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We consider a semi-infinite Heisenberg ferromagnet with nearest-neighbor exchange interactions in
a simple-cubic lattice. A single-ion uniaxial anisotropy is taken for the free surface, which is different
from that of the bulk. The Green functions at finite temperature are employed to evaluate the mag-
netization of each layer as well as the surface- and bulk-magnon spectrum up to the bulk critical tem-
perature. We show that the onset of the surface ordering occurs when the energy of the surface mag-
nons begins to be greater than the energy of either bulk mode.

I. INTRODUCTION

The use of Green’s functions in the study of surface
magnetism is interesting because it can give us informa-
tion about the spectrum of the surface magnons and
simultaneously the layer magnetization of Heisenberg fer-
romagnets.' ~> Recent experimental investigations*> on
this subject have stimulated the studies on those systems
where the lack of full translational symmetry is crucial.

In this paper we consider a semi-infinite Heisenberg fer-
romagnetic model in a simple-cubic lattice with a (010)
free surface. We have also included a single-ion uniaxial
anisotropy with the value Dy for the surface and D for the
other planes. We have employed Green’s function tech-
niques® within the random-phase approximation (RPA) to
evaluate self-consistently the layer magnetizations of the
first three planes from the surface. We have also assumed
for simplicity that the bulk magnetization value is reached
at the third plane.! In this approximation we have deter-
mined the surface magnetization for selected values of the
parameters D and Dg. Our main goal in this paper is to
show that the onset of the surface ordering occurs when
the surface magnon modes start to become more energetic
than any bulk mode. In Sec. II we present the model
Hamiltonian and the calculations for the Green’s func-
tions of interest. In Sec. III we discuss the results ob-
tained for the surface-magnon excitations and for the lay-
er magnetization.

II. HAMILTONIAN AND SURFACE
GREEN’S FUNCTIONS

We consider the following model Hamiltonian on a
semi-infinite simple-cubic lattice

H=—31U;S;-S;—D3(57)7, (n
(i,§) i

where J represents the exchange couplings between
nearest neighbors and D is the contribution due to the
single-ion uniaxial anisotropy. For the ions on the surface
plane (/ =0) we take D=Dg and for the other ions,
D=D. The surface is parallel to the (010) plane and we
assume that the spins will be oriented preferentially paral-
lel to the surface, so that demagnetizing fields can be
neglected.

We write the equations of motion for the Fourier trans-
form of the Green’s functions {S;7(¢);S, (t)),

[E—2 [D<Sf>+j(§”1,-,<sjz) ] }G,m(E)
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where Gy, (E) are the Fourier transform of the Green’s
functions and we have employed the RPA decoupling.
We also have assumed that the mean value (Sf) is the
same for all ions in plane /, that is,

(SFY=4(S{) , 3)

where [ =0 is the surface plane; /=1, the next inner
plane and so on. For [/>2, we have also taken
(S7)=(S?),, where (§?), is the bulk magnetization per
site.

We now introduce the Fourier transform of the
Green’s functions, G(K,E), where the wave vectors K,
belong to the two-dimensional Brillouin zone of a square
lattice. It is easy to show that the Green’s function can
be determined by the following reduced matrix equation:

1

g=5-T ', @)

where T is given by

T()O Og 0 0

o, T,y oy O
0 1 Ty 1 0
T=\o o 1 22 1 0 - (3)

0 0 0 1 2t 1 0

with the following diagonal elements. If i >3,

T,=2t=w —d —2—2(1—7/1(") , (6)
otherwise

T22:T33+(1—0'1), (7)

T]1=T33+1+(1—0’1)[d+2(1—'}/](q)] » (8
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We have also defined that
(SF)
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and Vi = slcos(k,a)+cos(k,a)] is the structure factor for

a square lattice (z =4) of spacing a.

Following the procedure outlined by Selzer and Majlis'
to calculate the elements of T, it is straightforward to
show that

-y , (12)
(T~ ")oo 7o
Too— o
T
! Ty»—§
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where
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E+E7 =2t . (14)

From Eq. (4) we see that the poles of the Green’s func-
tions coincide with the roots of the det(7). The diagonal
elements of g can be expressed as the ratio between two
polynomials,

4/(K )

, 15
B(K,,£) 13

gn(K,8)=
where B(K,§) is a fifth-degree polynomial which does
not depend on /. The roots of Eq. (14), £(¢), are complex
for |z | <1. In this case we can write that t = —cos(k,a)
and if we put this in Eq. (6), we obtain the bulk dispersion
relation for the magnons. On the other hand, if |7 | > 1,
the roots &£(¢) will be real and only those for which
|€| <1 will have a physical meaning. The spectrum of
the surface magnons can be obtained from the real roots
of B(K,£s)=0, with |£5| <1. The Egs. (6) and (14)
then give

ws(Ky)=&s+£5"+d +2+2(1—yx,) . (16)

Meanwhile, in order to calculate the roots of B(KM),
it is necessary to evaluate the layer magnetizations o,
o, and the bulk magnetization (S?),. From the proper-
ties of the Green’s functions’ we can show that

1 [S—¢(ON1+¢ (S5 +[S +14+¢,(8)][d,(S)]S !

Tr= , an
T (57, [146,(S)15 1 —[¢,($)]*5+!
where
) 2 Im[T YK, t+i€)], AK€, (1—£2)
S)=— 1 a +1 I T 1PSa a
siS)==tim o5 | SR 4 3 e BT | (18)

£, being the real roots of the polynomial B (§) and B'(£,) its derivative calculated at the point £=£,. We also remember

that
E=2J(S"),w=2J(S?*),[2t+d +2+z(1-7rg)] .

(19)

The bulk magnetization (S?), is calculated for each value of the temperature from the equations:

(SZ)b=IL—X(S)][1+X(S)]ZS+‘+[1+S +X(S)X(S) S +!

[14+X(S$) ]S+ —[x(S)]>S +!

where
X(S) =L 1)~ 1)
N q
and
eq=2J(5%),[d +2(1—G,)] 22)

is the spectrum of the bulk magnons. Here the q values
run over the first Brillouin zone of a simple cubic lattice
(z =6) with structure factor Gy. The sum in Eq. (21) was
performed considering a set of 816 special points in the
zone that can be obtained from the work of Chadi and
Cohen.® Equations (17)-(19) can now be solved self-
consistently for 0 and o;. The two-dimensional integrals

) (20)

[

over the Brillouin zone were evaluated through the special
points of Cunningham.® In this way we are able to deter-
mine, for each value of the temperature, the bulk magneti-
zation and the first- and second-layer magnetizations, as
well as the spectrum of the bulk and surface magnons for
a semi-infinite anisotropic Heisenberg ferromagnet.

III. RESULTS AND CONCLUSIONS

We present in Fig. 1 the spectrum of the surface and
bulk magnons for several values of the temperature. [The
reduced temperature 7 defined by Eq. (11), appears
through Bose factors in Eqs. (18) and (21).] For the
values of the anisotropy parameters considered (d =0.2
and dg=0.2) we show that the energies of the surface
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FIG. 1. Dispersion relations for surface and bulk magnons.
The dashed region is the bulk continuum. The abcissa measures
l—yk“. The different curves correspond to 7t=1.36, A4
(r=0.69), B (r=0.97), C (r=1.26), D (r=1.34), all with S=1,
d=0.2,ds=0.2.

magnons are always smaller than the corresponding bulk
ones for all temperatures 7 below the bulk transition tem-
perature (r2). We also note the unfolding of the spectrum
of the surface magnons as we approach 72. Besides, one
surface-magnon branch moves away from the continuum
at large values of the wave vector.

In Fig. 2 we show the behavior of the spectrum of the
surface and bulk magnons as a function of the surface an-
isotropy parameter dg. The behavior presented is the
same for whatever temperature below the bulk critical

temperature. For small values of the parameter dg the
w
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FIG. 2. Dispersion relations for surface and bulk magnons
for different values of ds. The dashed region represents the

bulk continuum, the abcissa measures l—yk”. The different

curves correspond to 4 (ds=0.02), B (ds=0.2), C (ds=0.75),
and D (ds=1.0), all with S=1, d=0.2, and 7=0.69
(tt=1.36).
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FIG. 3. Reduced magnetization of the surface plane as a
function of the temperature. The different curves correspond to
A (ds=0.02), B (ds=0.2), C (ds=1.0), all with S=1, d=0.2,
t=1.36.

energy of the surface magnons is always smaller than the
energy of the corresponding bulk magnons. In this case
the bulk and the surface critical temperatures are the
same. On the other hand, for dg larger than a critical
value (in our figure this value is around 0.50) the surface
magnons have energies greater than those on the bulk
continuum. For those values of the parameter dg the sur-
face is ordered even when the bulk is paramagnetic. For
completeness we exhibit in Fig. 3 the reduced magnetiza-
tion of the surface as a function of the temperature. The
curve C, that corresponds to dg=1.0, indicates that at 72,
the surface magnetization is about 80% of this value at
T =0. That is, the surface is still ferromagnetic while the
bulk is in a paramagnetic state. Although we have not
presented here the detailed calculations, the contribution
of the next-nearest-neighbor exchange interactions does
not change the main conclusions of this work. In a fol-
lowing paper!® we shall give a detailed analysis of the sur-
face magnons and the surface magnetization in the in-
teresting region of temperatures above the bulk critical
temperature for various values of the parameters D and
DS.
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