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Variational approach to the thermodynamics of a quantum sine-Gordon field
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The quantum corrections to the partition function of nonlinear systems with a nonlocal kinetic
energy are calculated by extending a variational approach based on the path integral and
developed in a previous paper, which allows one to take into account in the quantum scheme of
the quadratic part of the Hamiltonian. This extension can be useful to study the role of the out-
of-plane fluctuations which cause deviations from the sine-Gordon model for some magnetic
chains.

I. INTRODUCTION N

T(p) =-,' g p.&.bp» (1.2)

Theoretical methods giving quantum corrections to
classical statistical mechanics have recently raised large
interest and found many applications. ' Old ap-
proaches were revisited' and improved, ' while new
theoretical schemes were devised. A new approximate
approach based on the path integral was recently pro-
posed and applied to evaluate quantum corrections to
the specific heat of a sine-Gordon chain. ' It allows
one to construct an effective potential to be inserted in
the configurational integral so that quantum fluctuations
can be taken into account for low coupling at all temper-
atures without resorting to the dilute-soliton-gas approx-
imation. The soliton-gas approximation is not valid in
the temperature region where the specific heat presents a
Schotty-like peak. When the results of these quantum
corrections for the sine-Gordon chain were compared
with the experimental data of real magnetic chains like
CsNiF3 and CHAB [(C6H»NH3)CuBr3], this model ap-
peared to be insufhcient because the values of the easy-
plane anisotropy are not strong enough to prevent out-
of-plane fluctuations. "' On the other hand, the quan-
tum character of these systems has been fully realized. '

All previous approaches considering the quantum contri-
bution of the out-of-plane fluctuations were always
confined to the dilute-soliton-gas approximation. "' '
Although important information about the role of these
fluctuations can be inferred in this limit, the soliton-
soliton interactions must be taken into account for a
realistic comparison.

In this paper we present detailed calculations of ther-
modynamical quantities for a one-dimensional chain de-
scribed by the following Hamiltonian depending on
canomcal coordinates z=(z, ), a E[ N, N], and conju-—
gate momenta p =(p, ), a C [—N, N]:

a, b= —W

and the potential energy V(z) is given by
N Nr

V(z) = —,
' g z, L,bzb+g g Vl(z, ) . (1.3)

a, b= —N a= —N

In Eq. (1.3) the symmetric matrices K and L commute
and satisfy periodic boundary conditions together with the
requirement of translational invariance, ' and the function
Vl(z, ) describes a local nonlinear interaction with corre-
sponding coupling constant g.

The nondiagonal form of the kinetic term is able to
reproduce the correct dispersion relation of spin waves in
real magnetic chains. This is important, in the quantum
case, because the contribution of the linear excitations to
the renormalization of the Hamiltonian parameters de-
pends upon the functional form of the dispersion curve.
Although, at this stage, we neglect nonlinear terms mixing
momenta and positi'on coordinates, however, at least one
important aspect of the quantum out-of-plane fluctuations
can be taken into account, and their relevance can be in-
ferred.

In Sec. II the extension of the theory to the Hamiltoni-
an (1.1) is developed, while in Sec. III its possible applica-
tion to CsNiF3 is presented.

Xexp — du p tzt] px

o

II. VARIATIONAL APPROACH
TO THE PARTITION FUNCTION

We recall the path-integral expression of the partition
function,

Z=e ~ = J 2)[z(u)]2)[p(u)]

H (p,z) = T(p)+ V(z),

where the kinetic energy T(p) is a nondiagonal quadratic
form

—M[z (r),p (r)] [,

(2.1)
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where the Hamiltonian H is given in (1.1). As [K,L ]=0,
there exists an orthogonal transformation which simul-
taneously diagonalizes the matrices K and L:

Z= xu e
x (0)=x (PA)

with

(2.7)

MKM =E,
with

MLM'=F, (2.2) S[x(u)]= f du g x, +V(x(u))
0 2 a= —N

,b
——E,5ab F b

——F,
Performing the canonical transformation

(2.3)
r

:—f du g x, + g E,F,x,
a= —N a= —N

ya g Mob Zb ~ Qa g MabPb
b b

(2.4) N

+g g Vl((N x), )
a= —N

(2.8)

x, =(mE, )
' y„N, b =(mE, )'~ M,b, (2.5)

putting the functional integral in a Lagrangian form, and
defining According to the general procedure described in Refs.

8 and 10, we consider the first-order cumulant inequality
for the free energy F, namely

where the "mass" m is chosen to be
—1/(2N + 1)

F (Fp+ (S—Sp)p, (2.9)

a= —N

(2.6)

in such a way to preserve the measure of the functional
integral, we finally get

where Fp is calculated according to (2.1) by inserting an
approximate action Sp, while the average (S—Sp) p is per-

soformed with e ' as a weight. The approximate action
is chosen to be

pp N

Sp[x(u)]= f du —g x, +ip(x) +w, (x)[ x( u)
—X, ]+—, g [x,(u) —x, ]w,b(x)[xb(u) —xb]

0 a= —N a, b= —N
(2.10)

where

x, =V(PA') ' f du x, (u), a P[ N,N]—
0

(2.11)

and the unknown functions w(x), tp, (x), and ui, b(x) are
to be determined by the variational principle, i.e., by the
minimum condition of the functional (2.9). To this pur-
pose we first substitute Sp in place of S in Eq. (2.7). The
corresponding functional integral can be explicitly calcu-
lated by summing first over all the closed paths with a
prescribed average x, =g„aH [ N, N], and th—en in-
tegrating over all the possible values of g=(g, ),
a E[ N, N]. The fin—al result reads

' (2N+1)/2

m

2irA P
d exp — V,z, 2.15

by elementary symmetry considerations. Performing the
minimization of the right-hand side of (2.9) with respect
to tp and tp, b or, equivalently, with respect to w, fk, and
Uk, (see Ref. 10), after the change of variable g=N g, we'
find that the average (S—Sp ) p turns out to be vanishing,
so that is possible to define an effective potential to be in-
serted in the configurational integral (2.15) in order to ap-
proximate the free energy F by means of F0. Equation
(2.12) can then be written in the following way:

(2N+1)/2

—PFo
8

m

2MP
N «( )

~ sinh

where the explicit form of the effective potential reads

N ak
V,s(g) = V(g)+m Uka Fa Ea

a, k= —N 4

where, according to Ref. 7, we have set
Qo D,+gX X

n=l a= —N

n
cy(2n 1

( g )

nf

fk(k)= ,'P~«(k»- (2.13)

while the "frequency" co«(g) is defined together with the
orthogonal matrix Uk, (g') by the diagonalizing relation

ma« fk fkY In
x &p p«= iv

N

Uk, ui, b U~b ——mai«6«J .2

a, b= —N
(2.14)

In (2.16) the parameters

(2.16)

Moreover, the result (2.12) shows that indeed the quanti-
ties w, do not affect the final result, as could be expected

izk =
2 (fkcothfk —1)

fi p
2mf„'

(2.17)
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give a measure of the influence of the quantum fluctua-
tions, while the quantum renormalization factor

2

D, =
2k= —N b= —N

Ukb Nbn (2.18)

differs from the analogous factor obtained in the case of
local kinetic energy, ' since it contains the new dispersion
relation. Moreover, the frequencies are determined by the
self-consistent equations

E being the complete elliptic integral of the first kind.
The form (2.25) is used to discuss the sine-Gordon field. '

The values of the renormalization factor D(T) for fre-
quencies whose dispersion curve is given in terms of (2.23)
can be obtained by calculating the continuum limit of
(2.21) with a numerical integration procedure.

In the next section we report on some results related to
real magnetic chains.

U;. F.E.o.b+ P—.b Uib =~k~.b
a, b= —N

III. APPLICATION TO MAGNETIC CHAINS

N

Pb —— g N„
c=—N n =]

D
" ~(2n)(g )

2 (n —1)!

(2.19)

H = —2J g (S; S;+i)+ A g(S ) —h Q Sf, (3.1)

The one-dimensional ferromagnet CsNiF3 can be de-
scribed by the following spin Hamiltonian (S = 1):

%'e shall analyze the free energy in the perturbative
case of small anharmonicity. '

The frequency ~k is found to be, up to the first order in g,
" cy(2n + 2)(gN oo D

COk =Fk Ek +gEb g Mkn
a= —N n=0 n!

(2.20)
exhibiting the modified dispersion relation at the zeroth
order. Moreover, the consistent approximation for the re-
normalization factor D turns out to be independent of the
site and is given by the fluctuations around the vacuum,
namely

2N+ I k ~ pFI,

X coth V'Ek Fk —1
2

(2.21)
The limiting value of D for T =0 can be easily calculat-

ed by integrating over the Brillouin zone:

where h =gp~H is the Zeeman field (h —1 K for the usu-
al applied magnetic field). 3 =9 K is the easy-plane-
anisotropy parameter and J= 11.8 K is the exchange in-
tegral. Assuming an unitary lattice spacing, the disper-
sion relation for the spin waves reads

ai (k) =400 +sin1 . 2 k

4R

1+ +b sin (3.2)
4R 2

I

where Qo ——4S JA, R =2JS/h, and b =4J /3, with
A = A [1—1/(2S)].

The Hamiltonian (3.1) can be mapped into the sine-
Gordon field for harmonic exchange and for very high an-
isotropy, ' yielding

H=2JS g P; + —,'(P; —P, +i) + (1—cosP;)

D(T=O)= j™dk(Ek/Fk)'
4m

(2.22) (3.3)

D(T=0)= ' '+" ll ~ ——'
~p i/a(c+d) 2 a

ad —bc
a (c +d)

(2.24)

where H denotes the elliptic integral of the third kind.
For b =0, i.e., for the local kinetic term, Eq. (2.24)
reduces to the well-known form

1 j2 1/2 '

d
c+dD(T =0, b =0)=

77p C +d

(2.25)

In the case of nearest-neighbor interactions, the general
form of Ek and Fk can be assumed to be

E„=—[a + b sin (k /2) ],1 2

p
Fk ——p[c+d sin (k/2)],

for positive a, b, c,d and positive mass parameter p, . %e
get

1/2 '

the angles [p, } being the canonical coordinates and I P; I

the corresponding conjugate momenta. In this limit, the
energy of the static classical kink is Ei,;„k——8S&2hJS.
This kink soliton is also a nonlinear solution in a system
where the out-of-plane fluctuations are considered. '

The parameter R measures the length of the kink (in lat-
tice units), while the quantum character of the system is
ruled by the coupling parameter Q =irido/REk;nk.

The insufficiency of a perfect planar model was proved
by several authors, ' ' and additional terms which take
into account the deviations from the sine-Gordon model
have been considered for the spin Hamiltonian (3.1). This
can be done by using an approximate Villain transforma-
tion mapping (3.1) into a Bose-operator Hamiltonian' in
the low-coupling limit. The dispersion relation of the
linear oscillations around the vacuum is given by (3.2). If
we disregard nonlinear terms mixing kinetic and
configurational variables, we can use the model
(1.1)—(1.3), where the diagonal values E(, and Fi, of the
matrices K and L, respectively, are given by (2.23) with
the following identification of the parameters:
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b Qp
0 =1+, C=

4R R

d =4Qp, g =p= 1

2A

(3.4)

The partition function of this model is then calculated as
a function of Q, R, and b. The anharmonic part of the po-
tential is taken again as sine Gordon, so that the total
Hamiltonian (3.3) reads

+ —,'(P; —(t;+t) + 2
(1—cosP;) (3.5)

H =2JS'g, 1+, P,'+, (P, —P, +, )'—
2JS 4R 2JS 4

Some considerations are in order. The classical contri-
bution to the specific heat is, of course, the same for the
discrete sine-Ciordon system as well as for the system de-
scribed by the Hamiltonian (3.5) because of the classical
equipartition theorem. On the contrary, in the quantum
case, the modified dispersion relation changes the linear
contribution, together with the renormalization factor
D(T), which also causes a diff'erent nonlinear contribu-
tion.

We want to study now the influence of the modified
dispersion relation on the quantum corrections. Our cal-
culation will be confined to the case of small Q (low cou-
pling) and large R (displacive limit) where some expan-
sions are performed according to the procedure described
in Refs. 8—10. The final result for the nonlinear contribu-
tion to the free energy, at not too low temperatures,
kz T & QE&;„k/2, reads

ISFo
e

(2N + 1)/2
(2N+1)/pu(no/R ) D/2 ~ fk 2Ap —D /2

Qo((b, —P, +, ) —
2

e cosP,
a

(3.6)

The factor D is determined by the linear fluctuations
around the vacuum and is given in (2.21). In this way the
linear part is calculated in a complete quantum scheme,
while the nonlinear contribution is given in a semiclassical
(first-cumulant) approximation. The values of D(T) are
plotted in Fig. 1 versus the reduced temperature
t =kz T//Ek;„k at fixed Q and R, for difFerent values of b
The selected values, Q=0. 11 and R =5, refer to typical
parameters for CsNiF3. The presence of the out-of-plane
fluctuations increases the values of D(T) at all tempera-
tures, giving substantial corrections for b =10, as for the
CsNiF3 case.

Starting from Eq. (3.6) we can calculate the nonlinear

contribution to the specific heat by means of the
modification of the classical free-energy expansion. ' The
final result is presented in Fig. 2. The quantum correc-
tions increase for increasing values of b and the position
of the peak is shifted at lower temperatures with decreas-
ing height of the maximum. This trend has been observed
in Ref. 11, where the dilute-soliton-gas approximation is
used, but the phase shift is that of the the nonlinear out-
of-plane terms. The latter are not considered in our
framework; however, the influence of the linear part of the
out-of-plane fluctuations is evaluated in the interacting-
soliton regime, showing the relevance of the use of the
modified dispersion relation to determine the correct re-
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FICJ. 1. Quantum renormalization parameter D(T) vs re-
duced temperature t for Q =0.11, R = 5, and b =0, 10.

FIG. 2. Nonlinear contribution to the specific heat vs reduced
temperature for Q=0. 11 and R =5. Dashed curve: classical
sine-Gordon result. Solid curves: quantum results at different
values of b. Experimental data from Ref. 18.
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normalization factor, which clearly affects the quantum
behavior. The agreement with the experimental data' ap-
parently improves. However, it must be noted that
classical-transfer-matrix calculations for the ferromagnet
Hamiltonian (3.1) (Ref. 13) give much higher peaks, show-
ing, at least for the classical case, the importance of non-

linear out-of-plane terms. Recent quantum calcula-
tions' ' seem to be in agreement with the experiments,
and much higher corrections should be required to de-
scribe the quantum behavior starting from the classical
spin Hamiltonian. In this case some doubts arise about
the possibility of using a semiclassical approach.
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