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C. H. Choi and Paul Muzikar
Department of Physics, Purdue University, West Lafayette, Indiana 47907

(Received 2 February 1987)

We discuss the current-carrying state in a polar-phase superconductor at zero temperature. This

phase has a line of nodes on the Fermi surface, and its properties are quite anisotropic. We compute
the relation between J and v, both for a pure metal and for one with impurities. This allows us to
And the critical current for a variety of situations. We also consider the density of states in the pres-

ence of superflow.

INTRODUCTION

II. FORMALISM

We take the polar phase gap to be

b, t3(k, R)=ix cr „amph(k, R),
h(k, R)= b, (k.z)e (2)

We will consider the following two cases.
(l) v, = v, x, in which the supercurrent is in a direction

of vanishing gap.
(2) v, =u, z, in which the supercurrent is in a direction

Superconductivity in the heavy-fermion metals has re-
cently been the subject of keen interest. ' In particular,
much evidence points to the possibility that in at least
some of these superconductors the gap has a nontrivial k
dependence. A recent paper argues that a gap with a line
(or hnes) of nodes can explain much of the experimental
data.

In this paper we investigate the current-carrying state in
a polar phase superconductor at T =0. The polar phase
has a simple I = 1 order parameter with a line of nodes on
the Fermi surface; thus it serves as a prototype for more
complicated phases which also have lines of nodes. We
consider the situation of a spatially uniform v„and com-
pute how the supercurrent and order parameter change as
v, increases. This allows us to find the critical velocity.

Because of the gap anisotropy, the direction of v,
matters. We treat the two extreme cases: we let v, lie in
the plane of the line of nodes, and perpendicular to this
plane. We also allow for the presence of impurities; we
treat the impurity scattering using the full t matrix, since
recent work indicates the importance of avoiding the Born
approximation. '

The most important questions we address are: (1) how
anisotropic is the supercurrent as a function of v„and (2)
how does the presence of impurities affect the results.
The polar phase is quite sensitive both to supercurrents
and impurities. An arbitrarily small concentration of im-

purities causes this phase to be gapless, ' as does an arbi-
trarily small v, in the proper direction. This T =0 com-
putation illustrates the effect of the zero-energy excitations
on the supercurrent.

g is determined by its equation of motion,

[(ie q)~3 iDr—2 s,g—]=0,—
as well as the normalization condition

(4)

gg= —~ 1.
Here, q =pFk-v, and D =6k.z

The magnitude of the gap, b, and the impurity self-

energy s must be determined self-consistently from g. The
weak-coupling gap equation is

bk. z= —i lT g fdpk pgz, (6)

where X is the coupling constant and g; is the 7; com-
ponent of g. The impurity self-energy is given by

s =ct(e),
where c is the concentration of impurities and t is the im-

purity t matrix. The t matrix is computed via the follow-

ing equation:

t(e)=u+Npu f dkl4trg(k, e)t(e) . (8)

For simplicity, we have taken the impurity scattering to
be purely s wave, characterized by strength U.

Thus we must solve (4)—(8) self-consistently for g. The
supercurrent is then computed from

J:2NpuF T y f dk/4trkg3

where No is the density of states at the Fermi surface in

the normal phase. Note that for the two directions of v,
we consider, we always have J~~v, . The Appendix con-
tains details on solving these equations.

A point to stress is that one must check whether a po-

of maximum gap.
To do our calculations we follow the quasiclassical ap-

proach. The key quantity to compute is the quasiclassi-
cal propagator g(k, R, e) which for our situation is a 2X 2

matrix in particle-hole space. For a uniform supercurrent
we can remove the R dependence of the problem by mak-

ing a gauge transformation as follows:

M!Fiv, .R'~3~ iM/hv, Rr3gke =e ' ge

36 54 1987 The American Physical Society



36 CURRENT-CARRYING STATE IN A POLAR-PHASE ~ ~ ~ 55

lar type of gap in fact satisfies the gap equation (6) in the
presence of superflow and impurities. It turns out that
when v, IIz or when v, IIx, the polar-phase gap does satisfy
(6). However, if we pick v, to lie in a less symmetrical
direction, then the polar phase does not satisfy the gap
equation. Of course, these symmetry considerations will
be different when one considers this problem for a crystal-
line point group rather than the spherically symmetric
normal state treated in this paper.

III. PURE LIMIT

When the impurity concentration is zero, the equations
simplify considerably. The impurity self-energy vanishes,
and we need only solve self-consistently for the gap ampli-
tude. In the following we let Ao be the gap amplitude
when v, =0 and c =0.

When v, =v, z the problem is symmetrical enough to be
solved analytically. The critical velocity is U, =60/pF and
the supercurrent is simply J=pv„where p is the electron
density, right up to the critical velocity. The gap ampli-
tude is 6=60 right up to v, . These results are illustrated
in Fig. 1 .

When v, = v, I the situation is more interesting. With
v, in the direction of a node, the supercurrent can be di-
minished by excitations, even at T =0, for arbitrarily
small v, . This has already been pointed out in a previous
paper, which discussed a term in J which is nonanalytic
in U, . Numerical calculations of J and 6 for the full
range of v, are shown in Fig. 1 . The critical velocity is
U, =0.6 1 h0/pF while the critical current is J, =0.28
p~o/pF .

The fact that zero-energy excitations can immediately
start to reduce the supercurrent when v, IIx is reflected in
the single-particle density of states. When v, is small, we
can derive the following expression for the density of

states (for one spin population) at zero energy:

N (& =0)=NopF
I

us
I
/~o . (10)

IV. IMPURITY RESULTS

When the concentration of impurities is nonzero, we
must resort to a numerical solution of (4)—(9). Since both
c, the concentration of impurities, and U, the strength of
the potential, affect the outcome, we must fix two parame-
ters to specify the situation. A convenient choice is the
following:

o. =(Npvru) /[1+(Np~u) ],
1/(27 6p) =cC7/(77Npkp) (12)

The first parameter, o. , is simply the cross section for
scattering from one impurity, normalized by its value in
the unitarity (u~oo) limit. The second parameter is the
normal state elastic scattering rate, normalized by the un-
perturbed energy gap to form a dimensionless number. In
the Born limit (o « 1) only the single parameter cu
matters, whereas if the scattering potential is not weak, re-
sults will in general depend on the two parameters defined
above in a more complicated way.

Figures 2 —5 show some representative results for the
supercurrent and order parameter as functions of U„ for
several choices of o. and ~. Figures 2 and 3 are in the ex-
treme unitary limit of o. = 1; Fig. 2 has a low concentra-
tion of impurities to make 1/(2rbp)=0. 01, while in Fig.
3 the concentration is raised to make 1/(2mb, p) =0.2.
Figures 4 and 5 are in the Born limit with o.=0.001, and
cover the same choices for ~ as the previous two figures.

Several observations about these results are in order.
There is little difference between Figs. 2 and 4. This
shows that when 1 /2~60 is small, it doesn't seem to
matter whether cr is small or large; only the (small) value
of 1 /~ seems to matter. Conversely, there is a marked
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FIG. 1 . Order parameter and supercurrent as functions of U,

for the polar phase without impurities. The solid lines are for
v, ~~z, while the dashed lines are for v, ~~x. The dimensionless
variable plotted on the horizontal axis is Q =pzu, /ho, where Ao
is the value of the order parameter unperturbed by impurities or
superflow. On the vertical axis are plotted 6 /60 and Jpp /pro.
When v, ~~x, J, =0.28ph /p~ oand Q, =0.61.
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FIG. 2. Order parameter and supercurrent as functions of U,

for the polpr phase with impurities. This figure is for the unitari-
ty limit (cr = 1 ), and has 1 /(2~DO ) =0.01. The variables are
scaled as in Fig. l. As can be seen, when v, ~~z, Q, =0.92 and
J.=0 89pbo/pF, when v, ~~x, Q, =0.60 and J, =0.26pho/pF.
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FIG. 3. Order parameter and supercurrent as functions of U,

for the polar phase with impurities. This figure is for the unitari-

ty limit (o.= 1), and has 1/(2~50) =0.2. The variables are
scaled as in Fig. 1. When v, ~~z, Q, =0.38 and J, =0.20 pA, /pF,
when v, ~~x, Q, =0.44 and J, =0 07p~o/pF

FIG. 5. Order parameter and supercurrent as functions of v,.

for the polar phase with impurities. In this figure we have taken
o. =0.001 and 1/(2~DO)=0. 2. The variables are scaled as in

Fig. 1. When v, ~~z, Q, =0.45 and J, =0.30pho/pF, whereas
when v, ~~x, Q, =0.39 and J, =0. 10pho/pr.

difference between Figs. 3 and 5, which both have
1/2~DO ——0.2 So when ~ is very short, it does matter
whether its short value is due to a high concentration of
impurities or to a strong scattering potential.

Fig. 3 is particularly interesting. Perhaps surprisingly,
the order parameter has a larger value when v, ~~x than
when v, ~~z, at each value of U, . In addition, the critical
velocity (although not the critical current) is larger when
v, ~~x. The curve of J versus u, when v, ~~x has an extreme-
ly Oat, low trajectory.

One consistent feature of the calculations is that the
critical current for v, ~~z is always about three times bigger
than the critical current for v, ~~x, regardless of the values

of ~ and ~.
Figures 6 and 7 show plots of the density of states (for

one spin population) versus energy; both have the same
value for ~, but in Fig. 6 o. =1.0, while in Fig. 7 we have
o =0.001. In both pictures we can see that when v, ~~x,

the density of states at zero energy is much higher than
when v, ~~z or when v, vanishes.
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FIG. 4. Order parameter and supercurrent as functions of v,

for the polar phase with impurities. In this figure we have taken
o.=0.001 and 1/(2~DO)=0. 01. The variables are scaled as in

Fig. 1. When v, (~z, Q, =0.95 and J, =0.93pho/pF, when v, ~~x,

Q, =0.60 and J, =0.27pho/pF.

FIG. 6. Normalized density of states, N(E)/No vs E/Ao.
For this figure, o. =1 and 1/(2~50)=0. 01. Results are shown

for no superflow (Q =0), for v, ~~z (Q =0.5) and for v, ~~x (Q
=0.5).
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APPENDIX

Here we give a brief discussion of some of the details
involved in solving Eq. (4)—(9). In general, the impurity
self-energy s(e) can be written

1.6

1 ~ 2

S =aO1+aZ~2+a373 ~ (A 1)

0.8
Of course, the ao piece drops out of the commutator in
(4), and so is irrelevant. The solution of (4) is then

0.4

w[(iE—q —a—3)r3 —(iD +az)rp]
[(e+iq+ia3) +(D ia—~) ]'~ (A2)

It is easy to see that if g has only ~3 and ~2 components,
then Eq. (8) will lead to no r~ terms in the t matrix.
Hence, (Al) needs no rt term. The gap Eq. (6) becomes

0 1.60 0.8 1.2 2
FREQUENCY[E)

FIG. 7. Density of states vs. energy, each axis normalized as
in Fig. 6. All parameters are the same as Fig. 6 except that
o =0.001. It should be noted that when v, ~~z or when v, =0,
N(E =0) is not zero, just very small.

(k p)(b pz —ia2)
hk z=vrA. TQ dp

E+iPI;P V, +ia3 + AP. Z —ia&
(A3)

When v, ~~x one can check that a solution of (7) and (8) gives aq =0; the gap equation then becomes

sinO' cosO' [cosO cosO'+ sinO sinO' cos(P —P') ]6 cosO= A~kT
[(e+ipFv, sinO'cosP'+ia3) +62cos2O']'~2

(A4)

The terms on the right-hand side proportional to sin0 vanish by symmetry. This shows that a polar type of gap does
indeed solve the gap equation when v, ~~x and impurities are present.

When v, ~~~z the gap equation becomes

sinO'(b, cosO' —ia 2 }[cosO cosO'+ sinO sinO' cos(P —P') ]6 cosO=rrATQ dO' dP.
'

[(e+ipFv, cosO'+ia3) +(b, cosO' —iaq) ]' (A5)

The terms on the right-hand side proportional to sinO vanish because of the P integral, so we see that again the polar
phase satisfies the gap equation.
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