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By including the Coulomb interaction term in the usual Frolich Hamiltonian, the dispersion of
the phase mode in incommensurate charge-density-wave systems is found. In the long-wavelength
limit, the spectrum consists of an optic branch and an acoustic branch, with the optic branch in-

creasingly dominant at low temperatures and the acoustic branch dominant at high temperatures.
The optic-mode frequency is enhanced because of the small effective mass of the quasiparticles.
For increasing wave numbers, the two branches merge together, beyond which the single branch
approaches an optic frequency ( —')' 'co, where co is the amplitude-mode frequency. In the acous-

tic branch, the charge densities of the condensed electrons and the quasiparticles oscillate out of
phase, balancing each other, while in the optic branch, both components oscillate in phase.

I. INTRODUCTION

It is well known that order-parameter phase Auctua-
tions in incommensurate charge-density-wave (CDW)
systems' induce charge-density fluctuations, and hence
couple to the long-range Coulomb interaction, shifting
the frequency of the acoustic phase mode to an optic fre-
quency at 0 K. In these systems, however, quasiparticles
are present at nonzero temperatures, and they are able
to screen out the Coulomb interaction and reduce it
back to an acoustic mode. Thus the motion of the con-
densed electrons is always accompanied by a countermo-
tion of the quasiparticles. This picture bears a striking
similarity with the situation in superconductors. In the
latter case, the so-called Carlson-Goldman mode was
observed near T, . The mode consists of the motion of
the condensed electrons, as manifested by the fluctuation
in the order-parameter phase, counterbalanced by the
motion of quasiparticles, which are responsible for the
damping of the wave. The damping is sufficiently small
for temperatures near T„since the quasiparticle coun-
tercurrent is small in this case. Below T„ the mode be-
comes increasingly damped.

Nakane and Takada pointed out that the existence of
the acoustic mode near T, is a general feature of an
order-parameter phase mode which couples to the long-
range Coulomb interaction. In fact, the phase-mode ve-
locity they derived in CDW near T, is identical to that
derived in clean superconductors by Artemenko and Vol-
kov, except that the former is divided by the effective-
mass ratio p=m*/nz, and the latter is divided by 3, the
dimensionality of the system. This striking similarity of
the two systems motivates us to study and compare the
underlying dynamics of the modes in detail. We are also
interested in whether the similarity of the two systems is
a feature near T, or, as we should expect, extends to
lower temperatures. If this is valid, the phase mode in
superconductors, which, so far, has only been experi-
mentally observed near T„should be observable at tem-

peratures lower than T, under favorable conditions.
These constitute the purposes of the present study.

The presence of the acoustic mode is well established
near T, and, at least theoretically, ' in the
intermediate-temperature range in CDW. (By intermedi-
ate temperature, we mean the temperature much lower
than T, so that the gap is essentially developed, viz. ,
T ~ 6, but high enough that quasiparticle screening can
still play a role. The distinction between intermediate
and low temperatures will be clarified in subsequent dis-
cussions. ) On the other hand, the acoustic mode is ex-
pected to disappear at zero temperature, since all the
quasiparticles are "frozen out. " Only optic modes are
present at low temperatures. However, it remains un-
clear how the acoustic mode dominant at higher temper-
atures evolves into the optic mode at low temperatures.
Another purpose of this paper is to resolve this issue. In
this paper, we study clean systems in which the electron-
ic transport relaxation rate ~ ' is much less than the
gap A. So far, the Carlson-Goldman mode in supercon-
ductors has been observed near T, for frequencies up to
the order of 10' Hz. However, if the temperature in a
sufficiently clean system is low enough and the frequency
high enough, we can attain a regime in which the quasi-
particles are essentially collisionless, i.e., co & ~ . In this
regime, we shall show that the acoustic mode continues
to exist in the intermediate-temperature range. In par-
ticular, we shall study the structure factor for the phase
spectrum, which shows that two peaks in the structure
factor coexist in the intermediate-temperature range in
the long-wavelength limit. One peak corresponds to the
acoustic mode and the other to the optic mode, their rel-
ative weights being dependent on temperature. At high
temperatures, the acoustic branch is dominant, whereas
at low temperatures the optic branch is dominant.

In CDW systems, we start by giving a brief survey of
the theoretical developments. In these systems, the
phase mode with a velocity of propagation v& ——Uz/&p,
where p =m */m is the effective-mass ratio of the CDW,
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where cuz~ 4n——ne /m * and e, = I+co&, /6b, , with

co&,
——4~ne /m. As usual, the chain direction of the

CDW is taken to be the z direction. Including quasipar-
ticle screening effects, Kurihara derived a dispersion re-
lation, which is essentially

2 2
2 2 2

q, +
+e'O

(1.2)

Here qo 4m——enq. z/T is the square of the Thomas-Fermi
screening wave number of the quasiparticle gas where
71 qp is the number density of excited quasiparticles. He
pointed out that the acoustic mode disappears at
sufficiently low temperature. Nakane and Takada ob-
tained a more detailed expression, which can be written
as

was first predicted by Lee, Rice, and Anderson. ' Includ-
ing long-range Coulomb effects, Lee and Fukuyama de-
rived a plasmalike dispersion for the phase mode, name-
ly

Because of the length of the material, the discussion
will be presented in two separate papers. We shall con-
centrate on CDW systems in the present paper and deal
with superconductors in the accompanying paper. In
Sec. II of this paper, we outline the basic formulation for
CDW systems. The dielectric function appropriate for
the phase mode is derived in Sec. III. The renormalized
phase mode is then analyzed in the absence of dissipa-
tion and single-particle excitation in Sec. IV, and its
structure factor is discussed in the presence of single-
particle excitations in Sec. V. Our conclusion is con-
tained is Sec. VI.

II. BASIC FORMULATION

H =Hp+Hc ~

where

HF yck'(g——ko., +b,o, )ck+ y n, qb,tqb, q
k J q

(2.1)

We start with the usual Frohlich Hamiltonian aug-
mented by the Coulomb interaction term, namely,

CO =Ups +2 2 2
2 2

2 2
V kzVz

E Q' +qg+ 2 2 2 gO
Vk q —Q)

(1.3)

1+ g Pjqck+qo'icky q r

1
Hc = g u(q)p~ —q

q

(2.2)

(2.3)

where uk ——uF(k/Ek is the quasiparticle group velocity
and ( . ) denotes the thermodynamic average over all
quasiparticles. They pointed out that the reason why
the acoustic mode disappears at low temperatures is that
the quasiparticles become too few and too slow to screen
the Coulomb interaction. The importance of their argu-
ment will be confirmed in our paper.

In the present paper we give an extension of the
Nakane-Takada expression (1.3). We notice that in the
intraband screening term, i.e., that third term of the
denominator in (1.3), dissipative effects are absent. In
practice, a quasiparticle suffers dissipation by emitting or
absorbing phonons. Furthermore, a quasiparticle can
dissipate energy directly to single-particle excitations.
This process is equivalent to the Landau damping pro-
cess in which the phase velocity of the driving field
matches that of the quasiparticle. The former dominates
at low frequencies and the latter at high frequencies. As
a result of these dissipative processes, the phase mode is
no longer a sharply defined spectrum. Instead, its densi-
ty of states, or structure factor, should be analyzed. The
result, as we shall see, is that in the long-wavelength lim-
it the acoustic and optic peaks exist, although their rela-
tive weights change with temperature and the acoustic
peak disappears at low temperatures. As the wave num-
ber increases, the two peaks merge into a single peak.
We can classify the situation as acoustic-dominant or
optic-dominant according to whether the optic peak
disappears into the acoustic peak or vice versa. General-
ly speaking, the system is optic-dominant at low temper-
atures but acoustic-dominant at intermediate tempera-
tures.

where u(q) =4m e /q is the Coulomb potential,
pq= gqckck+q is the electronic density operator, and

j =0, 1,2 corresponds to phonons, the amplitude mode,
and the phase Inode, respectively. The phonon frequen-
cy and electron-phonon coupling for the three modes
are, respectively,

QOq Qq 0 ]q Q2q QQ

3 Q
XOq 3 q 71q V2q V2

(2.4a)

(2.4b)

All other symbols are defined as in Takada, Wong, and
Holstein.

Let us introduce the electron and phonon Green's
functions,

G(k, iv„)=—f dec " (ck(r)ck(0)),
0

D, (q,i'„)= —f dr e' "'(P (Jq)rP J q(0) ),
0

(2.5a)

(2.5b)

1 vn +gkoz +6&1
G (k,iv„)=

(iv„) Ek—(2.6a)

where v„=(2n +1)~T and ru„=2nnTwith integ. er n

Similarly, we introduce the polarization Green s func-
tion,

II; (q, ice„)= —f dr e " (p;q(r)p, q(0) ), . (2.5c)
0

where p;q= gkck qT;Ck is the generalized electronic
density operator. To the lowest order. These functions
are given as
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D/ ( q, i cu„)= 2Qjq

(i co„) —
A~q

(2.6b)

II~J(q, i cu„)=—g Trcr;G (ki,v„)o
k, iv„

X G (K+q, iv„+ico2), (2.6c)

2

(Dz ) '(q, ice„)=(D2 ) '(q, ice„)— II22(q, icu„),

where Ei,——/A+6 . In this paper, we focus our atten-
tion on the phason Green's function. In the so-called
random-phase approximation, the screening effects of the
condensed electron are taken into account by the 2kF
density-density correlation H22. As shown by Lee, Rice,
and Anderson (LRA), ' the corresponding Dyson equa-
tion is IIOO(q) =—g TrAO(k, k+ )G (k )o OG (k+ ),I

& k

(2. 1 1)

where the corrected vertex Ao is defined by the vertex
equation shown in Fig. 1(c), namely

Here we would like to emphasize that the dielectric
function as defined in (2.10) is only the dielectric func-
tion experienced by the phase mode arising from con-
densed electrons and quasiparticles. It does not include
the screening effect of the phase mode itself. On the
other hand, if an external charge is placed into the
CDW system, the total dielectric function should include
the screening of the electrons plus the phase mode.

Thus far, quasiparticle scattering by thermal phonons,
amplitude modes and phase modes, have not been con-
sidered. This can be taken into account by introducing
the so-called ladder approximation into the density-
density correlation IIOO. In this approximation, IIoo is
related to the corrected vertex Ao via the equation

which a solution

(2.7)
Ao(k i,k i+ ) = era ——g yJDJ (k2 —k i )

T 2 .

j,k~

LRA ~ Q
D2 (q ice„)=

(i cu„) —u &q,
(2.&) )&[o G(kp )Ao(kg, k2+)

V(q, i cu„)= V(q)
e(q, i cu„)

(2.9)

where u~ uF Ip, w——ith p=m*/m being the effective-
mass ratio of the CDW.

To include Coulomb efFects, we consider the phase-
mode self energy as shown in Fig. 1(a). In this figure,
the Coulomb line V represents the Coulomb potential
screened by the electrons. Thus V is given in Fig. 1(b)
by

&& G ( k 2+ )o, ] . (2.12)

Here we have used the four-vector notations q =(q,i'„),
k = (lc —q/2, iv„), and k+ ——(k+ q/2, i v+i cu), etc.
The vertex equation will be solved in the following sec-
tion.

Returning to the Coulomb-coupled Green's function,
we can now set up the corresponding Dyson equation,
which is

with the dielectric function defined by

e(q, ice„)= 1 —IIOO(q, ice„)V(q) . (2.10)

2

D~ '(q) =(D2 ) '(q) — IIqo(q) V(q)IIO2(q) . (2.13)
2

(a) W

CJ2 ao
%pp tt p2

As will be shown in the following section, the ladder-
diagram to the phase-density bubble II20 ———H02 are of
secondary importance. It is therefore sufficient to substi-
tute the zeroth-order expression (2.6c) for IIzo and IIO2
into (2.13). Explicitly, we have

V hp
%op

Dj

W

p y

(j=0,1,2)

II20(q) = —II02(q)

N(0) 1+0

+0

UFO'

'2

(2.14)

G GP Gp cJj G oj
(j=0,1,2) Neglecting higher-order terms of O((uFq, /b, ) ) and

O((co/b, ) ), substitution of (2.9) and (2.14) into (2.13)
simplifies it into

FIG. 1. (a) The phason self-energy due to Coulomb effects;
(b) the screened Coulomb potential used in deriving the dielec-
tric function for the phason; (c) the vertex equation; (d) the
dressed-electron Cxreen's function leading to the transport
equation for the quasiparticles.

D2(q, i co„)= 2 2
2 2 2(ice„) —u~q, — . 2e(q, i cu„) q

2

(2.15)
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where co~&
——4me . n/m' takes the meaning of the con-

densate plasma frequency. In deriving this equation, we
have made use of the definitions for the dimensionless
electron-phonon coupling,

27qp instead of vqp because we have included a factor of
1 —cos0=2 in the definition of ~qp Therefore, when
driven by a potential 5p, the transport equation is given
by

2ygN(0)
Ag

(2.16a)

5f~—l cogk +ivk q gk —iq, v k 5@=—
k qp

(3.2)

the effective-mass ratio of the CDW,
Together with the equation for g k, we have

4A

XQg
(2.16b)

—lco+luI q~ +%@AD
/2

'/2

'/2
—leg —lugq +1

&&
/2

and the single-spin density of states at Fermi level,

2N(0) =
mvF2

(2.16c)

The pole of the Coulomb-coupled phason Green's func-
tion (2.15) gives the phason dispersion on analytic con-
tinuation i co„~co+i6, which is

ui, q. +~ afk
kqz~I

Vk qz l MVqp uP
(3.4)

X =
1 iui, q,5p, (3.3)gl —1

Bp

where we have made use of the identity Bfz/dEI,
= —Bfz/Bp, . The solution to (3.3) is

2

co =u&q, + cos 8,2 2 2 2

e q, co+ 1 5
(2.17) The quasiparticle charge density induced by the poten-

tial is therefore
with cos8= q, /q. This relation shows that when
Coulomb effects are included, the phase mode is shifted
to a plasma frequency with effective m* per electron.
Furthermore, the resultant "CDW plasma" is immersed
in an electronic medium of dielectric function
e(q, co+i5) In fa.ct, (1.1)—(1.3) correspond to the phason
dispersion in different approximations for the dielectric
function. We shall therefore focus ourselves on the eval-
uation of the dielectric function in the ladder approxi-
mation.

2 2
ind Vkzqz Bn qp

Vkz qz —l &Vqp
(3.5)

2 2
Vkzq O+ cos 0, (3.6)

where nqp is the total density of quasiparticles. We have
also made use of the central symmetry of the system.
The corresponding dielectric function is therefore

e(q, co ) = 1+(e, —1)cos 8

III. DIELECTRIC FUNCTION FOR THE PHASON

gk —g —k

27 qp

(3.1)

where C is the collision term, is the off-equilibrium dis-
tribution function of momentum k, and 7qp is the quasi-
particle transport relaxation time. The relaxation time is

The solution of the vertex equation (2.12), and hence
the evaluation of the density-density correlation IIoo in
(2.11), is given in Appendix A. Here we just outline the
steps. The vertex equation (2.12), together with the self-
consistent definition of the dressed electron Green's
function shown in Fig. 1(d), can be reduced to a trans-
port equation' '" of the quasiparticles. In the collision
term of the transport equation, we adopt the so-called
elastic collision approximation, in which an electron is
scattered from a state of k, to the final state —k„owing
to the fact that the slope vz of the one-dimensional elec-
tron spectrum is essentially greater than the slope c, (u~
or co /2k, ) of the phonons (phase modes or amplitude
modes). Although the actual calculation is too complex
to give a step-by-step interpretation, the essential
features of the result can be captured by the following
heuristic argument. In the elastic collision approxima-
tion, we approximate the collision term by

where, to repeat, ez 1+6)p /6A is the dielectric func-
tion due to the interband contribution and

q z
——4~e n qp /T is the square of the Thomas-Fermi

screening wave number of the quasiparticle gas. Here
we have assumed the limit T ~&A and ~ &~25, in which
quasiparticles can be treated as Maxwell-Boltzmann par-
ticles with an effective mass m~~=b, /uF. Note that this
formula gives correct results in various limiting cases: in
the quasistatic limit,

2

e( q, ru) = 1+(e, —1)cos 8+2 qO

q

whereas in the Drude limit,

(3.7a)

e(q, co) = 1+(e, —1)cos 8—4m' qp"cos 0,
7 CO

(3.7b)

2

e(q, co) =1+(e,—1)cos 8 — cos 8,
CO

(3.7c)

where coq~ (4nenqzlmqz) ——ca'n be considered as the
quasiparticle plasma frequency.

Equation (3.6), however, does not give the expression
in the diffusive limit, or the hydrodynamic limit. This is

where o'z& ——nz&e czar/mqz is the quasiparticle conduc-
tivity, and in the plasma limit of quasiparticle inertial
screening,
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2

e(q, (v)=1+(e, —1)cos 8+ z
cos 9,

i (o—+2)q,
(3.7d)

where 2)= (vk )r is the diffusion constant.
z

Following (2. 15), we arrive at the dispersion relation
of the phase mode,

due to the elastic collision approximation, in which elec-
tronic distribution functions of different

~
k,

~

do not
mix in the transport equation. The diffusive limit ex-
pression, however, can be obtained easily by including
inelastic scattering in the transport equation. ' As de-
rived in Appendix B, the result for the hydrodynamic re-
gime is given by

BD1

Bc

1 1= —(c ——)D, ——
c c

(4.3)

D1 = 1 —ce
— /2 eU /2d

-2 c 2

0
(4.4)

The appropriate boundary conditions for its solution can
be seen from two limiting cases. When c «(vk, ),
most particles are at the "hot" end of the Maxwell-
Boltzmann distribution and the average Doppler factor
approaches 1 from below, but when c ~&(vk, ) most
particles are at the "cold" end, and the average Doppler
factor approaches zero from the negative side. The solu-
tion to (4.2) satisfying D, (0)= 1 [or, equivalently,
D&( oo)=0] is

2 2 2
co =u~qz+

2 2
Cup4, qz

2 2
2 2 Vkzqz 2E' q +qg + 2 2 1 2 qP

z qz & ~&qp

(3.8)
The imaginary part is given by

' 1/2
/2ce

2
(4.5)

which is a further development of formulas (1.1)—(1.3).
It is interesting to note that in the long-wavelength re-

gime at microwave frequency, the dissipative term in the
denominator of the quasiparticle average in (3.8) is dom-
inant and we get

2
2 2 2 ~ P 'lt' 2 2

co =u&q, —ice =V4,q, —ice
4VrO qp

Pl qp
qp

qp Pl
(3.9)

IV. PHASE-MODE DISPERSION IN THE ABSENCE
OF SINGLE-PARTICLE EXCITATIONS

the damping factor being in agreement with the predic-
tion of Takada, Wong, and Holstein, except that the
band electron mass is replaced by the quasiparticle
effective mass. In the case of the CDW representative
material TaS3, this is of the order b, /vF -m, /500. (The
smallness of the quasiparticle effective mass has far-
reaching consequences, which will be discussed below. )

Thus the phase mode is damped because the phase
motion is coupled to the quasiparticle motion, which is
damped by emission and absorption of thermal phonons,
amplitude modes, and phase modes. '

A. Propagating modes

Our starting point is the Nakane-Takada expression
(1.3). In the long-wavelength limit and for q~=0 the
search for propagating mode solutions is equivalent to
solving graphically the pair of equations

2 2 Q/T 1/2
(v y/qo e ~ 6/T 1

3' =
c2—v~& p 2m'

(4.6a)
C —V y

Since only those states with vk, ——co/q, contribute to D2,
it represents the contribution from single-particle excita-
tions, in which the z component of the phase velocity of
the driving field, given by co/q„matches that of the
group velocity of the quasiparticle at state k. In this
way, the quasiparticle is able to ride on the driving field
and continually absorb energy from it. This is the mech-
anism of the so-called Landau damping process. A plot
of (4.4) and (4.5) is shown in Fig. 2.

In order to study the dispersion in detail, we neglect
D2 initially. Below, we shall discuss the propagating
modes, the optic mode and the general dispersion sepa-
rately.

We now examine the regime where co»vqp We as-—1

sume that quasiparticles are collisionless, i.e., ~&&v,, ',
where w„ is the electron-electron collision time. (Other-
wise, a hydrodynamic description will be necessary. )

Equation (3.8) then reduces to the Nakane-Takada result
(1.3). The average Doppler factor is then given by

1.0

0.8-

0.6-

0.4-
2 2

Vkzqz
D =—D1+)D2

Vl z qz —l CO~ —CO

(4.1) 0.2-

2

c xe /2

0 x —1
(4.2)

where 5 is the infinitestimal positive quantity. The real
part of (4.1) can be written as

' 1/2
2D 1

0-

—0.2-

—0.4
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

where c =(o /(vk )q, . Equation (4.2) can be shown to
satisfy the differential equation FICr. 2. A plot of (4.4) and (4.5).
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y =D, (c), (4.6b)

where c =c /(vk, ) and v
&
——v~/(vz, ). It is evident

from Fig. 2 that, in general, two propagating solutions
are possible. Consider first the "high"-temperature lim-
it. In this limit, the slow-mode velocity is given by the
condition D, (c ) = 1, yielding

2 6/T
2=Vy+ 2

= 1+ Vy
q 0 (2nd/T) '. (4.7)

agreeing with the renormalized phase-mode velocity of
Nakane and Takada. The fast-mode velocity is given by
the zero of D, (c), which is co=1.31. This gives

c =1.72(T/b)vz . (4.8)

1.4

1.2-

1.0-

0.8-
O

0.6-

Next, we consider the situation for all temperatures
below T, . In the case p=1000, which is comparable to
the effective-mass ratio of CDW in TaS3, two propaga-
ting branches are possible for temperatures higher than
T& ——0. 176, whereas no propagating mode is possible for
temperatures lower than T&, as discussed by Nakane and
Takada. Figure 3 shows the temperature dependence of
the velocities of propagation. As the temperature is
lowered, the slow-mode velocity increases because the
quasiparticles become less effective in screening the
Coulomb forces due to its smaller density (as reflected by
a smaller value of qo) and its less effective screening
motion [as reflected by a smaller value of D &(c )j.

As the temperature decreases, the slow-mode velocity
increases. When T& is reached, the velocities of the two
modes coincide. Below this temperature, no more prop-
agating modes are possible. This corresponds to the case
discussed by Nakane and Takada, when the quasiparti-
cles are too few and too slow to screen the charge in-
duced by the phase motion, and only optic oscillations
remain.

The difference of the two branches can best be ana-
lyzed by studying the solution to the Boltzmann equa-
tion, which gives the off-equilibrium distribution func-
tion as

Vkz —C
(4.9)

2
Copy

co = v~+ q, .
e,q, +qO

The limiting cases are then

2 2

co = v~+ q, forq, &&
2 2 PP 2 2 qO

qO Ez

(4.10)

(4.11a)

2 2

co = +V&qz =—', co~+v&qz fOr q, &&
2 P~ 2 2 2 2 2

6'z 'z
(4.11b)

where co~=kA& is the square of the amplitude-mode fre-
quency discussed by Lee, Rice, and Anderson. ' For
q, «qo/(e, )', the phase mode is acoustic and (4.1la)
agrees with (4.7), whereas for

~ q, &&qo/(e, )' the phase
mode is optic. The crossover wave number qo/Qe, is
the Thomas-Fermi screening wave number of the quasi-
particles in the medium. When

~ q, ~
&&qo(e, )', the

phase-mode wavelength is much longer than the quasi-
particle screening length, so that no net charge density
appears on the average distance of one phase-mode
wavelength, and the spectrum remains acoustic. Never-
theless, the charge density induced by the phase fluctua-
tions enhances the stiffness of the phase oscillations, thus
giving a much higher phase-mode velocity. On the other
hand, when

~ q, ~
&&qo/(e, )', the phase-mode wave-

length is much shorter than the quasiparticles' screening
length, and so quasiparticles are ineffective in screening
the charge fluctuation on the average distance of one

The Doppler factor v„, /(vq, —c) is positive for all quasi-
particles with vk, ~c, and negative for those with vk, &c.
Consider the case for which the two branches have very
different velocities. In the slow branch c «(vk, )'
and almost all forward going particles (i.e. , particles with
vj„&0) have a positive Doppler factor, screening the po-
tential efFectively. In the fast branch, c « (vk, ) ', and
almost all forward-going particles have a negative
Doppler factor; they counterscreen the potential, leaving
the job of screening solely to very fast quasiparticles.
The screening is much weaker and a higher propagation
velocity results. Table I summarizes the different phase
relations of the plasma, fast, and slow branches.

The dispersion relation for a general wave number can
be obtained similarly. In the "high"-temperature limit,
the dispersion relation of the slow mode for a general
wave number can be obtained by putting D

&

——1 into the
Nakane-Takada expression (1.3). The result is'

0.4-

0.2-
TABLE I. Different phase relations of the plasma, fast, and

slow modes.

0.05 0. i 0. 1 5 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Tsz (T)

FIG. 3. Temperature dependence of the velocities of propa-
gation for the fast and slow modes. Here p= 1000.

Mode

Plasma
Fast
Slow

Condensed
electrons

Slow

qp

Fast
qp
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phase-mode wavelength. The spectrum therefore ap-
proaches the optic frequency ( —3m +U&q, )'~ as the wave
number increases.

B. Optic mode

The dispersion of the optic branch can be obtained by
inserting into (1.3) the appropriate expression of D& in
the limit c &&1, namely, D& ———(Uk, )q, /co . This yields

~ p+&Uk &so
(4.12)

We can interpret the second term as follows. The
quasiparticle spectrum obeys classical statistics and is
parabolic at temperatures T «6, with an effective massI =6/Ug. Therefore the equipartition theorem ap-
plies, so that (vl„) =T/mqz, and the second term can
be shown to be the effective plasma frequency for quasi-
particles. Therefore,

2 2
COpy +COqp

(4.13)

which suggests that the optic mode is actually a mixture
of CDW condensate plasma and quasiparticle plasma to-
gether with a dielectric screening described by e, . In
this mode, the charge densities induced by the CDW
condensate and the quasiparticles move in phase
(refiected by a negative D, ), in contrast to the out-of-
phase motion in the propagating modes. The quasiparti-
cles, though few in number, nevertheless have an unusu-
ally small effective mass, contributing to a significant in-
crease of the optic frequency from its bare CDW value,
which is copy/e, = —', co~.

As the wave number increases from zero, the power
series of the Doppler factor in terms of (Ul„)q, /co

works for a neighborhood of q, =0, giving

2 p4 qp P p4 kz VO 2 (4.14)Q) = + q
CZ Npy+ COqp

As the wave number continues to increase further, the
power expansion of the Doppler factor fails and an in-
creasingly signi6cant portion of the forward-going quasi-
particles changes its counterscreening role to screening
role. The optic frequency drops sharply and, as will be
shown below, merges with the fast mode.

V. STRUCTURE FACTOR OF THK PHASE MODE
IN THE PRESENCE OF SINGLE-PARTICLE

EXCITATION S

The situation is drastically modified if we include the
imaginary part of the average Doppler factor (4.5).
Since the fast mode lies in the regime c —I where
D2 &&D~, the inclusion of D2 completely suppresses the
fast mode. The damping comes from single-particle ex-
citations, and is intrinsically present even if we ignore
damping by emission and absorption of thermal pho-
nons, amplitude modes, and phase modes. In this case,
it is more appropriate to study the density of states, or
the structure factor, of the phase spectrum as defined by

pq(co) = —— ImD2(q, co—+i5),1 CO

m 0 (5.1)

where cu/Q is the renormalization factor discussed by
Holstein (see Appendix III of Ref. 12). The explicit ex-
pression of (5.1) is

3.5- (b)

where q=vFq, /25. The situation for T & T& is shown
in Fig. 4(a). It confirms the picture discussed previously:
the existence of the fast and slow modes, the slow mode
approaching the bare CDW plasma frequency ( —,

' )'~ co

in the large-wave-number limit, the optic branch
enhanced by the quasiparticle contribution, and the hy-
perbolic dispersion of the optic branch in the neighbor-
hood of q, =0 before merging with the fast mode.

As the temperature approaches T&, the velocities of
the fast and slow branches approach one another and
finally coincide at T, , as shown in Fig. 4(b). It is in-
teresting to note that at temperatures slightly below T&

[Fig. 4(c)] we still have three branches for a range of
wave numbers, although only the optic branch exists in
the long-wavelength limit. These pseudofast and
pseudoslow branches indicate that the acoustic branch
does not disappear abruptly at T&, but continuously
evolves into the optic branch at low temperatures. At
very low temperatures, we get only one branch, the optic
branch, at all wave numbers.

C. General dispersion relation

The general dispersion relation can be obtained by
generalizing (4.6a) and (4.6b) to the q, &0 case, i.e.,

2 2 2
co&~/q 0 e,q,

2 2c —v& qo
1/2

e 5/T g/T
p 2&

2.5—

U
C

2.0—

&D

1.5-

1.0—

0.5-

0. 1 0.2 0. 1 0.2 0. 1 0.2 0. 1 0.2

y =D&(c),

(4.15a)

(4.15b)

FIG. 4. The dispersion relation of the Nakane- Takada
phase mode at di6'erent temperatures: T/5= (a) 0.20; (b)
0.173; (c) 0.17; (d) 0.16. The frequency is in units of (1.5)'
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pq(a) ) = ——Em
1

7T —2 2-2
CO ——q3

(5.2)

2
~qI

71a =
2

COpy+ COqp

whereas for the optic peak,
2

COpy
n, =

2 2
COpy+ COqp

(5.6a)

(5.6b)

where co =2' j3co and D is the average Dopplere fac-
tor given by (4.1). Equation (2.19) can be shown to satis-
fy the sum rule

f pq(co)den= 1,
0

(5.3)

thus justifying its definition. The simplest case to study
is q, =0, where we can directly write

pq(co) = ——Im
1

7T 2
~so

2
~qv

(co+i 5)

(5.4)

n;= a
BCO

2
Ct)py

2
COqp

Ez
CO

(i =a,o), (5.5)

Peaks are located at co=0 and the optic-mode frequency
given by (4.13). The weight of each peak is given by

Note that n, +no ——1, satisfying the sum rule, and

2
' 1/2

no copy e~~T g/'T
na CO P 21T

(5.6c)

16.0

showing that both branches are present at all tempera-
tures, though the acoustic branch dominates at high
temperatures while the optic branch dominates at low
temperatures.

Figure 5 illustrates the situation for small but nonzero
q, which numerically results from (4.4), (4.5), and (5.2).
For T & T& the two peaks are given approximately by
the Nakane-Takada results (4.6a), (4.6b), and (4.14). As
temperature is lowered, the two peaks start to merge to-
gether to form one peak. At T-0.136, the optic peak
starts to dominate over the acoustic peak. At very low
temperatures, the single peak, which is the continuation
of the optic peak in the double-peak regime, becomes in-
creasingly sharp.

Figures 6 and 7 illustrate the situation for constant

so that the weight of the acoustic peak is

14.0-

16.0 1 2.0

14.0-

1 2.0

1 0.0
05

8.0

C
Q)o 60

0)
1 0.0

CO

O
8.0

(0
C
0)

Cl

6.0

4.0

4.0

2.0
2.0

0.5
I

1.0
iE

2.0 2.5 3.0 0.5 1.0 1.5 2.0
Frequency

FIG. 5. The density of states, or the structure factor, of the
phase mode for different temperatures at q=0.05. Starting
from the bottom, the curves correspond to T/5= (a) 0.18; (b)
0.17; (c) 0.16; (d) 0.15; (e) 0.14; (P 0.13; (g) 0.12. The frequency
is in units of (1.5)' co .

Frequency
FIG. 6. The density of states, or the structure factor, of the

phase mode for different wave numbers at T/5=0. 13. Start-
ing from the bottom, the curves correspond to q = (a) 0.04; (b)
0.045; (c) 0.05; (d) 0.055; (e) 0.06; (Q 0.065; (g) 0.07. The fre-
quency is in units of (1.5)'
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1 6.0 2.0
(a) (b)

14.0- 1 5-

1 2.0
1.0-

10.0

(f)

o 80

Q

6.0

0.5-

0

2.0

1.5-

0.1 0.2

(c)

I

0. 1 0.2

4.0

0.5-

0.5 1.0 1.5 2.0 0.1 0.2 0.1 0.2

Frequency

FIG. 7. The density of states, or the structure factor, of the
phase mode for different wave numbers at T/6 =0.125. Start-
ing from the bottom, the curves correspond to q = (a) 0.04; (b)
0.045; (c) 0.05; (d) 0.055; (e) 0.06; (g) 0.07. The frequency is in
units of (1.5)' co .

temperature. For T~0. 136, the optic peak disappears
at increasing wave number, whereas for T50. 136, the
acoustic peak disappears.

Figure 8 shows the peak positions for different tem-
peratures. As before, we note that the acoustic-mode ve-
locity increases with lowering temperatures because of'

the weakening quasiparticle screening. Also, the optic
mode in the long-wavelength limit is enhanced by the
presence of the light quasiparticles. On the other hand,
the single peak in the large-wave-number limit ap-
proaches the optic frequency ( —,

')' co, unenhanced by
the quasiparticle term. This is because the quasiparticles
are ineffective in screening the Coulomb interaction,
and, moreover, the electric field is zero on the average
distance of the quasiparticle screening length, so that
quasiparticles become unresponsive to the driving field.

In addition, we note that the single peak is continuous
with the acoustic peak in the double-peak regime for
T~0. 136 and with the optic peak for T 50. 135. The
wave number q at which the spectrum crosses over from
the double-peak to single-peak regime decreases with
temperature. We can see this by noting that as q in-
creases from zero the crossover point occurs at c —1

when the hyperbola (4.5a) touches D~ at one point, and
so q —the optic frequency, which decreases with lower-

FIG. 8. The peak positions for different temperatures.
T/6= (a) 0.135; (b) 0.13; (c) 0.125; (d) 0.12. The frequency is
in units of (1.5)' co~.

ing temperature as the quasiparticles become fewer. We
therefore are able to map out the single-peak and
double-peak regimes in the temperature and wave-
number space, as schematically shown in Fig. 9. The
boundary is given by Bp/Bco=B p/Bco =0. The point P
on the boundary is given by Bp/Bco =3 p/c)co
=8 p/Bc@ =0, corresponding to T =0.1286. Above
this temperature, the acoustic peak is dominant, ~hereas
below it, the optic peak is dominant.

Recent experiments show that a small fraction of the
Fermi surface remains gapless at 0 K for such CDW sys-

C:

C3
CD

C:

increasing T/b,

FIG. 9. Single-peak and double-peak regimes in the temper-
ature and wave-number space.



36 EFFECTS OF QUASIPARTICLE SCREENING ON COLLECTIVE. . . 5485

tems as KCP. ' In this case, the dispersion relation is
modified by

cu =v~q, +2 2 2
2 2

copyqz

2 2
2 2 2 2

&.q. +qi+, , ~, qo+q.
vp, q, —)co5 —co

(5.7)

VI. CONCLUSION

We have described the dynamics in, which order-
parameter phase fluctuations couple with charge-density
fluctuations. We find that the spectrum consists of two

2.0
(a)

1.5-

1.0-

0.5-

Oc 0Q)

2.0

0.1 0.2

(c)

0.1 0.2

(d)

1.0-

0.5-
/

0 0.1 0.2 0.1 0.2

FIG. 10. The peak positions for diferent temperatures when
a fraction of the Fermi surface remains gapless at 0 K. Here
Nl /No ——5&&10 . The temperatures are T/6= (a) 0.14; (b)
0.13; (c) 0.12; (d) 0.11. The frequency is in units of (1.5)'

where q, =8me Ni, 2X& being the density of states of
the Fermi surface remaining gapless. The spectrum is
modified, rendering two acoustic peaks as shown in Fig.
10. This modification of the phase-mode spectrum
should be considered in experimental analyses.

To conclude this section, we remark that the phase-
mode spectrum has been derived in the limit co))vqp'.
Thus the analysis applies to infrared frequencies.
Infrared-absorption and neutron scattering experiments
are therefore useful tools to test the theory.

branches, one acoustic and the other optic. The struc-
ture factor is found to satisfy the sum rule. The optic
branch is increasingly dominant at low temperatures
while the acoustic branch is dominant at intermediate
temperatures. In the acoustic branch, the condensate
current is balanced by a counterflow of quasiparticle
current, whereas in the optic branch, both components
oscillate in phase with their own effective masses charac-
terizing their dynamics. The acoustic-mode velocity in-
creases with lowering temperature because of weakening
quasiparticle screening. The square of the optic frequen-
cy in the long-wavelengh limit is the sum of the conden-
sate plasma frequency (co~~ 4me ——n/I ') plus the quasi-
particle plasma frequency (~q2p4~e'nqp) divided by 8„
and because of the small effective mass of the quasiparti-
cles the optic frequency is enhanced significantly. When
the wave number increases, the two branches merge to-
gether, and the single peak is continuous with the acous-
tic peak at high temperature and the optical peak at low
temperatures. In the single-peak regime, the mode fre-
quency approaches ( —', )' co, because the quasiparticles
are ineffective in screening and responding to the driving
field.

The situation in superconductors is very similar. In
fact, as will be shown in the accompanying paper, the
acoustic mode, known as the Carlson-Cxoldman mode,
has the same dispersion relation as that in CDW sys-
tems, except that the CDW effective mass is replaced by
the electronic mass, and the dimensionality is changed to
3.

As for the plasma branch in superconductors, care
must be taken of the mode counting. In CDW, the col-
lective modes are the coupled modes of the ions and
electrons, while those are the coupled modes of only
electrons in a superconductor. Therefore the number of
collective modes is different in CDW systems and in su-
perconductors. In CDW systems, there exist two optic
collective modes, one the condensate mode with
co = —,'cu and the other the electron plasma mode with
co =4me n/m. In superconductors, however, the only
optic collective mode is the electronic plasma mode.
Furthermore, a sum rule can be proved in superconduc-
tors, giving the dispersion co =4me n/m, where m is the
bare electronic mass. The distinction between the band
mass and quasiparticle effective mass is irrelevant here.
This is natural, since the plasma mode is a collective
translational mode describable by classical dynamics.

We also have to emphasize the requirement of a large
CDW effective mass in the derivation of the above
dispersion relations. In fact, the optic-mode frequency is
given by co =co &/E, =66, /p ( = —,'co ), and it requires

p&& —', so that the CDW condensate plasma frequency
will remain much less than 2A. In fact, we have as-
sumed ~&&26 for the derivation. Otherwise, the ex-
pression for e, has to be modified. In superconductors,
however, the effective-mass ratio is 1, and the situation is
so modified that the optic mode at &6A does not exist.
Since our assumption co «2A breaks down, the correct
treatment gives the plasma mode with co =4vrne /m.

For the major part of the paper, we have been in-
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terested in the collisionless regime, but a generalization
to the dissipative regime (i.e., the regime in which the
system can dissipate energy into a reservoir of phonons,
phase modes, and amplitude modes) has been described
in Sec. III. A generalization to the hydrodynamic re-
gime can also be worked out. With these generaliza-
tions, we can extend our theory to various regimes, and
this will also enable us to study the problem of acoustic
attenuation.
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Ap(ki, ki+ )=op ——g y, D, (kz —k, )(o. go.,')
T 2

j,k2

X [G (kz+ )e G (kz )]

&Ap(kz, kz+ ), (A3)

APPENDIX A: DIELECTRIC FUNCTION
EXPERIENCED BY THE PHASONS

1. Derivation of the transport equation

where the superscript t denotes the transpose of a ma-
trix. Introduce the distribution function 4p(kz, kz+ )

defined by the matrix equation

iAp(kz, kz+ )=[G '(kz+ )BG '(kz )]C&p(kz, kz+ ),
The transport equation can be most conveniently de-

rived by introducing matrix direct products, direct sums,
and direct differences, which are defined, respectively, as and (A3) is transformed into

(A4)

i(G '—(ki+ )eG '(ki ))@p(ki,ki+ )=op —P—yqDi(kz —ki)(crjoj ) (iG(k z+)(=)G(Kz —))Np(kz )kz+ ) .
j,k2

(AS)

Now the Dyson equation in Fig 1(d) is.

G '(k, )=(G ) '(ki) —X(ki),
where

(A6)

X(ki)= — g yJDJ(kz —ki)crJG(kz)o~' (A7)

This simplifies the vertex equation (A4) into

T—i((G ) '(ki+ )B(G ) '(ki ))@p(ki,ki+ )=crp ——g iy~Di(kz —k, )(crjeo~)[G(kz+ )eG(kz )]
N, .

k

&&[4p(kz, kz+ ) —(crj o j')N (kp, , k, )]+. (A8)

Equation (A8) now resembles a transport equation. The left-hand side describes the spatial and temporal evolution of
the distribution function. The first term on the right-hand side is the driving term, and the second term the collision
term. Performing the analytic continuation and the contour integration as usual, we obtain, for the case
l co i ~z i

—co /2 —l 5, L co ] + ~z ) +co /2 + l 5,

dz

g J [nil(z3)+ f (zz)]y&[D~ (z3) DJ"(z3)](oJe.crj )[G (kz+—)eG "(kz )]
2mJ

)& [@p" ( k z, k z+ ) (crJ o j )4p"—( k, , k i ~ )], (A9)
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where z 3 ——z z
—z1. Following Holstein, ' we take the approximation

D& (z3) D—j"(z3)=—2ni g 5(z3 —m3coj3)
m, =~1 m3~j3

(A10)

and also

5(zz —mzEz )6 (kz+ )636 "(kz ) P—
z z a3E3cr3+P z z cr&Ba& —(zzII +gzcr3(Ba3+bcr ~a~)tn

z2 —E2 z2 —E2 2mpE2

(A 1 1)

where cpj3 =—coj(q3)—:co, (kz —k~). Noticing that the rest of the integrand in (A9) are slowly varying functions of zz
when compared with P/(zz Ez ),—we ignore the first two terms of (Al 1). This simplifies (A9) into

dz2 Qj 5(zz —m zEz )= ——g f [na(z, )+f (zz)]y, 5(z3 —m3cpj3) (o sa,')
1V .

k
—~ 2m. m 3coj3 mJ

X( zIzEBI +g za3$ a3+6 a] a&)[c'p (kz, kz+ ) —(a&I3a& )@p (k&,k &+ )] . (A12)

We are especially interested in the case z1 ——m1E1 with m1 ——+1. In this case, the major contribution comes from
m 2 ——m1, rendering the collision term into

1
C = ——g [[ns(cpj, )+f (Ez)]5(Ez E~ ——coj3)+[nz(coj3)+ I f (Ez)]5—(Ez Ef+cpj3)I

j,k2

QJ
X yj (oja, '.

) II+ o 3@cr3+ a; @cr
& [4p(kz) (ai—@cr~+ )Np(k& }],

Coj3 m1E1 m1E1

where 4p(k&) is the shorthand form of C&z""(q &, m ~E~ —cp/2, m, E&+co/2).
It is now time to introduce the elastic collision approximation, in which

kq, = —k]„E2=E1 .

This simplifies (A13) into

(A13)

(A14)

'(k(, )C= g ' (a, aj') IeI-
J

a3$a3+ o &&a& [@p(—k] ) —(ajsaj )@p(k] )]m]E1 m1E1
(A15)

where r '(k &, ) is the transport relaxation rate as predicted by Fermi's golden rule,

(k„)= g y, I [n~(cp, ,)+f (E, )]5(E,—E, cp, ,)+[njj(cp, ,—)+I f (E, )]5(E, —E, +cp, , )] . —4~

q3 j3
(A16)

The last factor of 2 comes from the usual 1-cosO term in transport calculations. The complete transport equation is
therefore

—1

i((6 ) (—k&+ )B(G ) (k, ))Np(k, —,k&+ )=crp+ g (ajcrj') ISI—0 —1 0 —1
(ki, )

8
o 38 o 3 + cr

&
8 o'

& )
m1E1 m1E1

X[&p( —&„)—(,ea,')4p(k„)] . (A17)

2. Solution of the transport equation &0„(—k ), ) = —@„(k), ) . (A18c)

Since the equation involves the unknowns 4p(+k&, ),
we divide W0 into the even and odd components satisfy-
ing

@p(ki. ) =4p+4 iai+4zaz+Aa3 (A19)

Furthermore, we introduce the scalars Pk (k =0, 1,2, 3)
by

4&p( k „)= 4& ( k i, ) +4„(k „),
4g( —k„)=Ng(k), ),

(A18a)

(A18b)
Multiplying (A17} by cr;I (i =0, 1,2, 3) and taking the
trace, we arrive at four equations:
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—' cpf'0+ I A'3 =—70
$„0—m I P„3+m I

1

$„0+m I Pg3+ m I P„I )E, ~ E,

&o
—1

i ~—$3+ig p 2—AP3 = — Nu3™1 duo
1

—1

pg3+m I $„0

0+ml pg3™1 pgI +1,
—1

72 1

Ag3+m I PupE1

i 03$—1+2$1$3———
r

jo
N. I+mI E P.o

1

Nu I+m I PupE1

(A20a) (A20d)

where g stands for vFq, . The key to solving this eight-
variable equation lies in the following approximation.
An estimate of the transport relaxation rate shows that

(j =0, 1,2) is of the order T. Thus we can take
r&

' &&b, . In this case, (A20c) can be replaced by
—1

'T2

Ngl m I E '(I up
1

(A20b)
(A21)

—1 —1 —1
7 Q 71 12—I CO/2 —2$1$1+2APZ ——— Pu2 — P Z—

2 " 2 ' 2

(A20c)
Eliminating $2 from (A20b) and (A20d), and together
with (A20a), we have two equations for pp and QI:

e

EI—i~40+4
—1

vo
'2

kl E I
0 ml E ~ Ngl+mI E 0 I

1 1

—1
71 E1

y.o+mI ~ y„l

—1
72

2

0+ml ~ I
—ml It I +1

1 1

(A22a)

—ico PI +if
E1

—1
'2

ro

E Pu I+ E iI Ngl+ I
1 1 E1 E1 uo

E1
mls. o+ ~ y. I

&2

2 EI Ei

2 E
Nu1 ™I

E1 E1 0.0 (A22b)

i 038g +i—g 9„=1,1

1

(A23a)

Adding the two equations, and introducing 61 =$0
+m EIp I/4I, we get

ak ukck+——k +vkck —k (particle),

Pk —— Ukck+k +ukc„—„(hole),
where

(A25a)

(A25b)

1
i 030„+i—g Og —— rqp'6„, —

1

(A23b)
2

Qk
2 (A26)

where

—1 —1

qp
1

2

+&1 +&2
1

(A24)

Neglecting the interband terms, we obtain, for the
electron-phonon interaction Hamiltonian,

~eP ~ g Vk+q k(al, +qak+Pk+q13k)poq
(0)

Equation (A24) is exactly the expression for quasiparticle
transport relaxation rate appropriate in the elastic col-
lision approximation. To see this, we introduce the
quasiparticle and quasihole operators ak and pk accord-
ing to

+ Vk+q, k(ak+q k Pk+qPk)(( Iq
(1)

+ Vk+q, k(ak+qak+Pk+pk)42q(2) (A27)
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where

Vk+q, k rO(+k+q+k+Vk+q k )

Vk+q, k Yl(~k+qVk+Vk+q~k)
(1)

Vk+q k = —r2(Qk+qVk —Vk~q((k )
(2)

(A28a)

(A28b)

(A28c)

Upon substitution of (A26), and the introduction of the
elastic collision approximation (A14), we obtain

(A30b)

As far as H00 is concerned, we shall see that the value of
Og is already sufficient. Once 0~ and O„are solved, oth-
er variables can be solved easily if desired.

3. Correlation function IIDO

I
vk'+, ,k I

' =r l

I
I'k+q, ) I

=r2(2) 2 2

k

2

l 2
(0) 2 2

I vk+q, k I
=ro

k
(A29a)

(A29b)

(A29c)

Having solved the vertex equation, we proceed to
evaluate the polarization Hpp. As usual, the correlation
function consists of the advanced-retarded and
retarded-retarded components. ' We focus on the
advanced-retarded component first. Writing (2.11) in
matrix direct-product form,

Hence the factors (b, /E, ), 1, and (g(/Ek) preceding
7 0 7 1, and ~2

' arise from the transformation of the
electronic coordinates to the quasiparticle coordinates.

Equations (A23a) and (A23b) are easily solved, yield-
ing

T
IIOO(q)= —QTrG(k, + )G(k, )Ao(kl, k, + ) .

k)

(A31)

Substituting (A4) into (A31), we get

IIOO(q)= —g Tri(G(k, + )BG(kl ))@0(k, , k, + ).T

kI—1 ~

7 —ltdqP
2

—( $7 —(V

1
qP

(A30a) (A32)

Performing the contour integration as usual and upon
analytic continuation, we obtain

II(~ (q, cv+i5)=-
2% m

(Ie IBfl
1

o.3(ll(r3+ cr leo l)C(o(kl, m(El ),
m1e1 m1E1

(A33)

where the approximation (Al 1) has been used. Using (A21), we can easily show that

II 00( qco +i5)= — g 2
Bf,
BE) g N k

Bf,
BE,

E
~ —1 2—E CO% —COqP

~ —1 2—l$7 —6qP
2 (A34)

Next we evaluate the retarded-retarded component of Hpp. This is equal to

~RR dz1
IIoo (q, a)+15)= ——g [f(z l )+f(z l+ ) ji Im TrG (z l+ +i 5)AO(z l +i 5,z, + +i 5 )G (z l +i 5),

N1, —~2m
I

where z1+ ——z1+co/2. It can be shown that

7
—1

Ao(zl +i5,z(+ +i 5) =era+0

(A35)

(A36)

Thus

~RR 2(zi+zl —+Pl+(1 —+~ )
IIOO (q, (v+i5)= ——g f [f(z, )+f (z, + )]Im—~ 2~i (z, + El+ +iz, +5)(z, —E l +iz, 5)— (A37)

Making use of the following approximation,
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1

(z f+ E f—+ +iz, +5)(z f E—f +iz —5)

+) 4E)
5(zi —m iEi )

+5'(z, —m, E, )
m(E)

~z 36 +35'+m )E)5"
32E ) m &E~

~A/ 55 +55'+ 3m )E )
5"+ —,

' E )
6"'

32E
~

m ]E]
(A38)

we finally arrive at the expression

IIoo (q, o2+i5) = ——g 2RR ~fi
+

I —2fi 2 d'f a ki ~'ft
~E'

(A39)

Among the terms proportional to g', the first term is dominant. Thus we have

af,
Hoo (q, co+i5)= ——g 2

N „ BE(
—N(0)

g2

3A
(A40)

Combining (A34) and (A40), we have

g2
Hoo(q, co+i5) = —N(0) ——g 2

~f 1

aE,
g2

2
~ —1 2—l COP —CO

qp

(A41)

The first term of (A41) is the contribution of the condensed electrons, and the last term the quasiparticles. In the
latter, note that the quasiparticle group velocity can be written as

k
Ukz —VF (A42)

and ( —Bf&
/BE& ) =f (E& )/T, so that (A41) can be rewritten as

2 2 2 2

H (q, ~+i5)= —N(O)
Uk, q, —ie) „'—Cu

(A43)

where nqz is the total density of quasiparticles, and ( . . ) represents the average over all quasiparticles. From
(2.10), we finally get the expression for the dielectric function,

2 2 2
2 Uk q qO

E(q, co) = I+(e, —1)cos 8+
Uk q —le% —CO

(A44)

where Ez =1+et)pe ~65 and qo =4me nqp/T.
Other correlation functions can be obtained similarly. They are

~ —1 2—l C07 —COqp

M 'o2(r2 —&o ) ]
1 ~fi b, 2

H2o(q, co+i5)= —Ho2(q, co+i5)= N(0) ——g 2
2Ef

g2

(A45a)

H22(q, co+i5) =—2N (0) N (0)
Q2

N(0) ro

2 Q2

1 ~fi 3 gb.
N q BEi 8

I

~co(ro ' +r) ')[ i'(r) ' +r2 ') —co +g ]
2

4E
~ g —icor —co
2 2 ~ . —I 2

E qp
1
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2+2
+ 44E,

$2

( —cco(rp ' —ro)
2

~ —1 2—l N7 —0qv

leo('Tp + 37) + r2

16E )

~'f t Ai
2

1

(A45b)

It is evident that in these expressions, however, the quasiparticle corrections are of secondary importance.

APPENDIX B: DIELECTRIC FUNCTION
IN THE DIFFUSIVE LIMIT

In the hydrodynamic regime, the inelastic scattering
rate ~ ' satisfies co~&1, and so the dynamics of the
quasiparticles have to be studied by the hydrodynamic
equations. Starting from the transport equation (3.2)
and replacing the collision term on the right-hand side
by the inelastic collision term, we can easily write down
the conservation equations for the quasiparticles. As-
suming isothermal conditions, the quasiparticle distribu-
tion relaxes towards a local equilibrium of chemical po-
tential p&„. The transport equation can then be written
as

For T «5, we can approximate the situation by classi-
cal statistics, so that —c)f» Ic)Ek =fk/T, and we obtain

P1OC
=— &qz

2 5P—E Co +2)qz
(84)

where 2)= (Uk, )r is the diffusion constant. The total in-
duced charge density, via (82a), is

2
"qp &qz

—l Ci) +2)qz
(85)

This yields the following expression for the dielectric
function,

k
iCOgk + ivk qzgk —lq Vk 5P

k
2

e'(q, Cgj)=1+(6z —I )cos 8+ 2
cos 8

&qo

i CP +2)q—,
(86)

which yields

k
gk + ~E Ploc

k
(8 I)

If we equate the last term with the dielectric contribu-
tion of quasiparticle conductivity, we obtain

&fI, ~q, U/„r&p p/„'—
~ ~

BEk 1 —i m~+iqz vkz 7
(82a)

—l Ct)CT dC
crqp(q, cp) = cos 8,—l CP+Xlqz

(87)

cJfk iq, vk, 6@+( i co+iq, uk,—)p~„
(82b)

1 —i co~+iq, vk, ~

L

+ [—ICE+(Cp + Uk q )1 ]p) (83)

The local equilibrium chemical potential can be obtained
by invoking the requirement for the conservation of par-
ticle numbers, i.e., setting the sum of the collision rate
over the phase space to zero. This gives, for
co~, vk, q, «& 1,

where ad, is the dc conductivity of the quasiparticles,
and can be shown to satisfy the Einstein relation'

2 87lqP
O.d, ——e 2)

Bp
(88)

We have to emphasize that the above treatment ap-
plies to the isothermal situation only. For the adiabatic
condition, the local equilibrium corresponds to a local
temperature in addition to the local chemical potential.
The conservation equations then include the conserva-
tion of energy in addition to that of particle numbers.
The corresponding expression for the dielectric function
can be derived in a similar way.
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