decoupling.
We also have assumed that the mean value (Sf ) is the
same for all ions in plane l, that is,

&SI') =&sf ),
where 1=0 is the surface plane; I =1, the next inner
plane and so on. For I )2, we have also taken
(SI') = (S')z, where (S') b is the bulk magnetization per
site.

We now introduce the Fourier transform of the
Green's functions, G(K~~, E), where the wave vectors K~~

belong to the two-dimensional Brillouin zone of a square
lattice. It is easy to show that the Green's function can
be determined by the following reduced matrix equation:

1g= T (7
27?

where T is given by
r

Too o.o 0 0 s ~ ~

We write the equations of motion for the Fourier trans-
form of the Green's functions ((S&+(t);S (t') )),

E 2D(s—f)+ g J;I(S') Gr (E)
j(&I)

W'e consider the following model Hamiltonian on a
semi-infinite simple-cubic lattice

H= —QJ;;S; S) Dg(s', )—
(i,jj

0 1

0 0
2t
1

Tzp 1

1

0

where J represents the exchange couplings between
nearest neighbors and D is the contribution due to the
single-ion uniaxial anisotropy. For the ions on the surface
plane (1=0) we take D=Ds and for the other ions,
D=D. The surface is parallel to the (010) plane and we
assume that the spins will be oriented preferentially paral-
lel to the surface, so that demagnetizing fields can be
neglected.

with the following diagonal elements. If i & 3,

T;; =2r=LU —d —2 —z(l —l K )

otherwise

T22= T33+(1—~I»
T„=T33+1+(1—ol)[d+z(1 —yK )],

II
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Too ——T33+2+z [1—era —1 it (1—o 0)]
ll

'=2t . (14)

+ ( d —0'Od ) —0' i

We have also defined that

&s;)
g(Kii, w ) =JG(Kii, E),

&s')

Ds k&Td=
~ dg

2J&s')b ' J ' J ' zSJ

(10)

(T ')00 ——

000 1

(12)

and yk
———'[cos(k„a)+cos(k, a)] is the structure factor for

ll

a square lattice (z =4) of spacing a.
Following the procedure outlined by Seizer and Majlis'

to calculate the elements of T ', it is straightforward to
show that

From Eq. (4) we see that the poles of the Green's func-
tions coincide with the roots of the det(T). The diagonal
elements of g can be expressed as the ratio between two
polynomials,

AI(Kii, g)
gll ~~~K 8(K g)

where 8(K~~, g') is a fifth-degree polynomial which does
not depend on 1. The roots of Eq. (14), Pt), are complex
for

l
t

~
( l. In this case we can write that t = —cos(k~a )

and if we put this in Eq. (6), we obtain the bulk dispersion
relation for the magnons. On the other hand, if

l
t

l & 1,
the roots g(t) will be real and only those for which

~

g'
l

& 1 will have a physical meaning. The spectrum of
the surface magnons can be obtained from the reaI roots
of 8(K~~, gs)=0, with

l gs ~

&1. The Eqs. (6) and (14)
then give

1

T11
T~~ —g ws(K~~)=(s+(s +d+2+z(l —yz ) .

Il

(16)

(T ')ii ——

where

0 0CT1
~11

TOO T22 —g

Meanwhile, in order to calculate the roots of 8(Ki t),
it is necessary to evaluate the layer magnetizations cr0,

o
&

and the bulk magnetization &S')„. From the proper-
ties of the Green's functions we can show that

where

[s—y, (s)][1+0(s)]"+'+[s+ I+y, (s)][y,(s)]"+'
[I+y (s}]"+'—[~,(s)]"+' (17)

+i ™[T(K~[ t+te)]g 77. A/(K[~~, g' ) (1—
g )

Pt (S)= —lim + —g+ 2tr3 ii
i (e &~ 1) 2 8'(g ) g'(e~ —1)

(18)

g the real roots of the Polynomial 8 (g) and 8 (g ) its derivative calculated at the point g=g . ~e also remember
that

&=2J&s')bw=2J&S')b[2t+d+2+z(1 —yi )] .

The bulk magnetization & S') b is calculated for each value of the temperature from the equations:

+(s)][1+&(s)] +[I+s+x(s)][X(s)] +'
[1+x(s)]"+'—[x(s)]"+'

(19)

(20)

where

X(S)=—g(e "—1)

and

eq=2J&S') b [d +z(1—Gq)]

(21)

over the Brillouin zone were evaluated through the special
points of Cunningham. In this way we are able to deter-
mine, for each value of the temperature, the bulk magneti-
zation and the first- and second-layer magnetizations, as
well as the spectrum of the bulk and surface magnons for
a semi-infinite anisotropic Heisenberg ferromagnet.

is the spectrum of the bulk magnons. Here the q values
run over the first Brillouin zone of a simple cubic lattice
(z =6) with structure factor Gq. The sum in Eq. (21) was
performed considering a set of 816 special points in the
zone that can be obtained from the work of Chadi and
Cohen. Equations (17}—(19) can now be solved self-
consistently for o.0 and a1. The two-dimensional integrals

III. RESULTS AND CONCLUSIONS

We present in Fig. 1 the spectrum of the surface and
bulk magnons for several values of the temperature. [The
reduced temperature r defined by Eq. (11), appears
through Bose factors in Eqs. (18) and (21).] For the
values of the anisotropy parameters considered (d =0.2
and ds=0. 2) we show that the energies of the surface
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