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The Fermi-liquid interactions between elementary excitations in the large-degeneracy (large-N)
auxiliary-boson version of the lattice Anderson model and the concomitant T'lnT term in the
specific heat are studied to leading nontrivial order in 1/N. The previously neglected but physical-
ly necessary long-range part of the Coulomb interaction is included. To this order, the interaction
is shown to arise entirely from exchange of virtual density fluctuations between quasiparticles; in-

teractions arising from exchange of virtual spin Auctuations are not included to this order. The
coefficient of the T'lnT term in the specific heat is computed, and its observability in heavy-
fermion materials is discussed. The theory predicts a T lnT coefficient more than 100 times small-

er than the coefficient observed in UPt3. Possible explanations for the discrepancy are discussed.

I. INTRODUCTION

This paper is concerned with the contribution of
long-wavelength, low-energy fIuctuations to the thermo-
dynamic properties of the auxiliary-boson large-N ver-
sion of the U = oo lattice Anderson model, with how this
contribution changes when the long-range part of the in-
terelectron Coulomb interaction is incorporated into the
auxiliary-boson model, and with the relevance of the
model to heavy-fermion materials. The U= oo lattice
Anderson model is believed to contain the essential
physics of the currently interesting heavy-fermion met-
als. ' It describes a structureless band of conduction (c)
electrons hybridizing with a dispersionless band of f
electrons which are at an energy far below the Fermi
level (we measure all energies with respect to the chemi-
cal potential, which we take to be zero) and are subject
to the constraint that the number of f electrons on a site
i, nf; &1. The low-temperature properties of this model
have not been amenable to study by conventional tech-
niques. To gain insight several groups have applied
to this model the auxiliary-boson large-N technique orig-
inally developed for the single-impurity Anderson
model. In this technique one introduces a new Bose field

b, which represents an unoccupied f site, and studies a
new model of electrons coupled to bosons in which

nb;+nf; ——1. Here nI,; is the number of bosons on site i.
If one makes the additional, unphysical assumption that
both c and f electrons are characterized by a conserved,
N-fold-degenerate "spin" quantum number N, then
the model may be studied by a 1/N expansion about a
mean-field theory of electrons moving in a "renormal-
ized band structure. " Corrections to the mean-field
theory come from electron-boson interactions. These
may be treated analogously to the familiar electron-
phonon interaction. The coupling constant for this in-
teraction is 1/N.

Many physical quantities have been computed within
this formalism, including the coefticient of the linear
term in the specific heat, ' ' ' the magnetic susceptibili-

ty, ' ' ' the Kondo spin compensation cloud, the
temperature- ' and frequency -dependent conductivities,
and the superconducting instability of the model. The
results are, in general, in qualitative agreement with ex-
periments.

A key insight into the model came from Auerbach
and Levin, who related the model to conventional
Fermi-liquid theory by identifying the diagram in which
two electrons exchange a boson with the Landau interac-
tion amplitude I . They also asserted that the auxiliary-
boson-mediated interaction leads to a T 1nT term in the
specific heat, qualitatively similar to that observed in the
heavy-fermion material UPt3.

However, several issues have been, so far, left obscure,
including the physical interpretation of the auxiliary-
boson and of the boson-mediated interaction between
electrons, and the qualitative importance of the (previ-
ously neglected) effects of the long-range part of the
Coulomb interaction, and also the quantitative applica-
bility of the model to real heavy-fermion materials.

Therefore, in this paper we study further the long-
wavelength, low-frequency modes of the system and
their contribution to the specific heat. We also extend
the model to include the long-range part of the Coulomb
interaction, and we study the Fermi-liquid properties of
the extended model. We work to leading nontrivia1 or-
der in 1/N and restrict attention to low temperatures T.
A study of other "Fermi-liquid" properties of the
auxiliary-boson model, including collective mode and
plasmon effects, will be published separately. '

We show that (to leading nontrivial order in I /N) the
T lnT term in the specific heat, and, indeed, the Fermi-
liquid interaction parameters in general, come from an
interaction mediated by exchange of virtual density Auc-
tuations between quasiparticles (as, in the paramagnon
model of He, the interactions come from exchange of
virtual spin fluctuations). Contributions to the interac-
tions from virtual spin Auctuations would only appear in
higher orders in 1/N. Proper treatment of these terms
requires at least a two-loop calculation which has not, to
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our knowledge, been performed.
Phenomena involving density fluctuations in metals

are drastically altered by the long-range part of the
Coulomb interaction. We therefore extend the Anderson
model to include this. We show that the T lnT term
due to auxiliary-boson mediated interactions disappears.
However, the Coulomb interaction alone is shown to
lead to a T lnT term in the specific heat which is of the
same sign and essentially the same magnitude as the
auxiliary-boson T lnT term. We give Fermi-liquid argu-
ments to explain why this is so.

T lnT contributions to the specific heat of the Ander-
son lattice without Coulomb interactions have been pre-
viously derived. ' The expressions given here are simi-
lar to (although differing in a few respects from) the pre-
vious ones, but the connection with Landau parameters,
the physical origin of the term, the discussion of the
relevance of this term to heavy-fermion materials, and of
course, the effects of the long-range part of the Coulomb
interaction have not, to the author's knowledge, ap-
peared in the literature before. The relation of this work
to the previous work is discussed in more detail at the
end of Sec. III ~

The rest of the paper is organized as follows. In Sec.
II we write down and explain the models to be studied,
and we give a convenient expression for the contribution
of electron —auxiliary-boson interactions to the free ener-
gy. In Sec. III we study the boson propagator, density-
density correlation function, and T ln T term for the
model without long-range Coulomb interactions. In Sec.
IV we do the same for the model with long-range
Coulomb interactions.

Readers uninterested in the details of the calculation
may turn directly to Sec. V, which contains a summary
of the previous three sections and a discussion of the ap-
plicability of these results (and the auxiliary-boson
method in general) to real heavy-fermion materials. The
effect of impurity scattering is briefly considered. The
coefficient of the T lnT term in the specific heat is com-
pared with experimental data for UPt3 and found to be
too small by a factor of more than 10 . Possible ex-
planations for the discrepancy are discussed. Large (and
so far unobserved) variations in the Fermi velocity over
the Fermi surface could explain the difference, as could
strong antiferromagnetic spin fluctuations, which the
auxiliary-boson 1/N method does not correctly treat.

II. MODELS

In this section we write down and explain the models
to be analyzed and give a convenient expression for the
free energy F in terms of a coupling constant integral
over the auxiliary-boson propagator. In this expression
the contribution to F from electron-auxiliary-boson in-
teractions is separated from other contributions to F,

L =Lp+Lg+Ll+L„„, (2.l)

where

such as that coming from the Coulomb interaction.
As discussed above, we are interested in asymptotical-

ly low temperatures and in long-wavelength phenomena.
In what follows we retain only leading order tempera-
ture and momentum dependences. In particular, we
neglect terms of relative order q/pF, where pz is the
Fermi momentum.

We use the radial gauge formulation of the
"auxiliary-boson, " large N version of the Anderson mod-
el, to which we add a term accounting for the long-range
part of the Coulomb interaction. We briefly outline the
formulation here; for more detailed discussions see Refs.
1, 3, and 7 —9. The U = oo lattice Anderson model de-
scribes a band of conduction (c) electrons with energy El,

hybridizing with a set of localized f orbitals at energy
Eo, via a hybridization matrix element V (conventionally
assumed to be structureless) and subject to the constraint
that the number of electrons on the f orbital on site
i, nf;, is less than or equal to one. All energies are mea-
sured from the chemical potential, which we take to be
zero. We are interested in the Kondo limit, in which
—Eo/poV &&1, where po-dk/dc, k is a typical value of
the c-electron density of states. In the auxiliary-boson
method one introduces a new Bose field b; which creates
a hole on the f orbitals on site i, rewrites the hybridiza-
tion as (Vc; f;b; +H.c.) and replaces the constraint by
nf; +nb; ——1, where nb; is the number of bosons on site i.
To apply the 1/N expansion method to the lattice one
assumes that both c and f electrons are characterized
by an N-fold degenerate spin quantum number, m,
which is conserved in hybridization and c-electron prop-
agation, and one replaces the constraint by
nf; +nb; ——qoN. To obtain a sensible 1/N expansion one
must treat qo as a parameter independent of N. " One
may regain contact with the original Anderson model by
setting qo ——1/N. The calculations in this paper are
performed for arbitrary qo to leading nontrivial order in
1/N.

To obtain the 1/N expansion one splits the Bose fields
into static and fluctuating parts. Retaining only the stat-
ic parts leads to a mean-field theory in which the c elec-
trons hybridize, by a renormalized hybridization o.o « V,
with a dispersionless band of quasi f electrons at an en-
ergy cf which is just above the Fermi energy. Correc-
tions to the mean-field theory may be thought of as com-
ing from interactions between the fluctuating parts of
the Bose fields and electrons moving in the renormalized
band structure. The coupling constant for this interac-
tion is 1/N.

After some algebra the auxiliary-boson version of the
Anderson model may be written in functional integral
form with Lagrangian L given by

L = g d „[B,+e (k)]d +dt„[B,+s,(k)]d,
k, m

(2.2a)
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N
LB 2 g ~q[Ef Eo]~—q +i~0(~q~ —q+~q~ —q )

2V
q

LI g o
q [ iik k(d lkm d1, k +q, m d 2km d2, k +q, m ) +(11k Uk )( 2km dl, k+q, m + lkm 2, k +q, m )]

k, q, m

+ i~q [(iikd lkm d l, k +q m +Ukd 2km d2 k +q m ) 12k vk (d 2km d l, k +q m +d lkm d2, k +q m )]
~ 2 2

(2.2b)

(2.2c)

d2km ~kfkm + kCkm r

d lkm iikfkm + Ukckm

where

(2.3a)

(2.3b)

Here E (k) and sl(k) are the dispersion relations and
d 2 and d 1 the creation operators for the upper and lower
bands of the renormalized band structure. They are re-
lated to the c and f operators via

der in 1/N and leading and next to leading order in qo
have been calculated.

In this paper we are primarily interested in the Kondo
limit, in which —Ez/poV ~~1. In this limit cf &&D.
In addition, 1 nf -——Ef/poV «1 (Refs. 3 and 8) thus
o.o« V. We assume the Fermi leve1 lies in the lower
band E=E1(k). The Fermi surface is defined by
El(kF ) =0. The density of states at the Fermi surface, p,
is given by

E2(k) = —,'(ek+of )+ ,'E„, —

E,(k)= —,'(Ek+ef ) —,'Ek, —

Ek =[(ek Ef )'+4—~o]'"

(2.4a)

(2.4b)

(2.4c)

p =dk/dE, (kF ) = (m '/m )dk/d c.k, (2.7)

where the mass enhancement m */m (m is the c-electron
mass) is given by

and
m */m =d ek /d E,(k) = 1/Uk . (2.8)

&k =-,' [I+(ek —Ef )/Ek ]

Uk =-,'[1—(Ek e, ) /Ek]—,

~kvk =~a/Ek .

(2.5a)

(2.5b)

(2.5c)

ef Dexp(Eo/poV )——
0 o=qo V ( 1 —nf )

2 2

(2.6a)

(2.6b)

Here D is an energy of order the c-electron band-
width, nf ——gk k uk and po=dk /d Ek evaluated at

ck ——0. Explicit expressions for D and nf to leading or-

The operators a and k are Bose operators. o. =Vr,
where r is the magnitude of the original Bose field b. o.

has been split into mean-field (o'o) and fluctuatlilg (cTq)
parts. A, is a new field made up from a Lagrange multi-
plier field (introduced to enforce the constraint
nf;+nb; qoN) and t——he "imaginary time" derivative of
the phase of the original Bose field. It too has been split
into mean-field (ef ) and fluctuating (Aq ) parts.

LI describes interactions between electrons and the
fluctuating parts of the Bose fields. In Eq. (2.2c) we have
written only the leading order terms. There are other
terms of relative order q/pF (kF is the Fermi momen-
tum) which we have not written.

The remaining terms in the Lagrangian, which we
have denoted L„„and not explicitly written, are of two
sorts. There are multiboson interaction terms, which do
not contribute, to the order in 1/N to which we work,
and there are "anomalous" terms containing only one
Bose operator and no fermion operators. Requiring that
these do not contribute to physical quantities or,
equivalently, requiring that the free energy computed
from L be an extremum under variations of cf and o.o,
fixes the values of cf and O.o. To leading order in 1/N
one finds

In the Kondo limit, m*/m =~olef && l. In this case
the low-energy electronic excitations of the band struc-
ture determined by LF are heavy fermions. The effective
Fermi temperature for the heavy fermions is cf.

We now extend the model to include the Iong-range
part of the Coulomb interaction. We consider a new La-
grangian LE, where

LE =L +Lc
L was defined in Eq. (2.1), and

4ne
Lc ——g 2 nqn

q Nq

(2.9)

(2. 10)

Here nq is the electron-density operator. The electron
density is of order N; the explicit factor of N renders LC
of order X, as is L. In terms of the c foperators one-
has

nq g Ck+q, mCkm +fk+q, mfkm
k, m

(2.11a)

or, using Eqs. (2.3) and (2.5) and dropping terms of order
q /kF,

q g d 2, k q, +2mkm +d I, k+q, dlkmm

k, m

+pk 'q( 2, k +q, m lkm + l, k +q, m d2km ) (2. 1 lb)

Here Pk is the dipole operator which gives interband
transitions:

Pk ——— +O((q/kF) ) .
m Ek

(2.12)

Note that LC includes intra-f Coulomb interactions.
The large-q part of this interaction is already included in
the Anderson model; it produces the "infinite U" repul-
sion between f electrons at the same site, which leads to
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the constraint nf; (1. However, the q —+0 part is not in-
cluded, as can be seen from a Gedanken experiment in
which one removes a few f electrons from one region of
space and distributes them over another, holding the
remaining charges fixed. It is physically obvious that in
this case a long-range electric field must be present.
Such a field is accounted for by L~, but would not ap-
pear in the original Anderson model. The short-range
part of the Coulomb interaction is included in L. To
avoid doubling counting interactions one must cut off
the sum on q in Eq. (2.10) at some q, «kz. Specifying
q, would be difficult; however, we are interested in small

q phenomena and our results will be independent of q, .
We conclude this section by deriving, via a coupling

constant integration, a convenient expression for the
contribution to the free energy F from the electron-
boson interactions described by LI. The expression we
derive is of order 1/N relative to the mean-field terms,
and gives correctly the leading-order (in 1/N) contribu-
tion to the T lnT contribution to the specific heat C.
Our expression does not include contributions to the free
energy arising from 1/N and finite temperature correc-
tions to the mean-field parameters cf and o.o, however,
we show in Appendix A that these do not affect the
coefficient of the T lnT term. Our derivation parallels
the textbook derivation of the free energy of the
electron-phonon system it applies to both the models
with and without Coulomb interactions. We consider a
new Lagrangian L', where

the Coulomb interaction. In each case Fo is the free en-

ergy of the model with g =0.
In Sec. III we shall show that to leading order in 1/N,

Xg-g, so that

TI Xg Dg lnDg
g 2 dg

Then one has

F =Fp —
z T g f Tr lnD (q, iv) .

(2~)'

The sum over Matsubara frequencies may be handled in
the usual way, yielding

d3F =Fp —f f 3
n( Il)lm TrlnD '(q, fl+i5) .2' (2~)3

(2.18)

Here n (0) is the usual Bose distribution function,

n (Q) = [exp(gQ) —1]

We note that (2.18) contains only the small-q contribu-
tions to the thermodynamics. It has sometimes been ar-
gued' that T lnT contributions can arise from processes
where q —2k+, although this conclusion has been ques-
tioned. ' However, q —2kF processes would, in the
present formalism, involve "crossed ladders" of boson
propagators, and so would be smaller in powers of 1/Ã,
than the terms in (3.8).

L'=LF+Lz+gLI(+L, ) . (2.13)

D (q, r) D i(q, r)
D (q, 7. ) = Di. (q, r) Du(q r), (2.14)

where ~ is imaginary time and
D = ( T,[o (q, r), o(q, 0)] ), etc.

When g =0, the boson propagator is given by its bare
value Do, where

B~+ ( Kf —Ep ) l o'p

Dp '(q, 7)=
2V lOO

(2.15)

Now following the standard arguments it is easy to
show

2m)
(2.16)

Then we differentiate a formal expression for F with
respect to g, reexpress the result in terms of the exact
boson Green function D, and integrate over g. The
derivation is notationally more complicated than in the
electron-phonon problem because there are two boson
fields, a and A, . D is thus a 2)&2 matrix, which we write
as

III. MODEL WITHOUT COULOMB INTERACTIONS

In this section we study the auxiliary-boson model
without Coulomb interactions. We compute, to leading
nontrivial order in 1/N, the long-wavelength, low-
frequency, and temperature expressions for the density-
density correlation function and boson propagator, and
also the coefficient of the T lnT term in the specific heat.

We begin with the boson propagator, which satisfies
the usual Dyson equation,

D '(q, Q+i5)=Dp '(q, Q+i5) —X(q, Q+i5) . (3.1)

Here 0 is a real frequency. By Eq. (2.15), Dp ' is of or-
der N. The only order N contributions to X are simple
fermion bubbles. Thus X-g, where g is the electron-
boson coupling constant. We assume temperature
T «op ——mink{Ez(k) —E,(k)I, where e& z(k) are defined
in Eqs. (2.4). There are then generically two kinds of
contributions to X: an interband bubble and an intra-
band bubble. For small (q, Q, T) the interband bubble
tends to a constant, while the intraband bubble is pro-
portional to Xo, the familiar particle hole bubble from
Fermi-liquid theory. One finds

Here the boson self-energy matrix Xg is given by

(2.17)
pXp(q II+i5)=p 1+—»n + ~e(1—~s

~

)
2 1+s 2

and Dg is the exact boson Green function for coupling
constant g. Note that the derivation of (2.16) applies
whether or not the model includes the long-range part of

(3.2)

where s =0, /U*q. Here p is the quasiparticle density of
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mD~~=& Pp—,P&pm* detD -', (3.3a)

= —EX
Op 1 m

2V 2 m'+
1/2

(pXp+pp) deta —',
(3.3b)

=—.'N [pXo+po]

where

detD '(q, Q, +i5)= ,'N App—[pXp(q, fl+i5) +& pp],

(3.3c)

(3.4a)

P7l Pl1+,+m* m*

1/2
CTp =1+0(m/m*),

V2

(3.4b)

states and v* is the quasiparticle velocity; both were
defined in Sec. II.

The details of the computation of X are given in Ap-
pendix B. We find for the components of D (up to terms
of order m /m ')

Fg ——— dQ dq
n (Q)tan —1

(2m. )

EmpXp(q, 0)
Bpp+ RepXp(q, Q)

(note Fp -m * /m && 1). This is a refiection of the
U= oo constraint built into the Anderson model. It is
well known that in the limit Fp ~~1, a neutral Fermi
liquid supports a zero sound mode with dispersion
Q=cq, where c = —,'Fps(U*); this is precisely the Eq.
(3.5) that determines the propagating part of the boson.
We therefore identify physically the auxiliary boson with
a density fluctuation of the system. This identification
will be confirmed in Sec. IV, where it will be shown that
the addition of the long-range part of the Coulomb in-
teraction which is known to eliminate the zero sound
mode, also eliminates the singularity in the boson propa-
gator, in the Fermi-liquid regime 0 && T~.

Note that the Landau 3 parameters for this mode are
to leading order in 1/X obtained from averages over
the ~=0, finite q boson propagators. Because the boson
propagator is a density fiuctuation, the leading-order (in
1/N) expressions for Landau parameters must represent
the e6'ects of exchange of virtual density fluctuations
only.

We now use Eqs. (2.18) and (3.4) to write the contribu-
tion of the electron-boson interactions to the free energy
FB as

=1+(1—nf ) +O(m/m *) .
4V4 2g

(3.4c) (3.8)

Q=cq, (3.5a)

where

We note that one may calculate D ' for arbitrary values
of m /m (although the algebra is lengthy and certain in-

tegrals cannot be performed analytically), and that an

expression of the form (3.4a) for detD ' always results,
with A and S still of order 1 but given by more compli-
cated expressions than (3.4b) and (3.4c).

The imaginary part of D ' (which one may think of
as the spectral weight for boson excitations) is nonzero
in two regions of the (Q, q) plane: one is the familiar
particle-hole continuum 0 & v 'q, where Imgp&0; the
other is specified by detD '(q, Q)=0. From (3.4a) and
(3.2) this is found to be

We now compute the T lnT contribution to this en-
tropy S by diff'erentiating (3.8) with respect to tempera-
ture. There are in principle two sources of temperature
dependence: that of Xp and that of the Bose function
n (0). However, we show in Appendix C that as far as
the T lnT contribution to S is concerned, one may
neglect the temperature dependence of Pp. This point
seems to have been missed in the earlier paramagnon
literature, ' ' where the contributions to S arising from
the temperature dependence of Xp were divided into two
parts (which give contributions to the T lnT term in S
which sum to zero) and then combined with other con-
tributions before being evaluated.

In any event, retaining only the temperature depen-
dence of the Bose function and evaluating the resulting
expression in the standard way one finds:

c'=-,'(p/p&P)(U')' . (3.5b)
—de

AS~ ——
2 2

(A ) 1 — A T lnT
15 (U*)3 12

Along the line (3.5a) the system has a propagating un-

damped boson mode.
Proceeding similarly, one may compute the density-

density correlat&on function S(q, A). Details of the cal-
culation will be given elsewhere the result is that
S(q, Q) has the familiar Landau form

(3.9)

where 3 p is the standard density-channel Landau pa-
rameter; Ao=Fo/(1+Fp). Diff'erentiating (3.9) leads
to an expression for the specific heat. Assuming a spher-
ical Fermi surface, and defining

pXo(q, &)
S(q, Q)=

1+FopXo(q, 0)
where

(3.6) T*=k~ /2m ',
n =Nkvd/6m.

(3.10a)

(3.10b)

Fp —— [1+O(m/m )]pP
(3.7) as the Fermi temperature and density (summed over spin

directions) one finds
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1 3 2

aC = — n(as)' 1—
20 12

'3
T

lnT . (3.11)T*

IV. MODEL WITH LONG-RANGE
COULOMB INTERACTIONS

Equation (3.11) agrees with the general expression of
Pethick and Cerneiro' for the T lnT term in the specific
heat for a Fermi-liquid theory in which only A p is non-
negligible. This is the situation in the auxiliary-boson
large-N model, where A p —1 and all other A's are
O(1/N). ' The factor of N is the spin degeneracy, and
would be 2 in the case of He.

Note that the T lnT contributions come from per-
forming the integrals in (3.8) over the region
0 &v "q «Tz. For this reason it is clear that they are
not produced by the zero-sound mode, which contributes
significantly to the sum in (3.8) only along the line
A=cq, where c was defined in Eq. (3.5b). It is easy to
show that the zero-sound mode gives a T contribution
to AC, as would any boson mode with a linear disper-
sion.

The T lnT term in the specific heat of the auxiliary-
boson model was first pointed out by Auerbach and
Levin. They worked in the limit m'/m~oo, so that
Ao ——1, and chose a density of electrons such that (in
our language) n =N. Their coefficient is a factor of 3
less than the one obtained here. Also, their characteris-
tic temperature T* was stated to be the quantity qpEf.
In general, qosf ~kg /2m *. In the limit qo ~0,
f qp+f kf /2m *. Because qp & —the temperature scale
found by Auerbach and Lewin is much smaller than the
one found here. The source of this discrepancy is not
clear.

A T lnT contribution to C has also been obtained by
Rasul and Desgranges. Their result coincides with our
result (3.11) if the limit q0~0 is taken and terms of rela-
tive order m /m ' are dropped. In this limit,
Ao ——1 —(1 nf ) a—nd qonf T'=Ef. [Note that there is
a sign error in Eq. (24) of Ref. 6, which is inconsistent
with both Eq. (23) of Ref. 6 and our Eq. (3.11).]

Note that the T lnT term has been shown to arise
from small-q density fluctuations since only the Landau
parameter A p is involved. Phenomena involving long-
wavelength density fluctuations in metals can be crucial-
ly altered by the presence of the long-range Coulomb in-
teraction. ' Hence we turn to Sec. IV to a study of
Coulomb effects in our model, before returning to the
question of the comparison of our results with experi-
ment.

Previously, the leading contributions to X were inter-
band and intraband fermion bubbles. However, in the
present case chains of fermion bubbles linked by the
Coulomb interaction can also contribute. However,
from Eqs. (2.11b) and (2.2c) one sees that the Coulomb
interaction couples to the interband bubble via a vector
coupling while the auxiliary bosons couple to the inter-
band bubble via a scalar coupling. Any interband fer-
mion bubble coupled at one vertex to a boson and at the
other vertex to the Coulomb interaction therefore van-
ishes by symmetry, and terms in X proportional to an in-
terband bubble are identical to those computed in Sec.
III. Proceeding as in Sec. III one obtains (denoting the
intraband contribution to X by X;„„,)

X;„„,—h (s, q) =pro(s)/1+ V,pXO(s) . (4.2)

As before, s =Q/v *q, while V, is the effective
Coulomb interaction between lower-band quasiparticles;
V, is reduced from its "bare" value, Vc 4~e /—N—q be-
cause the medium is polarizable via virtual interband
transitions. Explicitly, one finds' V, = Vc/s with

s = I+ V,P, (E, i v=o) (4.3a)

P&(q, iv)= —g (Pk q) [ G2(k+q, ~ ~+iv')Gi(k, iei)

+G, (k +q, ico+iv)Gi(k, ice)] .

co~, =4m.e n, /mN, (4.5)

where n, is the density of conduction electrons. In a
model with a spherical Fermi surface, n, =Nkvd, /6m. ,
where e(kh )=0. The factor of N in (4.5) comes from the
form of the Coulomb interaction, Eq. (2.10).

Combining these various results we may write for the
boson propagator in the presence of the Coulomb in-
teractions D&,

(4.3b)

Here Pk was defined in Eq. (2. 12) and Gi z are the
Green functions for electrons in the lower and upper
bands of LF, Eq. (2.2c). P, (q) may be easily evaluated in
the small (q, v) limit, and so one finds

E = 1+ ,' cop, /o 0+0 ( m—/m ' ),
where ~z„ the plasma frequency of the c-electrons, is
given by

In this section we consider the long-wavelength prop-
erties of the Anderson model extended to include the
long-range part of the Coulomb interaction; this model
is given by Eq. (2.9). The discussion follows that in Sec.
III.

We begin with the boson propagator D which as be-
fore satisfies the Dyson equation

Op= —iN
2V

+—1 m

m

1/2

[h (s, q) —po]

Dc (q, Q) =—'N[po+h (s, q)]/detDc ',
&c ~=Dc~

(4.6a)

detac ',
D '(q, Q+i5)=DO '(q, Q+i5) —X(q, Q+i5) . (4.1) (4.6b)
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m
Dcu. =& po

m
detac ' (4.6c)

while

detDc (q~Q)=X Apo[h (s, q)+Bpo) . (4.7)

(4.8)

However, from (4.2),

2 2

h (s, q}= 2
1+

2 (pXo)
477.e 4' e

(4.9)

and so to obtain a logarithmic divergence from the q in-
tegral one must expand Xo at least to order s [note that
the Bpo term dominates the denominator in (4.5) for
small q]. This leads to a term proportional to T lnT, a
contribution to S which is negligible compared to the
0 ( T ) terms which have not been computed. Therefore,
when the long-range part of the Coulomb interactions is
correctly included, the electron —auxiliary-boson interac-
tion does not give a T lnT contribution to the entropy to

N ote, however, that for small q and co & Ei, h (s,q)-q;
detD '(q, Q) therefore never vanishes in the "Fermi-
liquid" region 0,q ~0. We conclude that Coulomb
effects destroy the "soft mode" in the boson propagator.
This is physically reasonable, as the auxiliary boson
represents a density fluctuation and it is clear that
Coulomb effects will convert the soft zero-sound density
fluctuation mode of a neutral Fermi liquid into the
plasmon mode of a Coulomb gas. ' This paper is con-
cerned with low-frequency properties; in another paper'
plasmon effects in this model are discussed.

It is worth contrasting this situation with the more fa-
miliar electron-phonon problem. In this latter case the
soft mode in the "boson" (i.e. , phonon) propagator is not
destroyed by Coulomb interactions. The physical reason
is that there are two kinds of charge in the system (elec-
trons and ions); a long-wavelength phonon then
represents a mode of the system in which the electrons
and ions oscillate with respect to each other in such a
way that the total charge density at any point is con-
stant. There is also a symmetry (translation of the elec-
trically neutral electron plus ion system) which guaran-
tees that this mode is soft as q ~0. In the
electron —auxiliary-boson problem the auxiliary bosons
do not represent a physical excitation of the system; a
relative oscillation of the two sorts of charges (c and f)
in the system costs a finite hybridization energy (-oo)
even as q~0, and the long range of the Coulomb in-
teraction means that one cannot apply the translational
invariance argument to a motion of the electron gas
alone.

We now consider the T lnT term in the specific heat.
Substituting (4.7) into (2. 18) and differentiating once
with respect to temperature, one finds for the entropy,
S =So +St . Here So = —dFo /dT [Fo was defined after
Eq. (2.17)] and the boson contribution S~ is given by

dQ d q dn(Q) ) Imh (s, q)
B tan

2m (2~) dT Reh (s, q)+Bpo

leading nontrivial order in 1/X. However, the term Fp,
which represents the entropy of a system of electrons
moving in the renormalized band structure described by
Eq. (2.1a) and interacting via the Coulomb interaction,
does give rise to a T lnT contribution to S. To compute
Fp to leading nontrivial order in 1 /X one uses the same
coupling-constant integration technique which led to Eq.
(2.18). One then finds that

Fo ——Fz-+Fc, (4. 1Oa)

where Fz- is the "trivial" free energy of noninteracting
fermions moving in the renormalized band structure and

Fc= — 2n 0 ImlnA '
q, Q+iS

2rr (2m }

(4.10b)

Here A is the Coulomb interaction dressed with inter-
band and intraband bubbles. By the same Dyson-
equation arguments that led to Eq. (4.2) one finds

'(q, Q+iS)=pro+0(q ) . (4.1 1)

The manipulations that led to Eq. (3.9) then yield for the
specific heat an expression identical to (3.9) with A o set
equal to unity, i.e.,

3 1
2

AC= 1 — T lnT .
1S (U*)3 12

(4.12)

This expression can be simply understood in terms of
Fermi-liquid theory if all Landau parameters except Ap
are negligible. The T 1nT term comes from repeated
scattering of a quasiparticle quasihole pair in the limit
that the energy transfer 0, is less than the "momentum"
transfer v*q, but both are small. In this limit, the in-
teraction between quasiparticles is the statically screened
Coulomb interaction, which must, in our model, lead to
a Landau parameter 3 o = l. (The fact that the other
Landau parameters are negligible is an artifact of the
I /X method. ) The relation A o = 1 (which implies
Fo = oo ) is the signature of an incompressible Fermi
liquid, since the compressibility dn /dp =p/(1+Fo ).
Our model involves an electron gas in a uniform positive
background, but we consider only fluctuations of the
electrons; these leave the positive background un-
changed. The long-ranged Couloub interactions then
guarantee that the system is incompressible. We note
that in the model without long-ranged Coulomb interac-
tions, Fp -m '/m ~~1 because the "infinite U" con-
straint on f occupancy ensures that f-density Quctua-
tions do not contribute to the thermodynamics, so the
compressibility is essentially that of the light "c" elec-
trons, and does not involve the mass enhancement factor
m * /m. For this reason the numerical value of the
coefficient of the T lnT term in (4.12) is close to that of
the T lnT term in (3.12), but the interactions which pro-
duce the T ln T term in the two models are very
different.
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V. SUMMARY AND CONCLUSIONS

In this section we recapitulate the results of the previ-
ous sections, outline their implications for the physical
interpretation of the auxiliary-boson model, and discuss
their experimental relevance for heavy fermions in gen-
eral and UPt3 in particular. The expression for the
coefficient of the T lnT term in UPt3 is computed and
found to be incorrect by a factor of ~ 10 . It is argued
that the discrepancy with experiment for UPt3 occurs
because the auxiliary-boson 1/N method omits an im-
portant aspect of the physics of heavy fermions, namely,
interactions in the spin channel due to exchange of anti-
ferromagnetic spin fluctuations, although another possi-
ble explanation, a large (more than factor of 10) varia-
tion of the Fermi velocity over the Fermi surface cannot
be ruled out until more complete de Haas —van Alphen
data are available.

The auxiliary-boson large degeneracy (N) lattice An-
derson model and the same model extended to include
the long-range part of the Coulomb interaction have
been studied to leading nontrivial order in 1/N, in the
long-wavelength, low-frequency, low-temperature limit.
The model without Coulomb interactions possesses an
undamped collective mode (the zero-sound mode) which
appears as a singularity in both the density-density
correlation function and the auxiliary-boson propagator.
The model also possesses a T lnT term in the specific
heat due to electron —auxiliary-boson interactions. This
term has been calculated by differentiating an expression
for the free energy. The calculation is similar to the
paramagnon-model calculation of 6, the coefficient of the
T lnT term in the specific heat of He. ' As a by prod-
uct, the calculation of 5 in exchange models (such as
paramagnon and auxiliary boson) has been simplified. A
set of contributions to 5 previously believed to be impor-
tant has been shown on general grounds to sum to zero.

The expression for the T lnT term found in this work
agrees with the general Fermi-liquid expression of Peth-
ick and Carneiro' if one uses in their expression the
Landau parameters appropriate to our model
[Ao ——(1+po/p) ', all other 3 —I/N]. The value of
3 o is read off from the density-density correlation func-
tion, which is explicitly evaluated in a separate paper'
and shown to have the form required by Landau Fermi-
liquid theory with a value of I'o corresponding to the
quoted value of Ao.

When the physically necessary long-ranged Coulomb
interactions are included, the zero-sound mode, the
singularity in the boson propagator and the contribution
from electron-boson interactions to the T lnT term in
the specific heat all disappear. The T lnT term in this
case is shown to come entirely from the screened
Coulomb interaction.

These results show that the auxiliary boson is—to
leading order in 1/N —an electron-density fluctuation
and in contrast to a phonon not a distinct physical exci-
tation of the system. The boson-mediated interactions
between quasiparticles are to leading order in 1/N en-
tirely due to exchange of virtual density fluctuations.

The fact that the auxiliary boson is a density fluctua-

tion may be easily understood. The bosons were intro-
duced to enforce a constraint on f occupancy; the boson
field b represents a hole on an f site. The leading effect
of the electron-boson interactions is to cancel out of the
mean-field theory those contributions which involve in-
termediate states which violate the constraint on f occu-
pancy. Thus in the mean-field theory the static compres-
sibility dn/dp is enhanced by a factor of m*/m over a
typical light-electron compressibility, but after electron-
boson interactions are included, the compressibility is
found to have the light-electron value. Thus the fact
that the boson is a density fluctuation is related to the
fact that in the Anderson model the charge fluctuations
are suppressed by the f-occupancy constraint. The
effect of electron-boson interactions upon spin fluctua-
tions is much weaker; for example, the deviation of the
Wilson ratio R (R =X/y, where X is the static magnetic
susceptibility and y the specific-heat coefficient) from un-
ity measures the degree to which ferromagnetic spin
fluctuations are enhanced. In the auxiliary-boson 1/N
method, R —1 —1/N.

We note also that the large effective mass m * comes
from the spin entropy of the electrons on the f sites, as
first pointed out by Varma. ' The auxiliary-boson
method includes spin fluctuation effects in this sense, as
it produces a large m*. Also, if the theory could be
solved to all orders in 1/N, it would presumably include
all spin-fluctuation effects. What is shown in this work
is that to leading order in 1/N, the heavy quasiparticles
interact via exchange of density fluctuations only, and
not via exchange of spin fluctuations.

Because N is not believed to be large in real heavy-
fermion materials, and because interactions via exchange
of spin fIuctuations are not included, and because an
oversimplified c-electron band structure and c fhybridi--
zation are used to simplify computations, the auxiliary-
boson method can give results which are at best only
qualitatively applicable to experiments. Nevertheless, it
is of interest to compare the results obtained so far with
experimental data on real heavy-fermion materials. Be-
cause all real heavy-fermion materials involve electrons,
the long-range Coulomb effects must be included. We
thus consider applying Eq. (4.12) to experimental data.

We note first that real materials have always some im-
purities, and that in the presence of impurities the quasi-
particles acquire a lifetime r related to the mean free
path I by I/vF ——~. For temperatures T & 1/~, the T lnT
temperature dependence goes over to a T dependence,
with coefficient determined by the diffusion constant
D. Furthermore, to observe a T lnT term, the temper-
ature must be low enough (relative to the Fermi temper-
ature TF of the heavy fermions) that inelastic scattering
(from e.g. , electron-electron interactions) can be neglect-
ed. Thus one must have

1/w(T &(TF

for the T lnT term to be observable. Many heavy-
fermion systems have rather low characteristic tempera-
tures TF and, even at low temperatures, rather large
resistivities, which indicates that either inelastic or im-
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purity effects are important. If inelastic effects are im-
portant, the specific heat should not have a simple tem-
perature dependence. There is no rigorous theory for
auxiliary bosons in a disordered lattice but it would be
interesting to look for a T dependence in the specific
heat of heavy-fermion materials in the limit T & 1/~.

For the heavy-fermion material UPt3, however, cyclo-
tron resonance experiments ' have determined the quasi-
particle velocity u* and have shown that (at least for the
sample studied) the scattering rate, in temperature units,
is much less than the superconducting transition temper-
ature T, . The Fermi surface was observed to be a com-
plicated multisheeted structure, but defining a Fermi
temperature by kF/2m' for a typical sheet gives tem-
pertures of order 50 K, much greater than the supercon-
ducting T, . There should therefore be an appreciable
range of temperature T, & T «TF over which a T lnT
term is observable in UPt3.

Of course, since UPt3 has a complicated Fermi sur-
face, the relevance of the calculations in the previous
sections is unclear (even assuming the auxiliary-boson
1/N method adequately represents the physics of heavy
fermions), since in the previous sections a simple spheri-
cal Fermi surface was implicitly assumed. However, one
may argue that as the T lnT term comes from repeated
small-angle scattering of a quasiparticle quasihole pair of
nearly parallel momenta, scattering from one sheet of
the Fermi surface to another (a large momentum-
transfer process) will be unimportant. In this case the
polarization bubbles which "dress" the Coulomb interac-
tion may be written as a sum, over sheets, of a contribu-
tion from each sheet. If one further assumes that over
each sheet the velocity v

' and density of states is essen-
tially constant, then for a given sheet the polarization
contribution may be written as the product of the area
of the sheet and the function 7o evaluated using the ve-

locity v* on the sheet. Experimentally, ' the velocity v*
(defined as ko/m *, where ko is a typical k value for the
sheet) ranges from 4—5 )& 10 cm/sec sheet to sheet.
(The values of ko and m * are taken from Table I of Ref.
21.) Assuming u* is the same for every sheet, one finds
that up to a constant factor the polarization bubble is
proportional to Lo. The factor of proportionality does
not enter into the T lnT term, and Eq. (4.12) may there-
fore be used. Now in the large-N model, the specific-
heat coefficient y is given (to leading order in 1/N) by

y= g ~s/us .
24m s

Here N is the spin degeneracy, the 24~ comes from a
combination of thermal and phase space factors, S
indexes the sheets, Az is the area, and vz the velocity of
sheet S.

Then, assuming vz is constant from sheet to sheet, one
has for the ratio of linear specific-heat coefficient (y) to
T lnT coefficient (5),

(we have restored the previously suppressed factors of A'

and kii ). We may now use the experimentally mea-
sured2' values of u* =4X 10 cm/sec and N gs As
(from y and u

*
) to compute

y/5-6~104 K+' (5.3)
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The experimental value is closer to 10 K+ .
There are several possible explanations for the factor

of 600 discrepancy. One is that the simple model used
here is simply inapplicable to a multiply sheeted Fermi
surface. Another possibility is that the velocity is more
than 10 times smaller than the observed value in some
regions of the Fermi surface not observed in the de
Haas —van Alphen experiments ' (and also more than ten
times larger in other regions, so the agreement with the
specific-heat data is not destroyed). We note that pub-
lished data for UPt3 gives velocities only in certain sym-
metry directions, so different velocities in other direc-
tions are not ruled out. An experiment for CeCu6 yields
velocities varying by a factor of —3 over the Fermi sur-
face.

An alternative explanation is that the auxiliary-boson
1/N method omits some important interaction which
leads to a large value of some Landau A parameter.
One Fermi-liquid analysis has indicated a value of
Ao ——4 (in contrast to the value 1/N given by the
auxiliary-boson method): such a value of Ao indicates
that ferromagnetic spin fiuctuations are important. Be-
cause the coefficient of the T InT term —( A o ) (if
A o ~~ 1 ) this could help to resolve the discrepancy.
However, such a large value of 3 o is inconsistent with
the observed Wilson ration R =1—Ao —1. Various
neutron scattering experiments have concluded that anti-
ferromagnetic spin fiuctuations are important in Upt3 26.
A recent Fermi-liquid analysis indicates that strong an-
tiferromagnetic fluctuations lead via crossing symmetry
to large values of an l =2 Landau parameter; this ac-
counts for the coefficient of the T lnT term. Note that
the l =2 Landau parameters are predicted to be of order
qo/N in the simple auxiliary-bt)son models so far con-
sidered. The Fermi-liquid analysis is however open to
criticism because it assumes a simple spherical Fermi
surface and treats only Landau parameters with l & 2.

The reason for the discrepancy between the calculated
and observed T lnT coefficient deserves further study.
More complete de Haas —van Alphen data could decide
whether variation in the Fermi velocity is a viable ex-
planation. It seems more likely (although it is not prov-
en) that the leading order (in 1/N) approximation to the
auxiliary-boson version of the Anderson model, although
it has been very useful in providing qualitative under-
standing of some aspects of heavy-fermion physics, omits
an interaction (most likely involving exchange of antifer-
romagnetic spin ffuctuations) which is important for the
thermodynamics of UPt3.

2

y/6= (u') yWs
24ir (1 —ir /12)

(5.2)
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APPENDIX A

In this Appendix we show that the coe%cient of the
T lnT term in the specific heat may be expressed in
terms of the T =0 values of cf and o.o, whereas the T3

term cannot be.
On general grounds one may write the free energy F

dC=T F.
dT

(A4)

The derivatives in (A4) are total derivatives. Using (A2)
and the chain rule one finds:

C=T BF BF Bf
BT

2

+ ~ 0 ~ (A5)

Here the ellipsis denotes terms involving derivatives with
respect to o.o, which we have not written explicitly. By
combining (A2), (A3), and (A5) we find

as

F =a+PT +5T lnT +sT +
C =213T + 125T ln T +0 ( T ) .

(A 1) From (A3) we see that

(A6)

The coefficients a, P, . . . depend on sf, rTO and the oth-
er parameters of the problem. They depend on T impli-
citly via the dependence of Ef, o.o on T. We now show
that the T dependence of Ef does not contribute to the
T lnT term in S. The argument for the T dependence of
0 0 is identical.

At any temperature T, Ef is fixed by the equation

P(T}=P(T=0)+A, , T +
BEf

so that

C =2P(T =0)+125(T=0)T lnT+O(T ) . (A7)

This is what was to be proved.

BF/BEf ——0 . (A2) APPENDIX B

Ef —to+A, ]T +A,2T lnT + (A3)

Here the A.'s are determined by derivatives of a,P, . . .
with respect to Ef and o.o, and are independent of T.

The specific heat C is given as usual by

By combining (Al) and (A2) and expanding in powers of
T we obtain

In this Appendix we give some details of the computa-
tion of the self-energies of the boson propagators, in the
small q and Q limit. More details can be found in Ref.
10. There are four self-energies: X, X ~

——X~, and
X&&. We give details of the calculation of X; the oth-
ers may be computed similarly.

By use of Eqs. (2.2) we may write the interband and
intraband contributions to X as

M"
yintra( p.p+q

[t'co„—e,(0)][i(co„+0„)—st(p +q)] (8 la)

X'""'(q,iQ„)=——,
' g M'2+ +[irv. —st(p)][i(~„+0„)—&2(p +q)] [itv„—e2(p)][i(tv„+0„)—st(p +q)]

(Blb)

Here we use the Matsurbara formalism. co„and Q„
are Fermi and Bose frequencies respectively. The ——,

' is
a symmetry factor. et q(p) were defined in Eqs. (2.4).
The matrix elements are given by

yields [v*=t)E&(p)/t)p
~ ~ ],

2o
X (q, Q+i5)= —2 Xo(q, Q+i5)

kF

11 2 2 2 2 2
J,e+e "u+e z+ u+e "v+ o z u+e '

12 2 2 2 2 2
Mp p +q Qp +q Qp + vp +q Up 20 o/EpEp +q

(B2a)

(B2b)

2

—
l X E +2 X

p (pF p p (pF p

(B4)

f st p)) —f(st(p+q))
pXp(q, Q+t5 =

0—v'p q+i5
(B3)

The various quantities in Eqs. (B2) were defined in
Eqs. (2.5). Performing the Matsubara sum in the usual
way, analytically continuing Q„~Q+i5, taking the
small (q, Q) limit, using Eq. (2.5c) and defining

The second term in Eq. (B4) is, by the mean-field
equations, equal to —( Ef Eo ). In the limit-
m*/m &&I, by use of Eq. (2.4c) one sees that the in-
tegral in the last term is sharply peaked about k =k~
(where kz is the point where the original conduction-
band energy equals the chemical potential, i.e., ek ——0),
because o.o ((E, k . Thus up to corrections of orderF
(o 0/Ek ) —m /m ", the third term is 2po, whereF
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X (q, 6+i 5)= ——,'(Ef EQ)— Pl
+0(q, 0+i 5)+pa .

m*

(B5)

po ——dkldEk
~ k k„, and so using era/Ek ——m/m*

+O((mlm*) ),

APPENDIX C

In this Appendix we evaluate the temperature depen-
dence of the polarization bubble Xo(q, Q). We show that
the temperature dependence of Po does not contribute to
the T lnT term in the entropy.

The derivative of go with respect to temperature, for
small q and for T &&Tz may be written as

dXO(q, 0)
dT

dE~dp, df (e&)/dT df (E~—+v "qp)ldT.
4 p —(II/v 'q) —i 5

(Cl)

Here p is the angle between p and q and p is the densi-
ty of states at the Fermi surface. By changing variables
from c.

&
to E

& + v *qp in the second term one shows that
this expression vanishes (since one may extend the range
of the c& integration to +~ with errors exponentially
small in T/Tq ). The leading term in an expansion of Xo
with respect to q is thus independent of temperature up
to terms exponentially small in T/T~ (we ignore the
temperature dependence of the mean field parameters),
regardless of the value of the ratio 0/v*q, and thus can-
not contribute to the temperature dependence of the free
energy in Eq. (3.8).

One may extend the calculation to higher order in q
by expanding E&(p+q) further. (Note that the terms
generated in this expansion involve second or higher
derivatives of the energy with respect to momentum, so
they cannot be expressed in terms of Fermi-liquid quan-
tities such as m*, u*, and the Landau parameters. ) As
long as it is permissible to approximate the density of
states, velocity, etc. by their values at the Fermi surface,
one may still make a change of variables, showing that
(Cl) still vanishes (up to exponentially small terms in
T/T„).

One must therefore extend the calculation yet further
by considering the variation of p and v

* away from the

Fermi surface writing, e.g. , p —+p+ E(dp ld c, ). This
would lead to a contribution to dXo/dT proportional to
( T/Tx )g (0/u "q) [the factor of T comes from integrat-
ing j d E Edf (E)ldT, g (x) is some function of x analytic
near x =0, and one expects dp/ds-p/Tx]. To obtain
a logarithm from the sum over q in (3.8) one must ex-
pand g to order (II/v*q); the three factors of 0 and the
factor T/Tz then ensure that the contribution to the en-
tropy is at least of order T lnT.

Clearly, higher-order terms in the expansion away
from the Fermi surface will give even higher-order con-
tributions. Thus, the temperature dependence of 70 need
not be considered in the evaluation of the T 1nT term in
the entropy from Eq. (3.8).

In the paramagnon literature' ' the temperature
dependence of the polarization bubbles occurring in an
expression analogous to Eq. (3.8) is evaluated by writing
Xo explicitly, difFerentiating the Fermi functions explicit-
ly with respect to temperature, and then using an identi-
ty to rewrite these terms as a "Fermi" contribution pro-
portional to the temperature derivative of the Fermi
function and a "Bose" contribution proportional to the
temperature derivative of the Bose function. For the
model considered in Sec. III of this paper, one finds
(similar equations hold in the paramagnon case)

ESB„,——
dQ d q dp dn(Q)

[Rel/(pXO+po)]~5(A+E~(p) —E&(p + q))[f (e~(p +q)) —f(E~(p))),2~ (2n )3 (2m )3
(C2a)

df (E,(p))
b,SF„;——f (2~)' &(e~(p)), (C2b)

&(e~(p)) = dQ dq [1—2f(E,(p)+Q)]Re[pXO+po] 'm5(Q+e, (p) —e, (p+q))
2vr (2~)3

2[E i(S' +q) —e i(p)1+ n ( fI )Im[pXO+ po] ~I' —[e i(p +q) —E(p) l' (C2c)

In the paramagnon literature the contribution AS&„,
in Eq. (C2a) is combined with the "Bose" term arising
from differentiation of the explicit n (Q) factor in Eq.
(3.8) before being evaluated. However, the T InT contri-

butions to S arising from Eqs. (C2a) and (C2b) may be
explicitly calculated in the usual way. They precisely
cancel, in this model and in the paramagnon model.
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