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Ground-state phases of polarized deuterium species
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Microscopic prediction of the ground-state phase of electron-spin-aligned bulk atomic deuterium

(D&) is attempted, based on the variational Monte Carlo method. The accurate pair potential of Ko-
los and Wolniewicz is assumed, and three versions of D$ are considered, which, respectively, involve

one, two, and three equally occupied nuclear spin states. The most definitive results on the zero-
temperature equations of state of these systems are obtained with optimized ground-state trial wave

functions incorporating Jastrow pair correlations, triplet correlations, and momentum-dependent
backflow effects. The species D&3 is bound already at the pure Jastrow level, while the energy expec-
tation value of D I & dips below zero upon supplementing the Jastrow description by triplets and
momentum-dependent backflow. The variational energy of D&l remains positive under all current
refinements of the ground-state trial function. We conclude that the systems Dl& and Dl2, if they
could be manufactured and stabilized at relevant densities, would be Fermi liquids at sufficiently low

temperature; on the other hand, it is likely that D& l would remain gaseous down to absolute zero.

I. INTRODUCTION

An interesting question in the theory of quantum Auids
(though still a hypothetical one) concerns the nature of the
ground-state phases of various species of bulk electron-
spin-aligned atomic deuterium D&, at zero temperature
under vanishing external pressure. The three species com-
monly considered, ' designated Dl&, D&2, and D, , have

3

respectively one, two, and three accessible nuclear spin
states. Assuming equal occupation of the available spin
states in the latter two cases, the three realizations of D,
are regarded as spin-saturated systems of elementary fer-
mions with respective level degeneracies v= 1, 2, and 3.
van der Waals forces are assumed to act between the con-
stituent atoms. However, the composite nature of the
deuterium atoms is suppressed, and, in particular,
hyperfine interactions are disregarded; in that sense the
problem is posed in a somewhat idealized form.

One may liken D&& to fully polarized bulk He, having
all its nuclear spins aligned; and D12 to ordinary, unpo-
larized He. On the other hand, at densities near equilib-
rium, the deuterium systems are not nearly so strongly
coupled as liquid He; hence, their quantitative micro-
scopic treatment is generally not so demanding. Indeed,
for many purposes a Jastrow wave function and integral-
equation evaluation of the corresponding distribution
functions provides a reasonable description of the ground
states of these systems. However, in the determination of
the ground-state phase of the Dl systems —gas or self-
bound liquid —we face an exception requiring more deli-
cate treatment, since the kinetic-potential balance in the
ground state of D1, near the finite-density minimum of
the curve of energy versus density, is so close that errors
in any conventional many-body method (e.g. , Jastrow-

Fermi-hypernetted-chain '
) obscure the sign of the es-

timated energy. To achieve the necessary refinement in
accuracy, appeal must be made to Monte Carlo (MC)
sampling algorithms and variational Monte Carlo (VMC)
calculations. A few years ago, such a calculation ruled
definitively in favor of a liquid rather than a gaseous
ground state for D&3. In fact, this system binds even with
a Jastrow wave function. The aim of the current study is
to clarify the situation for the other two systems.
Comprehensive VMC results will be presented for all
three values of v, based on (a) parametrized and "optimal"
Jastrow wave functions and on (b) more elaborate trial
wave functions including state-independent (Jastrow) pair
correlations, triplet correlations, and backflow. These re-
sults will be compared with the best available calculations
from Fermi-hypernetted-chain (FHNC) theory and from
the method of correlated basis functions (CBF).

From the standpoint of many-body theory, the problem
posed above is a particularly attractive one. We have here
an example where the basic two-body interaction is very
accurately known; it is reproduced with great precision by
the theoretical b X+ potential of Kolos and Wolniewicz
(KW). On the other hand, the substance Dt has not yet
been produced in quantities or at densities allowing an ex-
perimental resolution of its ground-state phase under
relevant conditions. Indeed, it is hard to see how this
might be accomplished with current technology, although
progress is still being made on the stabilization and con-
centration of Hl (see, for example, Refs. 8—11). An op-
portunity is therefore open for many-body theory to con-
tribute incisive qualitative determinations and accurate
quantitative predictions of the properties of a fundamental
class of Fermi fiuids, without any hints from experiment.

Our principal findings are the following: While D$2
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II. JASTRQW GROUND-STATE ENERGY

A. Fermi-hypernetted-chain results

We first attempt to resolve the issue of the ground-state
phase assumed by the various species of D l purely within
the Jastrow description. Thus we adopt a variational ap-
proach in which a ground-state trial function %t„,l of the
N-fermion system is formed by correlating the ground
state N0 of the noninteracting Fermi sea by a product of
pair functions f:

+trial +0 ++0

with

(2. 1)

F=FJ= g f(r;, ) . (2.2)

The pair-correlation function f(r), and the corresponding
pair "pseudopotential" u(r ) = —2 Inf(r), should ideally
be determined by functional minimization of the energy
expectation value per particle

&a&=m-', (e, iaido, )
(2.3)

+o
I
+o

i.e., by solving the Euler equation

a&a&
5u(r)

(2.4)

remains unbound at the Jastrow level, the introduction of
triplet and backflow correlations into the variational an-
satz suffices to reduce the energy minimum below zero.
Thus Dfz, like D~3, has a liquid ground state. Triplet
and backflow correlations have very little effect in D&l
and do not bring the energy below + 0.2 K for the par-
ticular trial forms assumed. From all indications, the
ground state of this system —as expected for v=1 and
not-so-strong coupling —is well represented by a Jastrow
wave function. It appears very likely that D&l, like the
mass-1 isotopic form H&, remains gaseous down to abso-
lute zero. Also as expected, triplet and backflow corre1a-
tions are more important in D13 than in the other two
species, and produce a significant relative reduction in the
energy. The energy ordering is well established as

E(Dt~) )E(DJ2) )E(D(3). Where meaningful compar-
isons can be made, these predictions are in accord with re-
sults obtained by CBF perturbation theory.

In Sec. II we report new variational Monte Carlo calcu-
lations on the deuterium systems at the Jastrow level;
these and other available MC data are used to assess the
accuracy of various aspects of corresponding FHNC/C
evaluations. In Sec. III the VMC treatment is extended
to include triplet and backflow correlations, and implica-
tions for the equations of state of Dll, D&z, and Dl3 are
discussed. Section IV presents some Monte Carlo results
for the radial distribution function g(r) and the one-body
density matrix n(r), assuming Jastrow correlations. Ap-
pendix A addresses some key technical aspects of the MC
sampling procedure, and Appendix B sketches the MC
evaluations of g(r ) and n (r ).

We consider three prescriptions for f(r) which fulfill this
ideal to a lesser or greater extent.

(a) The Schiff'-Verlet' (SV) or McMillan' choice

fsv(v ) = exp[ —
—,'(b/r )'], (2.5)

the scale parameter b being fixed by minimization of a
suitable approximation (namely, FHNC/C or Monte Car-
lo) to the Jastrow expectation value (2.3).

(b) A Pandharipande-Bethe' (PB) function, the lowest
solution of the two-body Schrodinger-like equation

V +U(r) —A, f(r)=0 (2.6)

in the interval 0 ( r (d, subject to rf(r )~0 as r ~0 and
to the healing conditions f(d)=1 and f'(d)=0. The
Lagrange multiplier A, is fixed by the constraints, and the
healing distance d remains as a single trial parameter
which, again, may be varied at each density to minimize a
chosen approximation to the energy per particle.

(c) The determination of an optimal correlation function
within the FHNC/C scheme. This is clearly the preferred
option among those considered here; for details of its im-
plementation, see Ref. 2.

Reference 2 reports extensive numerical data on the Jas-
trow energy of the three systems Dl l, D12, and D 13, for
each of the above pair-correlation functions: Schiff-Verlet
(SV), Pandharipande-Bethe (PB), and optimal (opt). The
FHNC/C approximation was applied to evaluate the en-
ergy expectation value, for which three different forms
were used, corresponding to Clark-Westhaus (CW),
Jackson-Feenberg (JF), and Pandharipande-Bethe (PB)
treatments of the kinetic-energy operator.

In the SV case, the parameter b of (2.5) was determined
for D13 at each density by minimizing the Jackson-
Feenberg expectation value (a)J„. For v= 1 and 2 the
values b(v, p) given by Miller" were adopted, after
checking that they minimize, or nearly minimize, (a )JF
as approximated in the FHNC/C scheme. All relevant b
choices are tabulated in Ref. 2. In the calculations based
on the PB correlation function, the healing distance d was
chosen by minimizing (a )JF for each species of D 1 in the
vicinity of the finite-density energy minimum found with

fsv. For all three degeneracies, an optimal value
d =2.2r0 was obtained, where r0 is the radius of a sphere
of unit density. This healing distance was used for all den-
sities studied. Finally, in the calculations involving an op-
timal pair correlation function f,~„ the FHNC/C Euler
equation was solved at each density for each v value.

Comparison of the detailed FHNC numerical results
for a given density and degeneracy shows very little
lowering of the energy per particle upon going to a more
refined (more elaborately optimized) wave function of Jas-
trow form. Extensive energy-minimization searches for
the parameter b in fsv, and also for the healing distance d
in fpB, affirm that the energy is, within reasonable limits,
insensitive to the detailed structure of the pair correlations
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FIG. 1. Jastrow energy per particle versus density for the
electron-spin-aligned deuterium system D l &, based on the
Kolos-Wolniewicz potential and the SchiF-Verlet correlation
function fsv(r) The ene. rgy expectation value was computed in

the FHNC/C approximation, using (as labeled) CW, JF, and PB
expressions for the kinetic energy.

FIG. 3. Jastrow energy per particle versus density for the
electron-spin-aligned deuterium system D &3, based on the
Kolos-Wolniewicz potential and the Schiff-Verlet correlation
function fsv(r) The en. ergy expectation value was computed in
the FHNC/C approximation, using (as labeled) CW, JF, and PB
expressions for the kinetic energy.

entering the wave function, as one might expect from the
relatively low density of these systems. In fact, the mag-
nitudes of the energy shifts produced by going from one
choice of f to another are less than our best estimates of
the numerical uncertainty (-0.1 K) in the evaluation of
the energy expectation values. This estimate is arrived at
by varying the grid sizes for the tabulated functions and
numerical transforms involved in solution of the FHNC
equations.

In Figs. 1 —3 we have plotted the zero-temperature
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FIG. 2. Jastrow energy per particle versus density for the
electron-spin-aligned deuterium system D & q, based on the
Kolos-Wolniewicz potential and the Schiff-Verlet correlation
function fsv(r) The energy expectat. ion value was computed in
the FHNC/C approximation, using (as labeled) CW, JF, and PB
expressions for the kinetic energy.

equations of state for the three species of D l, with the SV
choice of f. The following qualitative comments apply to
all three cases.

At small values of the density p, the FHNC/C approxi-
mations to (H )cw, (H )J„,and (H )pn are nearly identi-
cal, since at low density the energy is dominated by the
Fermi-gas component TF ——0.3A kF/2m. As p increases,
the three expectation values begin to disagree. The
discrepancies reflect the different ways in which the alter-
native forms of the kinetic energy express three-body
correlation kinetic energy effects or effects due to the cou-
pling between derivatives of the correlation operator and
of the Slater determinant. In general, the CW prescrip-
tion underestimates the binding energy; the PB expression
overestimates the binding (indeed, (H )pB does not even
saturate for Dt&, as shown in Fig. 1); and the Jackson-
Feenberg choice lies in between. Over most of the range
of densities, (H )J„ is seen to be roughly the average of
(H )cw and (H )pB, approximating a relationship which
is exact for Bose systems.

The disagreement among the different evaluations of
(H ), which becomes very prominent at higher densities,
may be ascribed to the omission of elementary cluster dia-
grams, ' which become more and more important as the
average particle separation decreases, and affect the three
kinetic-energy formulas in different degrees. We should
stress, however, that the size of the disparities is exag-
gerated by the energy scale used in the figures. While
these disparities amount to only small percentages of ei-
ther the potential energy ( V) or the kinetic energy ( T ),
they are large when compared to the total energy, which
results from a near cancellation of ( T ) and ( V ) . The ab-
solute discrepancies in the deuterium systems are, in fact,
much smaller than those found in studies of He; more-
over, the spread between (H ) cw and (H )pB grows less
rapidly as the density is increased. It is therefore suggest-
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ed that the elementary diagrams are less important for
deuterium than for helium.

Energy curves (H )i„ for Dt, , Dtz, and Dt, based on
f,~, are displayed in Fig. 4. The locations of the finite-
density minima of these Jastrow energies are roughly
3.7X10 A (po =0.185) for Dt& and 28)&10
A (per =0.140) for Dt23. (As convenient, we shall
measure the density p in units of A or by the dimen-
sionless combination po. , where o. =3.6892 A is the
"zero-crossing" of a Lennard-Jones fit to the interatomic
potential. The latter measure permits an easier compar-
ison with other strongly-interacting quantum systems,
notably He. )

At this point we call attention to a striking qualitative
feature of the available variational results for all three
choices of f: namely, beginning at a relatively low densi-

ty, the energy curve for D&& lies below the other two
curves. This is contrary to the prediction of simple physi-
cal arguments, ' which would lead one to believe that, at
least for a state-independent potential and at not-too-high
densities, the system with the largest level degeneracy
should have the lowest-lying ground state.

Over most of the density range covered by Fig. 4, the
results for D~2 and Dl3 show a more reasonable behavior
with respect to one another, in that (H )(v=3) lies below
(H)(v=2) at given p. Nevertheless, at high density, the
D&2 curve does indeed drop below the curve for D&3.
Qualitatively, the differences between the equation-of-state
results for D&2 and D43 are not as prominent as between
the results for either D$2 or D&3 and D~&. This is in line
with the observation that the parameter v enters the
FHNC/C calculations essentially as v ', which makes a
smaller "jump" as v changes from 3 to 2 as compared to
the change from 3 or 2 to 1.

The apparent energetic preference, within the Jastrow
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FIG. 4. Jastrow energy per particle versus density for three
species of electron-spin-aligned deuterium D&, with (as labeled)
one, two, or three equally populated nuclear spin states, based
on the Kolos-Wolniewicz potential and the optimal correlation
function f,~, (r). The latter correlation function, as well as the
energy expectation value, were determined within the FHNC/C
approximation, using the Jackson-Feenberg (JF) expression for

the kinetic energy.

description, for the fully-polarized system D&& over D&2 3

parallels findings of detailed variational studies of
He. ' ' The conclusion in the case of liquid helium is

that the Jastrow wave function does not give nearly so
poor a description of the correlation structure for fully-
polarized helium as it does for spin-saturated (ordinary)
He. Optimized triplet and backflow correlations, if in-

cluded in the trial wave function, significantly lower the
variational energy of the unpolarized phase, while having
little effect on the nuclear-spin-polarized phase. Indeed,
the expected ordering of the He equations of state in the
liquid-density range is recovered with the better variation-
al wave function' ' (see also Ref. 18).

Our system D $ &
can be considered the deuterium coun-

terpart of nuclear-spin-aligned He, since the deuteron
spins, as well as the spins of the orbiting electrons, are
considered to be fully polarized. Similarly, Dj,

&
is analo-

gous to the normal phase of He, and the higher-
degeneracy species D&3 should also resemble normal He,
for the purpose of qualitative comparisons between spin-
saturated and fully-polarized systems. However, the ap-
parent spin instability within the Jastrow description has a
much weaker "signal" in Dl than in He. Referring again
to Fig. 4, two salient observations can be made. First, the
level crossings in D& are at densities greater than the
equilibrium (dE/dp=0) densities for the three systems.
This is in sharp contrast with the inversion at low density
seen for the Jastrow equations of state in He. Second,
the minimum energies for the three deuterium species at
their equilibrium densities are consistent with the intuitive
expectations mentioned above: the (finite-density)
minimum of ( H ) versus p for v = 3 lies below that for
v=2, which in turn lies below the minimum for v= 1.

Based on the FHNC/C results alone, the question of
the ground-state phase of D & would remain unresolved.
If we adopt (H)i„as the form of the energy expectation
value most likely to provide a close upper bound, the
minimum energy per particle for all three species is very
small but positive. The true ground-state energy for any
or all three of the systems could still be negative, and im-
plying the existence of self-bound liquids.

The magnitude of (H ) itself is less than the numerical
uncertainty of the FHNC calculations. While the size of
the differences between the three choices for the expecta-
tion value (viz. , CW, JF, and PB) gives some idea of the
magnitude of the errors associated with the approxima-
tions introduced in computing g and g3 and hence (H ),
we have to go outside the FHNC scheme altogether to as-
sess the absolute accuracy of the FHNC evaluation of the
energy. Variational Monte Carlo evaluation of (H) pro-
vides such a check, and allows us to determine the zero-
temperature equations of state with much greater
confidence.

B. Monte Carlo results

The Jastrow wave function 4~ of (2.1) and (2.2) defines a
probability density P(R )=PJ(R ) for configuration R.
Following Ceperley et al. , ' the standard Metropolis
Monte Carlo algorithm is used to sample this P(R ), for
the various deuterium cases, by a random walk in
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configuration space and thereby to calculate the expecta-
tion value of the energy, assuming a finite number X of
atoms at the given density in a finite box. As usual, the
simulation box is replicated throughout all space to form a
periodic lattice. For further relevant details, see Appen-
dixes A and B.

Since it is the system most likely to be self-bound, we
first look at D-l3. Some results for the ground-state ener-

gy of this system are displayed in Fig. 5 and Table I (cf.
Ref. 5). For comparison, we have also included in Fig. 5

a corresponding curve for (H)JF from Fig. 4. Paying
close attention to the very fine energy scale used in Fig. 5,
the finite-density minimum of the Monte Carlo (H )
versus p curve is unequivocally negative in the case of op-
timal pair correlations, lying more than 4 standard errors
from the zero-energy line. Given this negative variational
upper bound, it was concluded in Ref. 5 that, even at the
Jastrow level, D$3 has a liquid ground state. This con-
clusion is contingent, of course, on the unimportance of
finite-size corrections to the MC simulation, which has
been confirmed by test calculations at larger N (viz. ,
N =99 particles instead of N = 57).

Over the density range involved, the Monte Carlo curve
for u =u,~, lies somewhat below its FHNC/C counterpart
(evaluated from the JF energy expression). We do not,
however, see any emphatic increase of the discrepancy
with density, corresponding to the increasing importance
of elementary-diagram effects absent from the FHNC/C
treatment but present in the MC results. This feature
may be traced to the fact that, for simplicity, the MC cal-
culations of Table I and Fig. 5 were carried out assuming
the same pair pseudopotential at arl of the densities con-
sidered, namely the solution u,„, of the FHNC/C Euler
equation at p=3. 52&&10 A . Use of optimal pair
correlations appropriate to the lower and higher densities
will bring down the Monte Carlo equation of state some-
what in those regions and especially at the high-density
end.
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FIG. 5. Energy per particle versus density for D$3 based on
the Kolos-Wolniewicz potential. Solid curve: Jastrow energy for
f,~„computed by the Monte Carlo procedure. Short-dash
curve: Jastrow energy for f,~„calculated in the FHNC/C ap-
proximation. Long-dash curve: Jastrow energy for fsv, with
b = 1.065cr (where o =3.6982 A), computed by the Monte Carlo
procedure. Optimal correlations f,~, were determined as for Fig.
4. The Monte Carlo results correspond to N = 57 particles.

A comparison of the SV entries in Table I is more re-
vealing, since for these the same density-dependent corre-
lation function (with b optimized at each density point)
was employed in both FHNC/C and MC calculations.
Certain deficiencies of the FHNC/C approximation to the
radial distribution function g(r) now become apparent.
True enough, we see that the FHNC/C values of the ki-
netic energy ( T) agree rather well with the Monte Carlo
values, especially at lower densities. With growing densi-
ty, the gap between the FHNC/C and MC values for
( T) widens somewhat, but this gap remains less than the
sum of the numerical uncertainty of the FHNC/C pro-
cedure and the statistical uncertainty of the MC results.
However, a much less satisfactory picture emerges for the
potential energy.

The average potential energy per particle ( V) is com-
puted in both methods via

( V) = + J V(r)g(r)d r,
2

(2.7)

and is evidently more sensitive than ( T ) to errors in g(r).
At the lowest density listed, the difference between the
FHNC/C and MC results for ( V) alone accounts for the
discrepancy in the total energy (H). With increasing
density, the differences between the two evaluations of
g(r), and hence ( V), become more pronounced, indicat-
ing that the elementary diagrams, simulated only very
crudely in the solution of the FHNC/C equations, are im-
portant to an accurate g(r), especially at densities around
and above the equilibrium density. The corresponding
omission of elementary-diagram effects leads to an un-
derestimate of the magnitude of ( V) at all densities ex-
amined.

Still concentrating on the SV results of Table I, we see
that the FHNC/C procedure, with the Jackson-Feenberg
form for the kinetic energy operator, yields an overesti-
mate of (T). Combining this overestimated (T) with
the FHNC/C underestimate for ( V), the full energy ex-
pectation value (H)JF may be regarded as a secure upper
bound to the exact Jastrow energy.

Figure 6, which compares results of FHNC/C and MC
energy-minimization searches for the optimal parameter b
entering fsv, provides additional information on the accu-
racy of the FHNC/C evaluation of (H). The relative
shallowness of the upper curve attests to the fact that the
FHNC/C Jastrow energy is much less sensitive to changes
in b than is the MC energy. Even so, this comparison
demonstrates one aspect of the computational efficiency of
the FHNC/C scheme at the Jastrow level: although the
absolute magnitude of the energy is in error, the value of b
which minimizes (H )JF in the FHNC/C approximation
comes close to minimizing the energy in the more expen-
sive Monte Carlo procedure. [We warn that this property
cannot be attributed indiscriminately to FHNC evalua-
tion in all contexts: for example, minimization of the
FHNC/0 approximation in a o.,-dependent variational
treatment of He leads to the wrong region of parameter
space, judged in terms of the results of an accurate minim-
ization within MC (see Ref. 21).]

Our Monte Carlo results for the Jastrow energy of D&
&

and Dlq in the fsv case are collected in Table II. To en-
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TABLE I. Comparison of Fermi-hypernetted chain (FHNC) and Monte Carlo (MC) evaluations of
Jastrow kinetic, potential, total energies lrespectively, (T), ( V), and (H ) l, for Dt3. FHNC results
correspond to the Jackson-Feenberg expression for the kinetic energy. All energies are in K per parti-
cle. Statistical errors in last decimal place of MC results are given in parentheses.

P.
(10 A ) PcT Method ( T )

opt

2.82

3.52

4.23

5.63

6.34

0.142

0.177

0.213

0.283

0.318

FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC

3.43
3.42(2)
4.51
4.45(3)
5.71
5.62(3)
7.05
6.96(5)
8.50
8.44(7)

10.13
9.91(7)

—3.34
—3.43(1)
—4.34
—4.43(2)
—5.36
—5.48(2)
—6.42
—6.64(3)
—7.43
—7.71(4)
—8.44
—8.78(5)

0.09
—0.01(1)

0.17
0.02(1)
0.35
0.14(2)
0.63
0.32(2)
1.07
0.73(4)
1.69
1.13(5)

3.52
3.47(2)
4.59
4.45(3)
5.76
5.54(4)
7.05
6.73(4)
8.57
8.10(4)

10.14
9.40(5)

—3.47
—3.51(2)
—4.47
—4.50(2)
—5.46
—5.46(3)
—6.48
—6.39(3)
—7.54
—7.40(4)
—8.49
—8.30(5)

0.05
—0.04(1)

0.12
—0.05(1)

0.30
0.08(2)
0.57
0.34(3)
1.03
0.70(3)
1.65
1.10(3)

0. 1 6 FHNC

03

U

U

0.12

0.08

—0.04

sure clean comparisons, as with D$3, the same values for
the p-dependent variational parameter b which minimized
(H )&z in the FHNC/C treatment were used in the Monte
Carlo calculations. Looking at D l2, the Jackson-
Feenberg FHNC/C results consistently lie above the MC
results. At high density, (T)&it~a/a does not overesti-
mate the exact kinetic energy, but the substantial underes-
timate of ( V) is more than sufficient to keep the
FHNC/C evaluation of (H )Jz an upper bound to the ac-
curate MC (H ).

The results for Dl& exemplify the misleading nature of
canceling errors. While the FHNC/C evaluation of the
full energy expectation value (H)J& agrees well with the
MC result, the agreement is due to the combined effects of
underestimation of both ( T)FHNc/c and

I
( V) FHNc/a l

At intermediate densities, the FHNC/C energy even falls
below the MC energy.

Comparing the ( V) ~a entries from Tables I and II, we
see that the potential energy components for the three

species of Dg are virtually the same, so the differences be-
tween their Jastrow energies come almost exclusively from
the kinetic energy.

We also performed Monte Carlo calculations on D&&

and Dlz using f,~„with results similar to those obtained
for fsv. To wit: the MC values for (H ) are lower than
the FHNC/C values for (H)J„by about 0.1 K near the
finite density minimum in the case of D&2, while the JF-
FHNC/C and MC values for (H) in Dt

~ are, again, very
close, even though the respective evaluations ( T ) and
(V) differ considerably. For neither D&& nor Dl2 does
the Monte Carlo energy-versus-density curve based on
f,~, go negative. At the two-body Jastrow level, then,
while D &3 is clearly a self-bound liquid, we are still con-
fronted with very small but positive upper bounds on the
ground-state energies of D l

&
and D $2, leaving the nature

of their respective ground-state phases in doubt.
Before we turn to MC calculations for non-Jastrow

correlations and compare their results with those from
CBF perturbation theory, a brief digression on the errors
associated with the variational Monte Carlo method is in
order. The most obvious errors are statistical in nature;
to deal with these, the calculations may simply be "run
longer" or variance reduction techniques employed. In
addition, there might be significant finite-size effects, in
which case the results of the Monte Carlo calculation may
not faithfully represent the properties of the infinitely ex-
tended, bulk quid. For the calculations reported in this
paper, such finite-size effects introduce an uncertainty of
less than 0.02 K in the energy over the density ranges
studied. This estimate was arrived at by repeating the cal-
culations at a fixed density for larger numbers of particles
in a larger simulation box.

1.02 1.04- 1.06 1.08 1.1

Jastrow parameter b (o)
FIG. 6. Comparison of energy-minimization searches for op-

timal parameter b in Schdf-Verlet correlation function fsv. Jas-
trow energies were calculated by (as labeled) FHNC/C and
Monte Carlo (MC) methods.

III. BEYOND THE JASTROW MODEL

We now improve upon the Jastrow description given by
Eqs. (2.1) and (2.2), with the primary aim of determining
the nature of the ground-state phases of Dg& and D~2.
The correlation operator F appearing in (2.1) is general-
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TABLE II. Comparison of Fermi-hypernetted chain (FHNC) and Monte Carlo (MC) evaluations of
Jastrow kinetic, potential, and total energies (respectively, ( T ), ( V), and (H ) ), for D 1 1 and D (2, as-
suming Schiff-Verlet correlations. FHNC results correspond to the Jackson-Feenberg expression for
the kinetic energy. All energies are in K per particle. Statistical errors in last decimal place of MC
results are given in parentheses.

p.
(10 A ) PcT Method (H) (T)

Dg,
(v)

2.82

3.52

4.23

4.93

5.63

6.34

0.142

0.177

0.213

0.248

0.283

0.318

FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC
FHNC
MC

3.39
3.57(3)
4.40
4.55(3)
5.36
5.75(3)
6.50
6.96(3)
7.63
8.28(4)
8.79
9.83(6)

—3.06
—3.23{1)
—4.10
—4.25(2)
—5.06
—5.43(2)
—6.11
—6.48(3)
—7.07
—7.64(4)
—8.04
—8.77(4)

0.33
0.34(1)
0.30
0.30(1)
0.30
0.32(2)
0.39
0.48(2)
0.56
0.64(2)
0.75
1.06(3)

3.49
3.47(2)
4.55
4.53(3)
5.72
5.69(4)
6.99
7.02(4)
8.35
8.43(4)
9.85

10.07(5)

—3.23
—3.32(2)
—4.22
—4.33(2)
—5.24
—5.42(2)
—6.24
—6.51(3)
—7.23
—7.57(4)
—8.22
—8.70(5)

0.26
0.15(1)
0.33
0.20(1)
0.48
0.26(2)
0.75
0.51(2)
1.12
0.86(2)
1.63
1.37(3)

ized to include triplet and backflow correlations as well as
the state-independent pair correlations of the product
F = II...f(rv).

Some useful information about non-Jastrow correlations
is available from a recent study of the deuterium systems
Dlz and D13 within the method of correlated basis func-
tions (CBF). In an analysis of the energy closely parallel-
ing that carried out for He by Krotscheck and Smith,
the second- and third-order C8F corrections in a
Jastrow-correlated basis were examined, the relevant CBF
matrix elements being determined by FHNC/C-
FHNC/C' techniques, to the level of factorizable dia-
grams. ' The correlated 2p-2h and 3p-3h contributions
to the second correction (denoted, respectively, Mz ' and
6E3 '), as well as the correlated 2p-2h contribution 6E2' '

to the third-order correction, have been numerically eval-
uated. The latter contribution is made up of particle-
particle, hole-hole, and ring terms. The calculated 2p-2h
correction terms introduce the leading effects of (spin-)
density fluctuations and propagator corrections, while the
3p-3h term incorporates the leading effect of triplet corre-
lations. The v=1 system was not treated because of' a
spurious instability which is well understood (cf. Ref. 24)
but necessitates rearrangement of the CBF perturbation
series.

The following findings of this CBF study provide valu-
able clues to the construction of an improved ground-state
trial function.

(a) In both DL2 and D t 3, the 2p-2h second-order
correction 6E2 ' is sizable compared to Hoo, indicating
that state- and energy-dependent effects absent from the
Jastrow description are important for both systems, if one
seeks to determine the energy to the 0.1-K level of accura-
cy or below. Among other things, this term contains the
leading energetic manifestation of "backflow. "

(b) The third-order pp and hh contributions are quite
small for both systems. We take this to mean that the
short-range two-body correlations induced by the nearly

hard core of the bare interaction are adequately handled
by the Jastrow wave function. Only the ring term shows
the potential of interfering with a rapid convergence of the
2p-2h subseries of the CBF perturbation expansion.

(c) The second-order 3p-3h correction is small for den-
sities below equilibrium in both systems, but at densities
near and above equilibrium, this term becomes substan-
tial, implying that three-body correlations are important
at higher densities.

wherein

XT
~Ij ~j/&jj 'rlj

i(j I

(3.la)

u(r)=u(r) —AT( (r)r (3.lb)

Triplet factors and momentum-dependent correlations
may be directly incorporated into the correlated basis
functions, with consequent reduction in the size of CBF
corrections. However, this generalization greatly com-
plicates the task of diagrammatic evaluation of the
relevant CBF matrix elements (cf. Ref. 16), necessitating
further approximations and thereby significantly increas-
ing the numerical uncertainty in the resulting energies.
By contrast, upon suitable generalization ' of the
ground-state trial function to include triplet correlations
and backfiow (as described below), variational Monte
Carlo evaluation of the energy expectation value
proceeds in a straightforward (albeit computationally
more intensive) manner, without the need for any
significant revision of the MC routine applied in the Jas-
trow case.

Explicit three-body (or triplet) correlations may be in-
corporated into the correlation operator F of (2.1) by gen-
eralizing upon the pseudopotential u = —21nf appearing
in the Jastrow ansatz. More specifically, FJ(R) is re-
placed by25, 26

F2 3 (R ) = exp ——,
' g u ( r,z )
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While F2 3 retains the form exp[ —g; &j u (ij )], the pseu-
dopotential u(ij ) now contains a noncentral component
involving a third particle. We may choose the central
quantity u(r) essentially as before, in correspondence with
Schiff-Verlet, Pandharipande-Bethe, and optimal choices
of the two-body Jastrow correlation function f(r). How-
ever, the introduction of three-body correlations will gen-
erally necessitate some reoptimization of the genuine
two-body correlations. There remains the question of
how the function g(r) is to be chosen. In their study of
the ground state of He, Levesque and Lhuillier em-
ployed the form

bm
(3.2)

where the parameters b and m were taken the same as in
the form u(r)=(b jr) which these authors adopted for
the original two-body pseudopotential. The correlations
induced by (3.2) are of medium range, and this choice
favors equilateral configurations of a triplet. A second
form for g was used by Schmidt et al. ' in their simula-
tions of He and He, namely

2'r —rr
g(r)= exp (3.3)

WT

where rT and wr fix the center and the width of the
Gaussian, respectively. Along with A. z, the latter quanti-
ties become new variational parameters in the energy
minimization. The corresponding choice of triplet corre-
lations is again effective at medium ranges, say, interparti-
cle spacings of o. to 2o. We have adopted the form (3.3)
in our calculations on D&.

Momentum-dependent correlations may be built into
the trial wave function by a simple alteration upon the or-
bitals which make up the Slater determinant. The re-
placement

det[exp(ik; r, )]~det exp ik; rj+ g g(r&~)r&~
1&j

(3.4)

il(r) =As exP (3.5)

where A.z, kz, rz, and wz are new variational parameters
referring specifically to the backflow correlations.

Unless precautions are taken, the required periodic
boundary conditions are destroyed if the range of the
correlations extends beyond the walls of the simulation
cube. Since the elemental box contains a fixed number of
particles, detrimental effects would be most noticeable at
high densities where the box size is smaller. For the most
part, the correlations present in the deuterium systems are
of quite short range, so this is not a serious problem. Nev-
ertheless, we obviate potential errors from this source by

generates backflow effects in the spirit of Feynman and
Cohen, a fact already exploited in Monte Carlo studies
of He (Refs. 25 and 26). Following that earlier work, the
function g(r) is here taken to have the form

2

using rejlected correlations (of, respectively, central, trip-
let, and backllow character) where appropriate, i.e. ,

f(r )~f(r )+f(2r,„r—) —2f(r,„) . (3.6)

Owing to the short-range nature of the original correla-
tions, this finite-size adaptation has no appreciable ener-
getic effect; it serves only to guarantee that the correla-
tions go smoothly to zero at r,„, i.e., at the sides of the
simulation cube.

The probability distribution sampled in the Monte Car-
lo procedure now corresponds to the trial function ela-
borated as above. The essential numerical consequences
are the following.

Triplet correlations given by Eqs. (3.1) and (3.3), with
optimally determined parameters A, T ———1.2, rz- ——0.66m,
and wT ——0.50o., lower the energy per particle in D&3 by
about 0.1 K over the range of densities studied.
Back(low correlations, described by (3.4) and (3.5), with
optimal parameters kz ——0. 14, rz ——0.74o. , wz ——0.54o,
and A,z ——0. 15, yield a further reduction of roughly O. l
K. These findings strengthen our earlier conclusion,
within the Jastrow framework, that the ground-state
phase of D&3 is a self-bound liquid.

Turning to D$2, a calculation was performed with the
triplet and backflow parameters determined for D l 3.
While this does not result in a large energy gain, the
downward shift from the Jastrow (H) is nevertheless
sufhcient to bring the equation of state for Dl2 below the
zero-energy axis. We conclude, therefore, that D&2 is also
a self-bound liquid.

The refined Monte Carlo equations of state are
displayed in Fig. 7. An improved equation of state for D &

&

(based also on the parameters found to be optimal for
D t3 ) is given as well. In fact, triplet and back(low correla-
tions in Dg&, introduced in this manner, have negligible
effect. This finding supports our contention that the Jas-
trow wave function aptly represents the ground state of
the fully polarized system. The data corresponding to the
MC curves of Fig. 7 are listed in Table III.

For comparison, Fig. 7 also includes equations of state
for Dlz and D&3 derived from CBF perturbation theory.
These curves were constructed by adding the available
second- and third-order CBF corrections (taken from
Tables I and II of Ref. 2, which are based on f,z, ) to the
Monte Carlo Jastrow energies for f,z, . The latter
represent, of course, an accurate evaluation of the leading
("variational") term in the exact Jastrow-CBF perturba-
tion expansion. Unlike the perturbation corrections,
which are evaluated using the FHNC/C approximation
for the CBF matrix elements, this leading (and dominant)
term does not suffer from errors due to inadequate treat-
ment of elementary diagrams.

Qualitatively, the predictions of these CBF and refined
MC descriptions of D&z and D&3 are in accord: both
species of spin-aligned deuterium would be self-bound
liquids in their ground states, with D ~3 energetically lower
than D12 over the whole liquid-density range. Further,
the energy of D &

&
lies above the energies for D ~ 2 and D l 3

at all densities considered, resulting in the expected order-
ing in the relative stabilities of the three phases. Three
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K=2

(Dc —0.2

—0.4
0.2
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FIG. 7. Energy per particle versus density for three species of
electron-spin-aligned deuterium Dg, with (as labeled) one, two,
or three equally populated nuclear spin states, based on the
Kolos-Wolniewicz potential. Solid curves: Equations of state
for improved variational wave function including optimal Jas-
trow, triplet, and backflow correlations, calculated by the
Metropolis Monte Carlo method. Dashed curves: CBF equa-
tions of state, formed by adding the Monte Carlo —computed Jas-
trow energy for f,~„ taken from Fig. 4, and the available
FHNC/C results for the leading CBF corrections.

TABLE III. Energy per particle vs density for three species
of electron-spin-aligned deuterium Dl, evaluated by the varia-
tional Monte Carlo procedure, for improved wave function in-

cluding optimal Jastrow, triplet, and backflow correlations. Sta-
tistical errors in the last decimal place are given in parentheses.

0.125
0.150
0.175
0.200
0.250
0.300

D&l

0.36(1)
0.29(1)
0.26(1)
0.26(1)
0.41(2)
0.71(2)

D&,

0.00(1)
—0.06(1)
—0.06(1)
—0.08(1)

0.06(2)
0.46(2)

D&3

—0.14(1)
—0.19(1)
—0.21(1)
—0.21(1)
—0.10(2)

0.34(2)

cautionary remarks are in order here. The first is that al-
though the convergence of the CBF perturbation expan-
sion looks reasonably good in the relevant density range,
the size of the highest-order terms which have been evalu-
ated is not sufficiently small that a firm conclusion can be
reached about the ground-state phase of D12 on the basis
of the CBF results alone. The second point is that if we
extrapolate the CBF curves into the high-density region,
the estimated energy of D&2 drops below that of D13 at
about twice equilibrium density. And finally, we must
reiterate that no CBF corrections have yet been calculated
for Dg&, with their inclusion the corresponding curve in
Fig. 7 would come down, but presumably not very far.

Quantitatively, at densities near and below equilibrium
density, the MC and CBF curves for D~2 show remark-
able agreement. At higher densities, the CBF energies are
somewhat lower than the MC values. In the case of D&3,

the CBF equation of state lies below the MC energy
curve, the difference between the two curves remaining
constant over most of the liquid-density regime.

The reasons for the differences (or the agreement) be-
tween the CBF and MC curves for D $2 and D l3 is not easy
to determine in detail. The Monte Carlo curves are accu-
rate equations of state for the given finite number of deu-
terium atoms in a periodically replicated box, described
by a trial wave function having two-body Jastrow, triplet,
and backflow correlations, for the given set of parameters.
A more extensive search in parameter space, or the adop-
tion of other functional forms for the correlations, could
alter the MC equations of state, although we believe any
such changes would be small. On the other hand, we have
no reliable measure of the accuracy of the truncated CBF
perturbation expansion. There is, however, the general
expectation that the second-order CBF perturbation
correction will overestimate the energy lowering due to
correlations beyond the Jastrow model, and the expecta-
tion, in the present context, that the errors in the CBF
description are not large.

One noteworthy difference between the CBF and MC
evaluations, evident in Fig. 7, is in their results for the
finite-density energy minima. The Monte Carlo curves
for all three species of spin-aligned deuterium yield the

0
same equilibrium density, po

——4.0 && 10 A
(po'=0. 20). The CBF curves locate the minima at posi-
tions about 10%%uo higher than this for Dlz and about 10%
lower for D&3 ~

At this point we are unable to predict, with certainty,
the zero-temperature phase of D&& from either Monte
Carlo or correlated-basis-perturbation-theory calculations.
The small but positive upper bound for the ground-state
energy of this system may be depressed appreciably by
some class of correlations not yet considered. However,
initial results from advanced Green's function Monte Car-
lo calculations (cf. Refs. 29 and 30) indicate that any such
lowering of the energy will be small.

From our microscopic study we conclude, then, that
spin-aligned deuterium may well have a ground-state
phase that depends on the scenario by which the atoms
are produced, sorted, stabilized, concentrated, and
confined: D~ would be a self-bound Fermi liquid if only
the electron spins are aligned, as in D&3 or Dj.z. On the
other hand, if this novel substance is purified in a form in
which both nuclear and electronic spins are fully polar-
ized, as in D4&, it may remain in the gaseous state down
to absolute zero, like the Bose system H$. The latter ver-
sion of D& might, in practice, be realized as "doubly po-
larized" deuterium, D&~, with the electronic and nuclear
spins directed antiparallel to an imposed magnetic field
(cf. Refs. 9—l l). As an interesting consequence of the
Fermi nature of this system, the extremely small ground-
state energy at equilibrium (less than 0.25 K per particle)
implies that at T=O it would liquify under very slight, if
not zero, pressure.

IV. OTHER GROUND-STATE PROPERTIES

Given a trial wave function determined variationally,
the Monte Carlo procedure may, of course, be used to
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evaluate the expectation values of other physical quantities
besides the energy. Such expectation values generally do
not possess the upper-bound property, and there is no
guarantee that the physical quantities in question will be
accurately predicted even if the trial wave function gives a
close upper bound on the energy. However, we have seen
that in the present problem the energy is a very small
difference between relatively large kinetic and potential
contributions; from all indications the individual kinetic
and potential components are given rather accurately by
the MC calculations recounted in Sec. II, and especially
those described in Sec. III. This consideration justifies a
serious examination of the radial distribution functions

g(r) corresponding to the trial functions we have generat-
ed [along with the associated static structure functions
S(k)]. Likewise, it is of interest to evaluate, by Monte
Carlo sampling, the one-body density matrix n(r ) [and as-
sociated momentum distribution n(k)] implied by these
wave functions, although the kinetic energy was not actu-
ally computed directly in terms of this quantity. For
some technical information on the Monte Carlo treatment
of these additional properties of the system, see Appendix
B. Here we shall focus on selected numerical results for
the Jastrow trial functions.

Figure 8 gives plots of the two-body radial distribution
functions g(r) obtained from both FHNC/C and MC Jas-
trow calculations near the finite-density energy minima
obtained for D 13, based on the Schiff-Verlet correlation
function. Figure 9 displays g(r) results, also for Dl3 with

fsv, at a significantly higher density. In both cases it is

seen that the FHNC/C curve has less structure than the
MC curve, the difference being somewhat more pro-
nounced at the higher density. This behavior is in accord
with our results (discussed in Sec. II) for the average po-
tential energy per particle ( V ): the neglect of the
elementary-diagram effects by the FHNC/C approxima-
tion for g(r) becomes more serious as the density in-

creases.
Results for the static structure function corresponding

0.8

0.6

0.2

FIG. 9. Jastrow radial distribution function g(r) for Dl3 at a
density p=5. 63&&10 ' A . Solid curve: FHNC/C results.
Circles: Monte Carlo results.

to the case considered in Fig. 8 is shown in Fig. 10. The
low-k behavior of the FHNC/C version of S(k) is correct
by construction. The MC points plotted in the figure are
obtained by transforming data for g(r), although direct
sampling of S(k) would produce similar results for the
discrete values of k in the simulation volume.

Figure 11 exhibits some results, near equilibrium, for
the Jastrow one-body density matrix in the three species
of D g, while Fig. 12 presents results for the Jastrow
momentum distribution in D&3 at a fairly low density.
Again, FHNC/C and MC predictions are compared for
the same Schiff-Verlet correlations. The FHNC curves
for n (r ) and n (k ) were calculated by Flynn. ' Adopting
a Jastrow approximation to the ground state of a
strongly-interacting Fermi system, Ristig and Clark ob-
tained general structural results for n(k). With this work
as a foundation, Fantoni applied FHNC techniques to

oooo' 0 A

0.8

0.6
(A

0.4

0.2

'1.5 2

(o)
2.5

FIG. 8. Jastrow radial distribution function g(r) for D&3 at a

density p=3.52&10 ' A '. Solid curve: FHNC/C results.
Circles: Monte Carlo results.

FIG. 10. Jastrow static structure function S(k) for D&3 at a
density p = 3.52 &( 10 A . Solid curve: FHNC/C results.
Circles: Monte Carlo results.
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FIG. 11. Jastrow one-body density matrix n(r} for three
0

species of Dt at a density p=3.52' 10 A ', based on fsv.
Curves represent results calculated in FHNC/0 approximation;
circles are Monte Carlo data.

FIG. 12. Jastrow momentum distribution n(k } of D$3 at a
0

density p =2.98)& 10 A . Curves represent results calculat-
ed in FHNC/0 approximation. Solid curve: with fsv. Dashed
curve: with f,~, . Circles with error bars: Monte Carlo values
for discrete values of k in simulation cube, based on fsv.

sum the irreducible cluster expansions determining the
Jastrow n(k). Flynn's results were obtained by solution
of the integral equations which accomplish these sumrna-
tions at the FHNC/0 level of accuracy.

Further information on the momentum distribution in
the spin-aligned deuterium systems may be found in Ref.
6. In particular, the available predictions for the quasi-
particle pole strength zk, as determined from the discon-

tinuity of n(k) at the Fermi surface, indicate that D), z is
slightly less strongly correlated than is D&3, and D&&, in
turn, is less strongly correlated than D&z. In the D4 sys-
tems, zk takes values intermediate between those of

F
symmetrical nuclear matter and liquid He at appropriate-
ly scaled densities: accordingly, electron-spin-aligned
deuterium is a more strongly coupled Fermi Quid than
nuclear matter, but is significantly less strongly coupled
than He.
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APPENDIX A: VARIANCE REDUCTION TECHNIQUES

Metropolis Monte Carlo simulation has served as an al-
most indispensable tool in quantitative variational studies
of equations of state of both classical and quantum sys-
tems. An important aspect of a reliable variational Monte

Carlo quadrature, however, must be understood: in each
step of the calculation, one must pay as much attention to
the variance and standard error of the mean as to the
mean itself. This is especially true in the present study,
since our goal is to improve upon earlier calculations,
which have demonstrated a remarkably close cancellation
of positive and negative terms in the energy computation.
Hence, we are confronted with a situation in which the
energy expectation value is of small magnitude compared
to its parts; but in order to address properly the question
of the ground-state phase of our model system, the stan-
dard error associated with the energy expectation value
must be reduced to a value much less than the energy it-
self.

The standard error in the Monte Carlo energy calcula-
tion declines as m ', where m is the number of times the
energy is sampled. In our calculation, m is of necessity
very large, so care is taken to avoid the growth of numeri-
cal noise generated (for example) by roundoF or trunca-
tion. One such approach is to make several independent
walks and to average the resulting energies. This ap-
proach injects into our computational task a Aavor of ex-
perimental physics: one can expend e8'ort in making a
very precise measurement, or one can instead make many
measurements which may not be very precise individually,
but which have a precise mean value.

In FHNC theory, an important consideration in choos-
ing the kinetic energy operator is the sensitivity of the cor-
responding energy expectation value to small errors in the
radial distribution functions. In that case, the JF form
has been found to be the most reliable, in that it is least
sensitive to such errors, particularly errors in the sequen-
tial relation between the two- and three-particle spatial
distribution functions.

On the other hand, in our application of the Monte
Carlo scheme' based on the Metropolis algorithm, the
three forms for the mean energy expectation value agree
within statistics for an equilibrated system; that is, there is
enough overlap of the three mean values broadened by
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their respective error bars to make them statistically indis-
tinguishable. The relevant figure of merit becomes the
magnitude of the variance about the mean value as op-
posed to the mean value itself. Effort is focused, there-

fore, on reducing the variance suSciently to be able to
calculate the differences between the energy expectation
values of the various choices for the trial ground-state
wave function. In this regard, the variance of the PB
form for the energy has proven to be smaller than for the
JF form, and even more strongly preferred relative to the
CW prescription. The PB form is therefore the superior
choice. Naturally, a necessary but not su%cient condition
that the Metropolis walk has reached its equilibrium dis-
tribution is the achievement of statistical agreement be-
tween the different energy estimators.

Because the Hamiltonian operator acts in a straight-
forward way on the trial function %T, the PB estimator
is usually referred to in the Monte Carlo vocabulary as
the "basic principles, " or BP estimator. More precisely,
within the Monte Carlo scheme we express the energy
per particle, i.e., the expectation value per particle of the
Hamiltonian H of the X-particle system, as the average

where p is the probability of accepting the move to R'
from R, and (1—p) is (obviously) the probability that the
move is rejected. Every configuration, then, contributes
to the energy in proportion to its likelihood of being real-
ized. The same averaging procedure is also used for es-
timating other properties of the ground state.

APPENDIX B: MONTE CARLO EVALUATION OF
DISTRIBUTION FUNCTIONS

A valuable product of variational Monte Carlo calcula-
tions is a representation of the trial wave function kyar (or
the associated probability density) in terms of an ensemble
of configurations of particle positions. These
configurations can be used to compute various properties
of the system besides the energy, either during the course
of the random walk, or by analyzing stored configurations
of the system.

Of particular interest, both in itself and as an internal
check on the consistency of the calculation, is the radial
distribution function g(r), which measures the probability
of finding two particles separated by a distance r:

E= (H) =X ' = ( V;+2T; F2), —, H%,
(Al) g(r)= g (5(r; —r, —r)) .

1

Np, .
(B1)

where i refers to an arbitrary particle. Here T; is a surro-
gate kinetic-energy operator,

g2
T; = — T; ln%'T

4m

and the potential energy operator is

(A2)

(A3)

where v(ij ) is the interatomic pair potential.
The "pseudoforce" F; appearing in the final form on

the right of Eq. (Al) is defined by

(A4)

Since the kinetic energy is identically equal to the mean-
square pseudoforce, we could choose a simpler estima-
tor, for instance just the sum of the kinetic and potential
energy estimators (T; ) and ( V, ), but the near cancella-
tion of these terms throughout the walk would lead to a
very large variance. The variance of the estimator (Al) is
much smaller, and the quality of the mean per unit com-
puting effort is therefore much greater.

Another important variance reduction technique is the
use of expected values, so that no information about re-
jected moves need be discarded. The simplest energy
averaging scheme would be to add the energy at the new
configuration if the move is accepted, and otherwise to
add the energy of the old configuration. In averaging the
expected value of an estimator, however, information
about the rejected moves is also included. Hence, we can
reduce the variance by averaging

(The angular brackets mean expectation value with
respect to %. ) For an infinite, homogeneous, isotropic
system, the function g(r) depends only on the magnitude
r of r; for asymptotically large r, g(r ) approaches unity.
As each particle i is moved during a Monte Carlo run,
the pair distances from the new and old positions of i to
the other X—1 particles are recorded. Expected values
are calculated in the same manner as for the energy:
after the Metropolis acceptance ratio

p = min[1,
I
+T(R.. )~+r(R.ld )

i ] (B2)

(B3)

It is also instructive to examine the one-body density
matrix n(r), which measures the change in the wave func-
tion 4 for a given particle displacement r, or equivalently,
the relative disturbance caused by inserting a test particle
at a given distance from the origin. Like g(r), the one-
body density matrix depends only on the magnitude of r
in the case of an infinite, homogeneous, isotropic system.
It is readily estimated on the basis of its expression

kl'(r„r2, . . . , r;+r, . . . , r„)
n(r)=

~ ~ ~ ~ ~ ~

kll(r&, r2, . . . , r;, . . . , r„) (B4)

has been determined, p is added to each bin recording
g(r) for each value of r,z which is realized in the proposed
configuration R„,„,while q =(1—p) is added to each g(r)
bin for the pair separations in the old configuration R,]d.

The Fourier transform of p[g(r) —1] yields S(k) —1,
where S(k) is the static structure function, which would
be given directly by

E,„p pE(R ')+(1—p )E(R ), —— (AS)
(For simplicity, we suppress spin variables. ) This expected
value is calculated by moving particle i, chosen at random
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%(r; ~rj
l

n(k)= e' '
%r;

(B5)

Alternatively, a continuous n(k) may be computed at the

or systematically, by an amount r and averaging the ratio
of wave functions over an ensemble of configurations. The
square of this ratio is computed at each stage of the walk,
anyway, in implementing the Metropolis acceptance cri-
terion. Consequently, very little extra cost is added to the
energy calculation by binning the successive values for
n(r)

The Fourier transform of n(r) is the probability density
that a particle has a momentum k. This momentum den-

sity n(k) may be obtained in two ways. For the individu-
al wave vectors contained within our simulation box we
can compute n(k) directly by performing the average

end of the random walk by Fourier transforming the (ap-
propriately smoothed) n (r):

n(k)=p f e'"'n(r)dr . (B6)

In practice, the numerical transforms of the MC data
for g(r ) 1 a—nd n (r ) do not yield very accurate represen-
tations of the respective functions p '[S(k)—1] and n(k)
corresponding to the given trial state. For efficiency, only
the sphericalized versions of g(r) and n(r) are stored rath-
er than g(r) or n(r), which are not spherically symmetric
throughout the (finite) simulation volume. However, the
operations of sphericalizing and Fourier transforming do
not commute. ' Therefore, the preferred option is direct
sampling of the momentum-dependent expectation values
[viz. , (B3) and (B5)] in the course of the random walk.
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