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It is shown that the free energy and the Edwards-Anderson susceptibility for Ising spin glasses
have a star-graph expansion. With the use of this, a method for generating the high-temperature
series for these quantities is described. The scope and the applicability of this method to other prop-
erties involving quenched disorder is discussed.

I. INTRODUCTION

II. SERIES EXPANSION: THE METHOD

A. Basic definitions

The Ising spin glass is described by the Hamiltonian

—/3&= g J;~S;Si .

Here the sum runs over each nearest-neighbor pair once.
S; is the Ising spin at sitei which takes values 1. J;J are
independent random variables and occur with the proba-
bility

P(J;, ) = —,'[5lJ;, —J)+5(J;,+J)] (2.2)

The free energy (F), the Edwards-Anderson susceptibility

In a recent paper' the critical behavior of short-ranged
Ising spin glasses was studied through the use of high-
temperature series expansions. The series were obtained
to high orders, comparable to the best available for the
pure Ising model. The results of the analysis were in very
good agreement with the numerical simulations and pro-
vided confIrmation of a finite-temperature phase transition
in three-dimensional Ising spin glasses. In this paper we
wish to discuss in detail the method for generating these
series. In a companion paper we shall present a detailed
analysis of the series, including estimates of the exponents
g and v which were not given in Ref. l.

The key ingredient of our calculation, which allows us
to carry out the series expansions to high orders, is the ex-
istence of star-graph expansions for the free energy and
various susceptibilities in zero magnetic field. This
method is then implemented on the computer to generate
the series for various quantities of interest for Ising spin
glasses.

The organization of this paper is as follows. In Sec. II
we introduce the method of star-graph expansion. In
Sees. III and IV we show the existence of star-graph ex-
pansions for the free energy and the Edwards-Anderson
susceptibility. In Sec. V we explain how the series is gen-
erated on the computer. Sec. VI contains a few brief con-
cluding remarks. There are five appendices supplement-
ing the discussion in the text.

(XEA), and the auxilliary susceptibility (X') are given by
the expressions

f3F =—ln tre

NXEA gg ——[(S;S,) ],
I J

NX = y y ([(S,S, )'])' .

(2.3)

(2.4a)

(2.4b)

Here N is the total number of spins, the angular brackets
refer to thermal averaging, and the square brackets refer
to averaging with respect to the distribution of J;J. We
wish to derive a series expansion for the free energy and
the susceptibilities in powers of tv [=tanh (JlkT)]. The
susceptibility 7 gives the exponent y. The auxilliary sus-
ceptibility 7' can be used to obtain the exponents g and v
as discussed in the companion paper.

B. Star-graph expansion

The method used for obtaining the series is the star-
graph expansion which is extensively discussed in the
literature. For the sake of completeness we give here an
overview of the underlying concepts and illustrate them in
the context of the present problem.

The star-graph expansion is part of a more general
method known as the excluded-volume expansion. The
basic idea in these methods is the following. We are in-
terested in calculating some extensive thermodynamic
quantity A (which could be the free energy or the suscep-
tibility) which is defined through the Hamiltonian in Eq.
(2.1). In an excluded volume expansion we reduce the ex-
pression for 3 to the form

A = g W(s) . (2.5)

The sum is over all subgraphs of the lattice and W(s) is
called the weight of the subgraph s. (For a precise
definition of W see below. ) The usefulness of this expres-
sion in obtaining the series expansion for the quantity 3
is based on the following observations.

(i) The weight of a graph with r edges starts as w', i.e. ,
all lower powers of m have zero coefficient.

(ii) The weight of a graph only depends on its topology.
It is important to realize that even though the present
problem is inhomogeneous, after averaging with respect to
the distribution of JJ, hornogenity is restored and all

36 546 1987 The American Physical Society



36 HIGH-TEMPERATURE SERIES EXPANSION. . . . I. 547

& (X)= g (g M)~(g) . (2.6)

The following additional considerations greatly increase
the effectiveness of the method in carrying out the expan-
sion to high orders. A graph is said to have a point of ar-
ticulation (k) if cutting all the edges incident at k and re-
moving the piece connected to k splits the graph into
disconnected parts. A graph with no such point of articu-
lation is called a star graph. In special cases one can
show that all disconnected and articulated graphs have
zero weight. In this case Eq. (2.6) becomes

bonds become equivalent.
Hence, to obtain the series expansion for A, correct to

order r, one needs to consider all topologically distinct
subgrophs (g) of the lattice (X) with r or less edges. One
obtains their weights and the number of ways in which
the graph g can be embedded in the lattice X [also denot-
ed as (g M )] and Eq. (2.5) becomes

ing the full Hamiltonian by that in Eq. (2.8). Further-
more, this quantity can be expressed as

3 (G)= g W(s) .
sC6

(2.9)

8'(G) = A (G) —g' W(s) . (2.10)

Here the sum is over all subgraphs of G including G. [In
fact, one can regard Eq. (2.9) as a definition of the weights
with the condition that the weight of a subgraph s de-
pends only on s and not on G. One can invert Eq. (2.9) to
obtain the weights. ] In the case of a star-graph expansion
the sum in Eq. (2.9) is restricted to only star subgraphs.
To obtain these weights one generates all distinct star
graphs, in such a way, that at the time when one is con-
sidering a graph (G) weights of all its subgraphs have al-
ready been determined. Then one computes the quantity
3 (G) and subtracts off the weights of all subgraphs to get
W(G):

gs

(2.7) The prime in the summation excludes the subgraph G. In
the next two sections we discuss in detail the calculation
of weights for the free energy and the susceptibility series.

/3&g = g J;,$,$~ —. (2.8)

where A. is the lattice constant of the star graph g„and is
given by the number of ways, per lattice site, that the star
graph g, can be embedded in the lattice. N is the total
number of sites.

In the next two sections we shall discuss in detail the
calculation of weights for the free energy and the suscepti-
bility. Here we outline how a description in terms of
graphs occurs naturally in such problems. In a graphical
language each site is represented by a vertex (i) and each
interaction J;j is represented by an edge connecting the
vertices at i and j. An arbitrary subset of the lattice
defined by N~ spins and L6 interactions can be represent-
ed by a graph (G) with N~ vertices and L~ edges. Ex-
panding 3 in terms of U;~ ( =tanhJ~ ) would express it as a
sum over infinitely many terms. Each term in the expan-
sion can be associated with a graph obtained by drawing
all the edges corresponding to the v,~ present in the term.
In the excluded volume expansions the edges are drawn
only once even though a given v;~ can occur many times.
The sum of all the terms which get associated with a
graph is called the weight of the graph. After the averag-
ing with respect to the distribution of J~ they become
power series in w [=tanh (JlkT)]. The following is
clear from this discussion.

(i) Each nonvanishing term in the weight of a graph
must get a nonzero power of w from each of the interac-
tion lines present in the graph. Hence if there are r edges
in the graph its weight would start as w".

(ii) For calculating the weight of a particular graph all
the interactions Jz corresponding to the edges not present
in the graph can be set to zero.

The calculation then proceeds as follows. We associate
a Hamiltonian with a graph (G) given by

III. STAR-GRAPH EXPANSION
FOR THE FREE ENERGY

We start with the definition

PF =l—n Tr exp g JJS;SJ .
(i,j )

We use the identity

e " ' '=(I+V;JS,S, )coshJ~,

where U,J
——tanhJ~. Using this, Eq. (3.1) becomes

1/3F=L lncoshJ—+N ln2+ln Tr g (1+v,~s;s, ) .
2 (&j)

(3.1)

(3.2)

(3.3)

(3.4)

As discussed earlier we define Fi(G) for graph G by re-
stricting to the sites and bonds in the graph G:

G

F~(G)=ln & Tr g (I+Ujssj ) . (3.5)
2 (i j)

It is evident that expanding the logarithm after calculating
the trace in Eq. (3.4) would give rise to a power series in

v;~. The averaging over the bonds can be done by using
the relations

Here L is the total number of nearest-neighbor bonds.
The factor of 2 is introduced for normalization. The
first two terms are smooth and we shall obtain a series ex-
pansion for the last term

Here all the spins and the interactions in the summation
belong to G. We now define the quantity A (G) by replac-

f dJ~P(JJ)UJ=0 for n odd

for n even . (3.6)
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Fi(G)=Fi(Gi)+Fi(Gp) . (3.7)

From the definition of the weights in terms of the mul-

tivariable expansion it is now evident that there are no
terms on the right-hand side of Eq. (3.7) which have

nonzero powers of all the bonds in the graph G. Hence,
the weight of G is zero. Therefore, we have shown, that
the free energy has a star graph expansion.

IV. STAR-GRAPH EXPANSION FOR THE INVERSE
EDWARDS-ANDERSON SUSCEPTIBILITY

The existence of a star-graph expansion for the inverse
Edwards-Anderson susceptibility (Xr~ ) follows from a
more subtle argument. If one uses the straightforward
definition for the weights in terms of a multivariable ex-
pansion, the weights of articulated graphs appearing in the
expansion of 7~~ will not vanish. However, there exists a
star-graph expansion for the inuerse of the Edwards-
Anderson susceptibility. This is because, in this case, for
any homogeneous graph, where all sites are equivalent,
the weights of all articulated subgraphs add up to zero.
The proof of the existence of the star-graph expansion for
the inverse of the Edwards-Anderson susceptibility, and
its calculation are similar to those of pure Ising model.
We shall first construct a quantity that has a star-graph
expansion, and then show that, for a homogeneous graph,
this quantity is the true inverse of the Edwards-Anderson
susceptibility.

To this purpose, for any graph G, let us define a matrix
M with elements

This gives a power series in w. Since all the interactions
become equivalent after the averaging, the weight of a
graph is completely determined by specifying its topology.

It is also useful to keep in mind the definition of
weights as a multivariable expansion. If we treat each w

arising from the diA'erent bonds as a separate variable w;J

then we can perform a multivariable expansion for F~ in

Eq. (3.4). The weight of a subgraph is a sum of all those

terms in this expansion for which the powers of all w;J

corresponding to the bonds in the subgraph is nonzero
and the powers of all the other w;J is zero.

Let us now consider any disconnected or articulated
graph G which can be decomposed as G =G] U Gq, where

G~ and Gq have no edges in common. We show in Ap-
pendix A that

which is again sufficient to ensure that the weight of G is

zero. It should be remarked that our proof in Appendix
B is entirely parallel to the corresponding proof for the
star-graph expansion of the inverse susceptibility for the
pure Ising model given by Rapaport.

We now show that for an infinite lattice, which is a
homogeneous graph with N equivalent sites, the inverse of
the Edwards-Anderson susceptibility is given by

NXpp', = g g (M ');, .
1 J

To see this we substitute Eq. (4.1) into Eq. (2.4a) to get

NXEA= g g Mq
J

For the infinite lattice

(4.6)

g [(s;s, ) ]=XEA . (4.7)
J

After averaging over the distribution of J;J all sites be-
come equivalent and the left-hand side does not depend
on i ~

It is convenient to use a matrix notation. Equations
(4.6) and (4.7) can be written as

NgEA= 1 MI

MX=XEAl .

(4.8)

(4.9)

Where I is an ¹ omponent vector given by

(4.10)

Multiplying Eq. (4.9) by the inverse of the matrix M from
the left we get

M-'M I =yEAM-'I

which then leads to

(4.11)

graphs vanish.
The weights can again be defined in terms of the mul-

tivariable expansion as before. In Appendix B we prove
that for any articulated graph G =G~ U G2 where G~ and

Gq have no edges in common

(4.4)

M;, =[(s;s, )'] . (4.1)
I M 'MI=+ I M (4.12)

Here i,j run over the sites in the graph and all the interac-
tions not in the graph are set to zero. We associate an
amplitude g with the graph (N~ is the number of vertices)

Writing this explicitly gives

N =XE~ g (M ')~J

&t&g = g g (M ')~ —Ng . (4.2) or (4.13)

We shall show that the quantity g has a star-graph expan-
sion. That is if we express gg as

(4.3)

NXEA= g (M ),)

which is the required relation. Combining this with Eq.
(4.2) and Eq. (4.3) gives

gCG

where the sum runs over all subgraphs of G including G.
Then the weights of all articulated and disconnected or

NXpg Ng A.(g, ) W'p(g, )+——N
gs

(4.14)
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XEp,
' = 1+ g A, (g, ) Wy(g, ) .

&s

(4.15)

U. GENERATING THE SERIES

The following steps were necessary to generate the
series on the computer.

All possible topologies in order of increasing cyclomatic
number (c) starting with c =2, were enumerated.

All possible star graphs that can be embedded in the
lattice were generated as realizations of the topologies.

The lattice constant for each star graph was calculated.
The star subgraphs for all star graphs with nonzero lat-

tice constant were found.
The weights of all the star graphs to a given order in w

were evaluated.
Once the lattice constants and the weights are known

the power series is immediately obtained from Eq. (2.7).
We shall discuss each of these steps in some detail.

A. Generating topologies

The cyclomatic number (c) of a graph with V vertices
and E edges is defined as c =E —V+1. The valency of a
vertex in a graph is defined as the number of edges meet-
ing at that vertex.

The process of generating all star graphs is carried out
in two stages. First the bare topologies, in which vertices
of valency 2 are suppressed, are obtained. These topolo-
gies consist of nodes, which are vertices of valency greater
than 2, and lines connecting the nodes which are called
bridges. In this subsection we shall discuss the generation
of topologies. In Sec. VB we shall discuss how star
graphs are obtained from such topologies.

All topologies of cyclomatic number c can be obtained
from topologies of cyclomatic number c —1 by one or
more of the following three basic operations. A topology
with n nodes and b bridges can be generated by the fol-
lowing.

(i) Adding a bridge to connect any two nodes in a to-
pology with n nodes and b —1 bridges.

(ii) Adding a bridge to connect one of the nodes to the
midpoint of one of the bridges in a topology with n —1

nodes and b —2 bridges.
(iii) Adding a bridge to connect the midpoints of any

two bridges in a topology with n —2 nodes and b —3
bridges. The two bridges can also be the same.

Our strategy for generating all possible topologies is as
follows. The unique topology for c =2 is first initialized.
We then proceed in order of increasing cyclomatic num-
ber starting with c =3. For a fixed c we proceed in order

Hence we have shown that there is a star-graph expansion
for the inverse of the Edwards-Anderson susceptibility. It
is also clear from our proof that for any susceptibility of
the type

X'= g g [(s,s~) j" (4.16)
I J

with arbitrary distribution of J~, and any m, n, (X ) will
have a star-graph expansion.

of increasing number of nodes. To generate topologies
with n nodes and b bridges we repeat the operations in (i),
(ii), and (iii) with all the topologies of cyclomatic number
c —1. In this process a large number of duplicates are
generated which have to be removed (to be discussed
below). The topologies, which are not duplicates, are
stored for generating topologies with cyclomatic number
c+1~

1. Condition for stopping

In order to calculate the series to a given power of w

(say N„d„) we need to find all star graphs with N„d,„or
less edges. It is possible to estimate the highest cyclomat-
ic number one needs to consider, in order not to miss any
relevant star graph. We can also define a recursive cri-
teria which will guarantee that there are no more star
graphs left. This criteria is as follows. In order for a star
graph with cyclomatic number c to exist, which can be
embedded in the lattice, there must exist a star subgraph
with cyclomatic number c —1, which can be embedded in
the lattice. Furthermore, this star subgraph must have
number of edges less than N, „d„. Hence, for the purpose
of generating topologies of cyclomatic number c, we need
to consider only those topologies of cyclomatic number
c —1, which have star realizations, that can be embedded
in the lattice, with number of edges less than N„,d,„. This
process would automatically stop when all star graphs
with number of edges less than N„d,„are exhausted. In
practice, by careful inspection, it is possible to terminate
this generation of topologies a little earlier and not to miss
any star graphs.

The topologies are stored in the computer by their adja-
cency matrix which is defined as follows:

A;~ =number of bridges connecting nodes i and j (5.1)

2. Lexicographic ordering of the adjacency matrix

For a topology with n nodes there are n! ways of num-
bering the nodes which would give rise to n! adjacency
matrices. We define here an ordering which uniquely
picks out one of these as the adjacency matrix for the to-
pology. We first define an ordering on NXN matrices.
The matrix C is defined to be greater than matrix
B(C & B) if for some k, i

C;~ =B;~ for 1 &i & k —1 and all j,
C~~

——BI,~ for 1&j &l —1, (5.2)

and

Ckr ~B
Furthermore, two matrices are equal if and only if all
their elements are equal. One can verify that this is a
well-defined binary relation and it orders all N&(N ma-
trices.

We now define the adjacency matrix of the topology to
be that matrix which among the n! choices is the greatest
according to the above ordering scheme. This scheme
would be called the canonical ordering for a set of ma-
trices.
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3. Removal of duplicate topologies

With the above definition of the adjacency matrix, two
topologies are duplicates of each other, if and only if their
adjacency matrices are equal. Hence, for every new topol-
ogy that is generated, we check its adjacency matrix
against all previously stored ones with the same number
of nodes and bridges. If it is equal to any one of the pre-
vious ones it is discarded. Otherwise it is stored as a new
topology. Once a new topology has been generated we
obtain various star graphs from that topology.

B. Generating star graphs as realizations of a topology

Generating star graphs from the topologies amounts to
putting back vertices of valency 2 in the various bridges.
This can be thought of as an assignment of lengths to the
bridges. For a bridge of length l there are I —1 valency-2
vertices between the nodes it connects. Once the lengths
have been assigned to all the bridges one obtains a star
graph with N„, number of vertices and N, dg, number of
edges. Where, for a topology with n nodes and b bridges

bridges connecting the same pair of nodes, one of which is
even and the other one odd.

(iii) Only one of the integers in the set was allowed to
be of length one. It is obvious that there can be at most
only one bridge of length one between any pair of nodes.

(iv) For a given order of the series, the maximum length
of a single bridge can be easily deduced. All the integers
were required to be less than or equal to this maximum
integer (say 1 .,„).

The ordering of the bridges was done as follows. One
visits the upper triangle of the adjacency matrix in a row-
by-row sequence. Bridges are ordered as they are encoun-
tered. Suppose that ib, number of bridges have been en-
countered just before one reaches the (ij)th element of the
matrix; let A;j=r. Then bridges labeled ib, +1 to ib, +r
would be understood as connecting nodes i and j. The
length assignment to these r bridges was done from the
predetermined set of "r-tuples. " It was done by a back-
tracking algorithm that discarded partially completed
length assignments, when there was no possibility of get-
ting a completed star graph out of it, with number of
edges less than or equal to N„d„.

+tot =n + g ( lbridge
bridges

(5.3a)
2. Loops of odd length

Nedge =
bridges

lbridge (5.4b)

l. Assignment of length to the bridges

The assignment of lengths to all the bridges, connecting
the same pair of nodes, was done as a single set; let
r = 2;~. This represents a set of r bridges connecting the
nodes i and j. Lengths were assigned to these bridges
from a predetermined set of r-tuple of integers. This
predetermination was done on the basis of the following
considerations.

(i) Let us denote the r-tuple of integers by the set I 1; I.
These integers were ordered as l ~ ( l2 ( l3 ( ( l„.
Since the bridges are indistinguishable, these sets of in-
tegers are sufficient to cover all possible length assign-
ments.

(ii) The integers in a set are either all odd or they are all
even. Since we are interested in embedding the star graph
in a cubic lattice, there cannot be a graph with two

After the lengths are assigned these star graphs are used
for finding the lattice constants and the weights. Hence
the process of length assignment must take care of the fol-
lowing.

(i) Bridges should be ordered in a well-defined sequence
so that the length assignments are in one to one
correspondence with them. The data structure should be
such that the lattice constant and the weight programs
can be easily developed.

(ii) Each star graph should be considered exactly once
and all duplicates must be removed.

(iii) In order to reduce the computer time it is useful to
eliminate as many star graphs with zero lattice constant
as possible before sending them to the lattice-constant
program. We discard all star graphs which have closed
loops of odd length, since such a graph cannot be embed-
ded in a cubic lattice.

Subgraphs of the star graph were determined where
each vertex had valency 2. If the total number of edges in
such a subgraph is odd that star graph cannot be embed-
ded in a cubic lattice and is hence discarded.

3. Removing duplicates of star graphs

We define the (ij)th element of the star adjacency matrix
as

(A, );, =1,L" '+1,L" ~+ +1„. (5.4b)

Furthermore, this SAM can be brought to canonical order
by the permutation of the nodes. Now, two star graphs
would be identical if their star adjacency matrices are
equal. Hence, once again, one can compare any star
graph with the ones previously obtained and remove the
duplicates.

Moreover, this star adjacency matrix would be useful in
finding the symmetry factor of the star graph and hence
we explain it through an example. Consider the topology
in Fig. 1(a). Its adjacency matrix is

0 2 1 0
2 0 0 1

1 0 0 2

0 1 2 0

(s.s)

The process of generating star realizations from a topol-
ogy again gives rise to duplicates. In order to remove
these duplicates we define a star adjacency matrix (SAM)
3, as follows. Let there be r bridges connecting nodes i
and j. Also, let the maximum allowed length of the
bridges (1,„) be less than L (say L =100). We have al-
ready seen that the lengths of the bridges are in order

(5.4a)
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2 4

I 3

The assignment of lengths (1,5, 1,1,1,3) to the bridges gives
the star in Fig. 1(b). This has the star adjacency matrix

0 105

105 0
~s=

1 0
0 1

1

0
0

103

0
1

103

0

(5.6)

We now show that there is a one to one correspondence
between a star graph and its star adjacency matrix. By
construction, for a given star graph, there is a unique star
adjacency matrix. We will show the mapping from a star
adjacency matrix to a star graph. This mapping requires
one to obtain the adjacency matrix and the lengths of all
the bridges from a given star adjacency matrix. Let
(A, );~ =p. If p =0, then r =0; Otherwise, from Eq. (5.4b)
the integer part of the logarithm of p, with respect to the
base L, is r —1. Hence r is easily obtained. To get the
length of the r bridges we can use

p —g l„)+)L'
j=1

Li —1
modL for i =1, . . . , r .

(5.7)

Notice that the requirement that L be greater than the
maximum allowed length of the bridges (l,„) is impor-
tant for the inverse mapping to be defined. This mapping
proves the one to one correspondence between a star
graph and its star adjacency matrix.

We define the symmetry factor of a star graph as the
number of permutation of the nodes which leaves the star
adjacency matrix unchanged. One can verify that the
symmetry factor for the graph in Fig. 1(b) is 2. We shall
make use of the symmetry factor in calculating the lattice
constants.

C. Lattice constant of a star graph

The calculation of lattice constants is the most time
consuming part in generating high-temperature series ex-
pansions. Hence, there is a need for an e%cient algo-
rithm. We used a modified version of an algorithm due to
Martin. We shall discuss here its salient features, espe-
cially those which are not discussed in the article by Mar-
tin.

We first generated all self-avoiding walks (SAW's) on
the lattice up to a given length (say L). Details of how
SAW's are generated is discussed in Appendix D. One
can regard these SAW's as rigid segments that can be em-

(b)

FIG. 1. (a) A typical topology; (b) a star graph obtained as a
realization of the topology in Fig. 1(a).

bedded in the lattice. The lattice constant of a given star
graph was found through the following steps.

(i) All bridges with length greater than L were broken
into parts which were smaller than or equal to L by pro-
moting some of the ordinary vertices with valency 2 to
nodes.

(ii) The bridges were ordered in a well-defined sequence
through the adjacency matrix as discussed earlier. If a
bridge is broken up, it is useful to accommodate the vari-
ous parts as consecutive bridges.

(iii) The nodes were assigned distinct positions on the
lattice. We will discuss this later.

(iv) Bridges were then fitted as rigid segments between
the nodes. It is clear, from the way we have defined the
problem, that there should not be any crossing of these
segments. This was checked explicitly at each step, in our
algorithm.

(v) By carefully exhausting all possible lattice positions
for the nodes and all possible SAW's for the bridges we
found all possible embeddings of a star in the lattice.

(vi) Certain symmetries of the graph lead to multiple
counting. This is taken into account by dividing by the
symmetry factor. We shall discuss this further, later.

1. Assignment of node positions

Let us denote the points on the d-dimensional cubic lat-
tice by a set of d integers which we call I—:(i~, . . . , iq ).
The first node is placed at the origin 0. Lattice positions
are assigned to the other nodes in the order as they first
arise as the endpoints of the bridges. The bridges are con-
sidered in the sequence defined earlier. It is important
that when one is considering the Ith bridge one of its end-
points has already been assigned a position. This point
we shall call the starting point of the bridge and the other
point the endpoint. The previously discussed ordering of
the bridges is consistent with this requirement. In case
this requirement is not met, one has to redo the lattice
constant of that star graph, as this is essential to our algo-
rithm. The endpoint is now assigned to all possible posi-
tions on the lattice with the criteria which we now define.
Let us denote the starting point of the bridge by I and the
endpoint of the bridge by J. We define the distance be-
tween the two points as

We require that the point J must be such that (a) djt
length of the bridge; (b) djt is even or odd depending

on whether the length of the bridge is even or odd. We
use a binary variable I„k,„(I) which takes values 1 or 0
depending on whether its argument I has already been as-
signed to a vertex or not. This allows us to check that no
lattice site is assigned more than once to the nodes or ver-
tices.

Exhaustive assignment of lattice sites to the nodes and
then rigid segments (SAW's) to the bridges was done
through a backtracking algorithm. In this process one or-
ders the lattice sites and the SAW's and assigns them to
various nodes and bridges one by one. At intermediate
stages one determines when a partially completed assign-
ment cannot lead to an embedding of the star in the lat-
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tice. One then traces a step backward by removing the last
assignment, starting, once again, the exhaustive search.
For a flow diagram of the basic algorithm the reader is re-
ferred to the article by Martin.

2. Symmetry factors and multiple counting

Ca)

Lattice constant is defined as the number of embed-
dings of a star in the lattice, per lattice site. The follow-
ing symmetry transformations of the star give rise to mul-
tiple counting.

(i) If there is a permutation of nodes which leaves the
star graph unchanged, then an assignment of node posi-
tions only differing by this permutation, would lead to
multiple counting in our program. To illustrate this point
we give two examples. Consider the diagram in Fig. 2(a),
to be embedded in a two-dimensional square lattice.
There are four different labelings of the vertices which
leave the star adjacency matrix unchanged. These are
shown in Fig. 2(b). In the process of counting all four of
the assignments shown in Fig. 2(c) would be counted.
However, all these diagrams are simple translations of
each other and should be counted only once. Hence we
need to divide the count by the symmetry factor.

Another example is shown in Fig. 3(a). In this case
there is a symmetry transformation which does not in-
volve node 1. The two labelings which leave the star ad-
jacency matrix unchanged are shown in Fig. 3(b). In Fig.
3(c) we show the assignments of node positions which
lead to multiple counting. Once again the correct lattice
constant is obtained by dividing the count by the symme-
try factor.

(ii) There is one other symmetry that can lead to multi-
ple counts. This happens when two or more bridges of
equal length connect the same pair of nodes. An example
is given in Fig. 3(d). For a given assignment of node posi-
tions (as shown) the SAW segment corresponding to
bridges 3 and B can be interchanged. If there are r
bridges of equal length this would give rise to a multiple
count of r .. However, this is avoided by using a suitable
ordering of the bridges.

2 4

I 3
(a)

2 4 4 2 3 I

I 3 2 4

(O,O) (O,O)

(O,O)

(c)
(O, O)

FIG. 2. (a) A star graph; (b) four different labelings of the
vertices which leave the star adjacency matrix unchanged; (c)
four different counts for the lattice constant which should have
been counted only once.

(b)

3( I,O)

(O, O)
2

,

CO, I)

(c)

2(I,O)

I

(O,o) (O, I)

I(O,O) B

2(-I, I)

Cd)

FIQ. 3. (a) Another star graph; (b) two different labelings
which leave the star adjacency matrix unchanged; (c) two
different counts for the lattice constant which should have been
counted only once; (d) an example of a star graph where two
bridges of equal length, called 3 and B, connect the same pair of
nodes, labeled l and 2.

D. Determination of star subgraphs

For a given star graph with n nodes and b bridges, the
possible star subgraphs would be made out of b~ of its
bridges (b~ &b). The procedure we use for determining
star subgraphs is as follows.

(i) We generate all subgraphs which consist of b ~

bridges (l &b~ &b) of the star graph. A method for doing
this is discussed in Appendix E.

(ii) For a given subgraph we determine the valency of
all the vertices in the subgraph. We only need to consider
the nodes of the star graph as all the other vertices have
valency 2.

(iii) We discard subgraphs which have a node with
valency 1, as these cannot be star graphs.

(iv) Subgraphs for which all the vertices are of valency
2, we determine whether or not they are connected. If
such a subgraph is connected then it is a star subgraph.
(It is a polygon whose length can be readily determined. )
If it is not connected then it is not a star graph and is dis-
carded.

(v) For all other subgraphs, let the number of vertices
with valency greater than 2 be m. This means that the
other (n —m) nodes of the star graph have either valency
0 (in which case they can be ignored) or they have valency
2. In the latter case they are not nodes of the subgraph
and one must redefine the bridges such that each of these
nodes of valency 2 become ordinary vertices. We illus-
trate this by an example. Consider the star graph with
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o5d
e

I 6 8
7

b 3 c

a 5 d

I 6
b 3 c

2
sg

The sum sg runs over all subgraphs in which all vertices
are of even valency. It includes the empty subgraph.

(ii) We then store the expression

(a) (b)
Qu;, P, (tu) .

s (i j)
(5.10)

a 5 d

I 4 + 2
b 3 c

a 4 d

I

b 3
(c)

I 3

Here P, (w) is a power series in w obtained by setting

viJ ——w for all v J ~

(iii) For every pair of vertices (i,j) we then obtain the
expression for

b 3
c d 8 e

(d)

B = Trs;s~ Q (1+uI sIs )
(I, m)

in the form

SgB=+ Qu~ Q (w).
sg (&&J)

(5.1 1)

(5.12)

FIG. 4. (a) A given star graph where the letters label the
nodes and the numbers label the bridges; (b) a subgraph of the
star graph in Fig. 4; (c) relabeling the nodes of this subgraph; (d)
a subgraph which has a closed loop and hence is not a star sub-
graph.

five nodes and nine bridges shown in Fig. 4(a). Its sub-

graph in Fig. 4(b) has only two nodes and three bridges.
Nodes c and d have valency 2. They are ordinary vertices
in the subgraph. In order to compare this subgraph with
a list of star graphs a redefinition of nodes is needed.
First, the node c is removed by redefining a single bridge
connecting b to d. Then node d is removed redefining a
bridge connecting b to a. This operation is shown in Fig.
4(c). In the process of redefining bridges one can also en-
counter close loops. An example is given in Fig. 4(d).
Such subgraphs are however not star graphs and hence
are discarded.

Once the nodes of the subgraphs have been identified,
and the bridges redefined, one can construct the star adja-
cency matrix for the subgraph. This can now be com-
pared with a list of all stars with that many nodes and
bridges. If it agrees with one of them, one has identified
the subgraph as a particular star graph. If it does not
agree with any of them then it cannot be a star graph and
hence is discarded.

E. Calculatioa of the weights for SEA

We are given a star graph in terms of its adjacency ma-
trix, lengths of the various bridges, and a list of all its
star subgraphs. We wish to compute the weight of the
star graph. As discussed earlier, we first need to con-
struct the matrix

This is done through the following steps.
(i) We first calculate the trace

The calculation of the trace gives rise to graphs in which
all nodes have even valency, except the nodes i and j,
which have odd valency. However, squaring the trace
leaves all the nodes with even valency. Hence, once again
the sum s~ runs over the same set of graphs in which all
vertices are of even valency, and Q, is a power series in

LU.

(iv) We now obtain the quantity

Mu =[AB]J= g w 'P, (w)Q, (w),
Sg

(5.13)

M =I+X, (5.14)

where I is the identity matrix and X goes to zero for
tu =0. That is X=O(w).

Hence

M —' =(I X)(I +X')(I —+X')(I +X )(I +X )

+o(w' ) . (5.15)

Hence, by a sequence of matrix multiplications M ' can
be obtained.

(vi) Taking the trace over M ', we obtained the ampli-
tude gG. The weight of the subgraphs can now be sub-
tracted to obtain the weight of the star graph.

In Appendix C we give an example for the calculation
of such a weight.

VI. CONCLUSION

In this paper we have shown that the method of star
graph expansion can be used to generate long series for Is-
ing spin glasses. Since most of the proofs are quite gen-
eral, it is easy to see that the method is applicable to a
wide class of problems involving quenched disorder. In
particular, the following problems can be studied.

where ng is the number of edges in the subgraph sz.
(v) Once M~ is known as a power series in w we need

to find its inverse. This is done as follows. The matrix M
equals

sg
A'=Tr / (1+u/ s/s )= y / u;.

(l, m) s (ij)
(5.9) (1) Ising spin glasses with arbitrary symmetric distribu-

tions.
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(2) Ising spin glasses with asymmetric distributions.
(3) Vector spin glasses, such as X- Y or Heisenberg spin

glasses.
(4) Disordered antiferromagnets.

A major limitation of this method is that it is not applic-
able to problems involving a finite magnetic field.

In a companion paper, we shall analyze diA'erent series
for Ising spin glasses. In the future, we hope, this method
would be used to study other problems mentioned above.

FIG. 5. A graph (G) articulated at t which can be decom-
posed as G =Gl U G2, where GI and G2 have no bonds in com-
mon.
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APPENDIX A

We wish to show that for a graph G with NG vertices
and LG edges articulated at a point t (see Fig. 5)

We fix the spin at t to be summed over at the end, giving

1
Gg' g (1+v; s;s )

—= g g' 3 (s„s;) .
2 s, s; (ij) 2 sI s,

(A4)

The primed summation excludes the spin at site t. We
shall now show that g,'. 3 (s„s;) is independent of s, . To
see this we observe that 2 is invariant under the transfor-
mation s, ~—s; and s, ~—s, . Hence

Fi(G) =F)(Gi )+Fi(G2), (A 1) 3 (s„s;)= g A ( —s„—s;) . (A5)

where G =G~ UG2. G~ has N~ vertices and L~ edges
and Gq has N2 vertices and L2 edges. And F~(G) is
defined as

s, =+1 s =+1
I

However, we can redefine the summation variable
g;= —s; giving

G

F~(G)=in Trg (I+u,zs;sz) . (A2)
s =+1

I

3 (s„s;)= g 2 ( —s„o;) .
o. =+1

I

(A6)

We consider the trace

1
G

Q (1+u;ss ) .
2 s; =+1 (ij)

(A3)

Hence the sum is independent of whether s, equals + 1

or —1. Furthermore, since the subgraphs G1 and G2
have no bonds in common the expression in Eq. (A4) be-
comes

1..r r n(I+,",)

2 s, s cG& (ij)

L2

Q (1+v;,s;s, )

s, CG, (i,j)
(A7)

1
2r n(1+,",)

2 s; cG2 (i j)
(A8)

By the same argument as before each of the terms within brackets is independent of s, . Hence the summation over s,
can be separately done for both of them giving

LIr n(1+,",) r n(I+,",) = . r n(I+,",)

2 s;CG& (ij) s; CG& (i j) 2 s; cG&(i j)

Using this, the logarithm in (A2) becomes

Fi(G) =Fi(Gi)+Fi(Gp)

which is the desired relation.

(A9)

where the subscript 1 (or 2) refers to the corresponding
expression obtained for graphs G~ (or G2). We prove the
last relation for i E:G1,jE G2. The other proofs are iden-
tical:

APPENDIX B

In this appendix we wish to show that for the articulat-
ed graph in Fig. 5

PG = ti'G, +0a, sg =+1 (I, m)

s;s~exp g JI S~S
st. =+1 (l, m)

(s;sj &=
exp g J~ S~S

We begin by showing the relations

(ssj ) =(st) ~ for ij &G&

=(s;s, )z for i j CG&

=(ss, )~(s,s, )q for i &G~, jPGq, (&2)

1
s, s Q (1+u s~s )

sg =+1 (l, m)
G

1
( I + vt~ sos )

2 s~ ——+1 (1,m)

(B3)
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where we have used Eq. (3.2) and canceled the cosine hyperbolic term in the numerator and the denominator. We have
already shown in Appendix A that the denominator factorizes into a product. To see that the numerator also factorizes
we fix s, to be summed at the end giving

1 g' s;s, g (1+u( s(s )
2 s, =+1 sk ——+1 (l, m)

G
(B4)

By the argument of Z2 symmetry, as before, the quantity within brackets is again independent of s, . This leads to the
expression

1
Li

s; Q (1+ul~srs )
2 sr ——+1 sk cG~ (I, m)

L2

s~ g (I+ur s~s )

sk CG2 (I m)

(B5)

Now the quantities within brackets are not z2 invariant. However we can multiply the expression by s, ( = 1) giving

1
LI L2

s;s, + (I+uI~srs ) g' s~s, g (1+ur~srs )

2 s, =+1 sk CGI (I, m)
G

sk CG2 (I, m)

and this factorizes into

(B6)

1 1

s;s, + (I+u~ s~s )

2 sk CGI (I m)
I

1
2

s,s, Q ( I + ur srs )

2 skCG, (Im)2
(B7)

From this, the relation (B2) follows. Again, since G~ and

G2 have no bonds in common it follows that

[(s;s, )']=[(s;sj&']) for ij, eG,

M1

TM

M„M„M2,T

1 Mp,

Mp, Mp

(B13)

=[(ss~) ]p for ij &G 2

=[(s;s, ) ]~[(s,s, ) ]2 for i EG~, jCG2 .

(B8)

Here Md (d =1,2) is the matrix of graph 1 or 2, where
the index (i,j ) do not take the value t. Indices 1,2 refer to
G1,G2

By subtracting suitable multiples of the tth row from
the others the determinant of this matrix becomes

With these relations the proof of star-graph expansion for
the Edwards-Anderson susceptibility becomes identical to
the proof for the susceptibility of the pure Ising model.

We wish to compute

detM = MT1, 1 M2,

M2 —MziM i~i

M1 —M 1MT1, 0 0

(B14)

QG ——I M 'I NG. — (B9)
From which it follows that

detM =detM1detM2, (B15)

gM)~fJ=I .
J

Then

(B10)

Consider the vector f which is the solution to the equa-
tion

detM'"'= detM 1"'detM2 (B16)

where detM1 and detMq are the full determinants for the
corresponding matrices of graphs G1 and Gz. Similarly
we can show that for any n with n & t

WG=Q f.—&G .

By Crammer's rule

f„=detM'"'/detM,

(Bl 1)

(B12)

and forn &t

detM'"' =detM1detM 2"',

hence implying that

detM„("'f„= —(d =1 or 2) .
detMd

(B17)

where M'"' is obtained from M by replacing the nth
column by the vector I.

For the graph articulated at point t (see Fig. 8) we
choose vertex labels such that vertices labeled 1 to t lie in

G1 and t to % lie in G2. We have shown that the matrix
M has the form

Also for n =t
detM'" detM'"

detM & detM&

To see this observe that

(B18)
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M1

detM'= M1T

1 M1,M2,T

1 M2T

M2tM1, 1 M

M1

M

M1,M2,T

M2tT

M2tM1t M2t M2

M'1

M1,

M2tM1t 1
T M2

M1, M1,M2,T

1 M2T

M1 M1, M1 M

M 1 M

M2tM 1, M2t M2

(B19)

From which it follows that

detM'" =detM'1" detM2 +detM]detM 2" —detM1detM2

4 with vertices labeled in Fig. 6. We need to construct a
6)& 6 matrix M with elements

(B20)
M„=[(s;s, )'] (C1)

OG =WG, + ]t'G, (B21)

which leads to the Eq. (B18). Combining all these we get
We shall show the calculation of M13. The others can be
done in a similar fashion. The expression for M13 is given
by

which is the desired result.

APPENDIX C

In this appendix we explicitly compute the susceptibili-
ty series to order ]u for the three-dimensional (3D) cubic
lattice. Star graphs with 7 or less edges which can be em-
bedded in the 3D cubic lattice are shown in Table I. In
Table II we write down their weights to order m .

We illustrate the calculation of the weight of the graph

M13 ——

We write this as

M]3=[(N/D) ],
where

1

, Tr g (1+u;, $;$, )s]s3
(i,j )

1 Tr g (1+u;,s;s, )

(I,j)

2

(C2)

(C3)

1
N =—Tr(1+ u]3$]$3 )(1+u ]5$]$5)(1+v 56$5$6)(1+u6$$6$p )(1+v24$$$4)(1+ v43$4$3 )(1+u ]ps]$2 )$]$326 (C4)

We can expand the product. All the terms in which all
spins are paired would have the trace equal to 2, all other
terms vanish, giving

N =U13+ U15U56V62U24U43+ U12U24U43+ U13U15 V56U62U21

(C5)

This has a simple diagrammatic representation show in

Fig. 7(a). Similarly the denominator is a sum over all
subgraphs in which all sites have even valency as shown
in Fig. 7(b). In computing M]3, everytime a line is paired,
we can replace it by m. Let us denote the two squares
shown in Fig. 7(b) by L and R. Then we get the result for
(1/D) as shown in Fig. 7(c). Again squaring the
numerator gives the result shown in Fig. 7(d).

Multiplying the two and averaging over the bonds, only
those terms are left where all bonds are paired. This leads
to

TABLE I. Stars with seven or less edges which can be em-
bedded in the 3D cubic lattice.

Star number Star Lattice Constant
TABLE II. Weights of the star graphs to order w'.

Star number Weight

22

18

—2w +2w —2w +2w —2w +2we 2w

56w —240w '+496w —752w '
132w —552w'

—672w'
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M)3=(1+6w +3w )(w+w +2w ) —w (2 —6w )2(l+w') —w (2 —6w )2(w+w ) —w (2 —6w)2(l+w)+ .

=w +w' —4w'+4w' —sw'+25w' (C6)

M =I +X,
where I is the identity matrix and X is O(w). Then

M '=(I X)(I—+X )(I +X )+O(w ),
One then obtains

QG= gM;, ' —6

(C7)

(C8)

= —14w + 14w —14w + 126w —494w

Once the Matrix elements are calculated the inverse is ob-
tained as follows.

Let

walks of length l whose destination points are distant J—I
with respect to the starting point. We now discuss how
these self-avoiding walks are generated.

We first need to define a canonical ordering for the
neighbors of each point. Since there are only a few neigh-
bors of any site this is easily done. For the square lattice
the neighbors of the site (i,j) are ordered as (i+ l,j),
(i,j+1), (i —1,j), and (i,j —1). The starting point for all
self-avoiding walks is taken as the origin of the lattice.
The first self-avoiding walk is obtained by walking
through the first allowed neighbor of each point as it is
encountered. With the ordering defined above this im-
plies that the first walk of length l on the square lattice is
given by

+ 1138w —2742w (C9) (0,0)~(1,0)~(2,0)~ ~(l,0) .

In Table III we show how the star-graph subtraction
works. Hence the series to order w is obtained by multi-
plying the lattice constants and the weights in Tables I
and II:

YEA' ——1 —6w +6w —6w + 174w —726w

+4398w ~ —26502w (C10)

which can be inverted to give

YEA ——1+6w+30w +150w +582w

+2454w +6870w +25782w

which is our series to order w .

(C 1 1)

APPENDIX D

In this appendix we shall discuss self-avoiding walks.
A self-avoiding walk of length l is a non-self-intersecting
path of l steps on the lattice. It is defined by the position
of the steps 1 to l with respect to the starting point. The
idea behind using them in finding lattice embeddings of
star graphs is to avoid repeating a very large number of
times the same operation of finding all possible noninter-
secting paths between two given lattice sites. In the
course of finding the lattice constants, one frequently
needs to insert a bridge of length l between two nodes
which have been assigned positions I and J, respectively.
In this situation one only needs to try all the self-avoiding

The next move is to backtrack one step at a time, and
while at point k to pivot about this point, exhausting all
self-avoiding walks with the segment from the origin to k
intact. The pivoting is done with the help of canonical or-
dering. If the previous step from k was to k' the next will
be to k", where k" occurs next to k' in the canonical or-
dering for the neighbors of k. If the point k" is already
occupied one goes to the point next to k". This is done
until all neighbors of k are exhausted. As this pivot point
moves past the origin one exhausts all possible self-
avoiding walks of length I. In Fig. 8 we show all self-
avoiding walks of length 2 for the square lattice in the or-
der as they occur in our enumeration. By using this
method we generated all self-avoiding walks of length up
to 4 for the 4D hypercubic lattice, 5 for the cubic lattice,
and 7 for the square lattice.

APPENDIX E

We will now discuss generating all subgraphs with
complete bridges. In the star-subgraph determination
program, and in the weight calculation program, one fre-
quently needs to find all possible subgraphs of one type or

TABLE III. Subtraction of the weights of star subgraphs to
obtain the weight of the graph 4.

Weight of graph m X number
of subgraphs of type m

4 2 6

FICx. 6. The graph whose weight is calculated in Appendix C.

Power
of w

—14
14

—14
126

—494
1138

—2742

1x7
—14

14
—14

14
—14

14
—14

2x2

0
0
0

112
—480

992
—1504

3x1
0
0
0
0
0

132
—552

W(G)

0
0
0
0
0
0

—672
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N + j ~ + j j +
1 3 1

(o,o) (o,o)
(0,0)

(O,O)

(o,o)
I

(o,o) (o,o) (o,o)

(b)

+ I I
3 1

(o,o)
(o,o)

(o,o) (o,o)

(D)=1—2(j[yQL+)+3(I I+QL+)+ ~ ~ ~

FIG. 8. Self-avoiding walks of length 2 in the order as they
occur in our enumeration. The origin is taken as the starting
point for all walks.

(1+Bw +3w )
—

QL (2 —Rw )
— (2 —Sw )

—(
—

1 (2-6w) +"
(c)

and

N„k,„(I)=0 for IE l —k .

Excluding the empty set which has no bridges
[N„q,„(I)=0 for all I] there are 2' —1 such subgraphs.
These can be put in one to one correspondence with in-
tegers from 1 to 2' —1. The mapping is given by

w+w +2w +2(1+w ) QL + 2(w+w ) QR+2 (1+w) I I
JIN„k,„(I)j=g 2' ' N„g,„(I) .

I
(El)

FIG. 7. (a) Graphical representation of N; (b) graphical repre-
sentation of D; (c) graphical representation of (1/D); (d) graphi-
cal representation of N .

the other. In this appendix we discuss a generic method
for finding all possible subgraphs which are made out of
complete bridges of the original graph.

We define a variable N„q,„(I)=0 or 1 for I = 1 to I (I is
the number of bridges). Then a subgraph in which k of
these I bridges are present and I —k absent can be defined
by letting the binary variable take values

N„k,„(I)=1 for I&k

M(I) =

then

I —1

J—g 2' "N„g,„(I')
I'=1

2(I —1 )
(E2)

N„q,„(I)=M (I) mod2 . (E3)

Hence all subgraphs with complete bridges of the original
graph can be generated by letting an integer variable take
values from 1 to 2' —1 and using the mapping in Eqs. (E2)
and (E3).

The inverse mapping can be defined recursively as fol-
lows. Let
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