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p-spin-interaction spin-glass models: Connections with the structural glass problem
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The static and the dynamical theories for the mean-field p-spin (p & 2) interaction spin-glass
model are studied. A broken-replica-symmetric equilibrium solution leads to a glass transition at
a temperature T~ where the Edwards-Anderson order parameter is discontinuous but where there
is no latent heat and there is a discontinuous specific heat. The dynamical theory leads to a con-
tinuous slowing down and predicts a glass transition at T~ g T~. A reinterpretation of the equilib-
rium solution allows us to relate the dynamical transition to the equilibrium theory. The
mathematical structure of the mean-field dynamical theory is closely related to certain recent
dynamical theories of the structural glass transition.

I. INTRODUCTION

In this paper we discuss both the statics and the dy-
namics of the mean-field p-spin (p ~2) interaction spin-
glass (SG) model. ' The basic motivation for this study is
that it has recently been appreciated that in many SG
models the Edwards-Anderson (EA) order parameters
qEA is discontinuous at the SG-transition temperature
T . The usual p =2 or Sherrington-Kirkpatrick (SK)
model, where qE~ (T =Ts)=0, is an exceptional case.
Models exhibiting discontinuous SG transitions include
Potts glasses with more than four components, quadru-
polar glass models, ' and p-spin interaction SG models
with p ~2. ' Here we consider the p-spin models since
both the static and dynamical properties of these models
can be easily studied. The mean-field Potts glass model
and quadrupolar model will be considered elsewhere.

Possible experimental systems where these models
might be relevant include orientational glasses such as
K(Br,CN) mixed crystals, ' electric dipole glasses, and
mixed ortho-para hydrogen crystals. ' It has also been
recently suggested that there is a close connection be-
tween the dynamical theories of the structural glass tran-
sition and mean-field theories for the Potts glass and p-
spin interaction SG models. " The motivation for this
suggestion is the discontinuous nature of the transition
in all three models. In this paper we show a particularly
close connection between the structural glass theories
and the p-spin (p & 2) SG model. This connection is due
to the fact that the nonlinearities in the dynamical equa-
tions for the p-spin interaction model are identical in
structure to the nonlinearities in the dynamical equa-
tions for the structural glass theories. ' ' We therefore
hope that a study of these spin models will lead to a
deeper understanding of the structural glass theories. Of
particular interest to us is the relationship between the
dynamical transition and the equilibrium transition in
models where the order parameter is discontinuous at
T~. We note, however, a crucial difference between spin

glasses and structural glasses: In the spin-glass problem
the randomness is self-generated rather than put in by
hand in spin-glass models.

The main conclusion of this paper is that the dynami-
cal theory apparently predicts a higher glass-transition
temperature than the equilibrium theory. By reinter-
preting the equilibrium solution, we show, however, that
there is a connection between the dynamical transition
and equilibrium theory. The dynamical transition
occurs where the Parisi free energy is maximized when
one of the variational parameters is fixed to be at its
physical endpoint. The usual equilibrium SG transition
is then interpreted as a second transition which occurs at
a lower temperature. This situation can also arise in
other models like the Potts glass. '

The plan of this paper is as follows. In Sec. II we
derive the equations of motion for the average (over the
random interactions) correlation functions in the soft-
spin version of the p-spin interaction SG model. In Sec.
III we solve these equations for the p =2+@,with e (..& 1.
We show that there is a dynamical glass transition at a
temperature T~. In Sec. IV we use replica methods to
discuss the equilibrium SG transition in the p =2+a
model. A broken-replica-symmetric (BRS) solution leads
to an equilibrium glass-transition temperature T~ with

T~ & T~. In this section we also discuss connections be-
tween the static and dynamic transitions. The paper is
concluded in Sec. V with a discussion. In the Appendix
the stability of the SG phase is considered.

II. THE DYNAMICAL MODEL

The Hamiltonian of the mean-field p-spin SG model is

N

incr; cr; —g h;cr;, (2.1a)
(lP

i =1

where cr, =+1 (i =1,. . . ,N) and h; is an external mag-
netic field. The I J; iz j are independent random in-
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P(J; i~)=
mptJ

teractions whose distribution is
' 1/2

with I 0 a bare kinetic coefficient which sets the micro-
scopic time scale and g;(t) is a Gaussian random noise
with zero mean and variance,

(g;(t)g, (t')) = 5;,5(t —t') . (2.3b)

Q exp (2.1b)

The N dependence in Eq. (2. lb) is chosen such that there
is a well-defined thermodynamic limit.

Here we first consider a soft-spin version of the p-spin
model that is defined by

C;, (t t') =—(a, (t)o, (t') ),
and the linear-response function,

(2.4a)

Equations (2.3) ensure a correct equilibrium description.
In the dynamical calculation the physical quantities of
interest are the two-spin correlation function,

PH=Q a +uo; —PgJ; iso; . o;
l

;(t)&
G, (t t'—)= (2.4b)

N—Pg h;o;, (2.2)
where ( ) means average over g. Causality yields the
relation

r a, a, (t)= — +g, (t),5(PH)
5o, (t

(2.3a)

where p=T ' and Boltzmann's constant is taken to be
unity. The length of the soft spin o.; is allowed to vary
continuously from —oo to op. We can recover the con-
straint o.; = 1 by letting u ~ m and ro ~ —oo with
u /ro~ const. This limit will be dubbed the hard limit.

The relaxational dynamics for a;(t) is assumed to be
given by the Langevin equation,

G (t) = —8(t)c),C(t), (2.4c)

with e(t )0)= 1 and e(t (0)=0.
To carry out the averaging over the quenched random

interactions we use the dynamical functional-integral
formulation of De Dominicis' and Janssen et al. ' The
same results can be obtained by a variety of other
methods. First, we define a generating functional for
dynamical correlations and response functions.

ZIJ;, ;, I;, 1;]= f Dcr Do exp f dt[l;(t)cr;(t)+il;(t)o;(t)]+L(o, o )
P

(2.5a)

where

L(cr, o)= f dt bio;(t) —I d, o;(t)— +I i&;(t) +VIcrI .5(PH)
5cr; (t

The functional Jacobian,

V= —,f dt y "(PH'
6';

ensures the normalization,

ZI J; . . i~, 1; =1;=0I =1 .

(2.5b)

(2.6a)

(2.6b)

Response and correlation functions can be obtained from Z by taking functional derivatives with respect to the
sources I; and l;.

The correlation functions generated by Eq. (2.5a) depend on the random interactions I J; . . . ; j. We are interestedll '''l
in average quantities. De Dominicis ' was first to observe that the condition implied by Eq. (2.6b) is independent of
the random variables and thus the quenched average can be done directly on Z. Performing the required Gaussian in-
tegration yields

[Z] = f + dJ;, . . . ; P(J; . . . ; )ZI J; . . . ; j = f D [o ]D[a]exp[L (cr, o )+h(cr, o )], (2.7a)

with

Lo(o, d ) = f dt g [i &; ( —I 0 'c)o; roa; —4u o; —h; +—i I 0 'o; )+il o; +1 o; ]+V I cr I

and

(2.7b)

p2J2
b, (cr, cr ) = 4X&-' [io;(t)o, (t)icr;(t')o)(t')a; (t)cr; (t') cr, r(t)cr; (t')

+(p —1)icr;(t)cr)(t)io, (t')o, (t')a; (t)cr; (t') . cr; (t)a; (t')] . (2.7c)
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N

Q 1(O. Cr ) =—g i Cr, ( t )i Cr'; ( t ' ),
i=1

(2.8a)

N

Q2(ocr ) =. —g o; (t)o; (t'),
i =1

(2.8b)

In deriving Eqs. (2.7) we have assumed that the random
interactions are symmetric with respect to interchange
of all the site indices. The integration of the random in-
teractions has generated 2p-spin couplings which are
nonlocal in time.

The path integrals in Eq. (2.7a) are evaluated using a
generalization of the procedure devised by Gross and
Mezard for the equilibrium solution of the p-spin mod-
el. The basic idea is to decouple the 2p-spin correlation
function such that the effective Lagrangian is local in
space (i.e., refers to a single site) but not in time. To
achieve this we define the quantities

Q3(oo )=—g i&;(t)o;(t'),
N

i=1
N

Q4(oo )=—g cr;(t)io;(t')
i =1

with this b, (o., o. ) becomes,

(2.8c)

(2.8(1)

b(o, o )= f dt dt'[Q1Q( '+(p —1)Q3Q4Q( ],
(2.9)

where it=pp J /2 and the explicit dependence of the
Q's on o or o. has been suppressed. The path integrals
in Eq. (2.7a) are evaluated by constraining Q„(o ) =—

Q& (a
constant) and then integrating over all possible values of
the constant. The constraint is introduced through the
Lagrange multiplier A,„. This allows us to write Eq.
(2.7a) as

4 N[Z]J=f g D [Q„]f g 2
. D[&„]exP NG(Q„—, A,„)+1 nf D[o]D[cr] e.xpL(cr, cr, k„,Q )

p=1 @=1

where

4

G(Q„,&„)=f dt dt' g A,„Q„— f dt dt'[Q, (t, t')Q( '(t, t')+(p —1)Q3(t, t')Q4(t, t')Q( 2(t, t')]
@=1

P P

(2. 10a)

(2.10b)

and the efFective Lagrangian is

L(cr, o, A„,Q„).=Lo(cr, cr)+ f dt dt'g [A, , (t, t')io;(t)i&;(t')+. A2(t, t')cr;(t)cr;(t')

+X3(t, t')i o, (t)cr, (t')+ A4(t, t')o, (t)i&, (t')] . (2.10c)

In the limit of N~ oo, the integrations over both Q„
and A,„can be evaluated using saddle-point methods,
which amounts to replacing Q„and k„by their station-
ary values: This yields

N

Q, =—g (i cr; ( t )i o;( t '
) ), . (2. 1 la)

N, .

N

Q, =—g (o, (t)cr;(t')),
i =1

N

Q3 ———g (i&, (t)cr;(t')), (2.11c)

N

Q4 ———g (o;(t)io;(t')), (2.1 lcl)

(2.11b)

(2.12a)

~2= (p —1)[Q1(Q2)' '+(p —2)Q3Q4QI
2

where the average in Eqs. (2.11) is calculated with the
Lagrangian given by Eq. (2.10c). The stationary values
of k are given by

gO P (QO )P
—1

2

gO P (p 1)QO(QO)P —2

2
(2. 12d)

Comparison of Eqs. (2.11) and (2.4) leads to

QO =C (t t '), —
Q,'=Q4' —G(t t') . —

(2.13a)

(2.13b)

Using Eqs. (2.12) and (2.13) in Eq. (2.10c), one can ob-
tain an effective dynamic Lagrangian. The equation of
motion for o;(co), averaged over the quenched random
interactions, is

o;(co)=Go(co)[f;(co)+&;(co)]
d CO1dM2

4uGo(co)—f o;(co; )cr; (co2)
(2m )

The structure of the field theory suggests that Q, =0 is a
self-consistent solution for all temperatures and this is
also necessary for a causal theory. It can also be shown
that for p ~ 2, the functional Jacobian, VIo ], gets renor-
malized to

V[ o I +g f Ao2cr,-(t)o, (t')dt dt' .

gO P ( 1 )QO(QO y —2

2

(2.12b)

(2.12c)
Q cr; ( Ql —cO 1

—Ci)2 ),
with Go(co) a renormalized bare propagator,

(2.14a)
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Go '(~)=ro —&~ra '

—p(p —1) f dt e' 'G(t)C~ (r),
0

and f; (cg) a renormalized noise term,

(f; (co)fi (co'.) ) =2ir5(co+co')&;

(2.14b)

—+pf , dt e' 'C~ '(t) . (2.14c)
Io oo

The strategy employed to derive Eqs. (2.14} can also be
used when p =2 and this would lead to the dynamical
equations obtained by Sompolinsky and Zippelius.

III. APPROXIMATE SOLUTION
OF DYNAMICAL EQUATIONS

In this section we approximately solve the dynamical
equations given by Eqs. (2.14), using the causal relation
indicated in Eq. (2.4c), and discuss the dynamical glass
transition predicted by them. Unlike the usual SK, or
p =2, model, we are not able to make general state-
ments, valid to all orders in u, about the critical behav-
ior as Tg is approached from above. The difference is
due to the discontinuous nature of the transition for spin
models with p & 2. We will work within a small-u
theory. An important consequence of this approxima-
tion is that our treatment of the SG transition in these
models is exact only for models with p =2+@ with e
small (an analytic continuation to fractional p values is
assumed). The exactness of our procedure for small e
will be discussed further below and confirmed in Sec. IV,
where we will give the equilibrium solution of these
models in both the hard and soft limits. The basic tech-
nical idea is that for small e the discontinuities at Tg are
of O(e) and an order parameter expansion is possible.
We believe that even with this limitation, one can draw
general conclusions.

We treat the u term in Eqs. (2.14) in the one-loop or
mean-field approximation. Corrections will be discussed
below. An equation for, Im & 0,

C'(~)= f dt e' 'C(t),
0

(3.1a)

can be derived from Eqs. (2.14) and (2.4c). In the ergod-
ic phase we obtain

C(t =0)
C.'(~)= —ico+roI (co)

(3.1b)

r '(~)=r '+& f dre' 'C~ '(~) .
0

(3.1(l)

with the initial equal-time spin-correlation function
given by

C(t =0)=ra ' ——[ro —pC '(r =0) 1+2uC(t =0)]
(3.1c)

I (co) is a renormalized kinetic coefficient,

with P(t =0)=1, vo=rol 0, and the nonlinear coupling
given by A=pro

For p =3 these equations are mathematically identical
to the dynamical equations for the structural glass prob-
lem. We argue below that these equations have similar
critical properties for any p &2. Equation (3.1c) for
C(t =0} is an additional equation in the SG problem
that self-consistently determines the equal-time spin
correlations. In the structural glass problem the analo-
gous quantity is the static structure factor, which is as-
sumed to be insensitive to the transition from the liquid
state to the glassy state. Assuming here that C(t =0) is
continuous at Tg, it can be easily shown that Eqs. (3.1)
predict a glass transition at T =Tg, and a continuous
slowing down of the dynamics as Tg is approached from
above. The critical properties can be determined by gen-
eralizing (to any p & 2) the arguments given for the
structural glass problem. ' ' First, we define the
Edwards-Anderson order parameter,

qFp, ——q = lim C(t) . (3.2a)

Assuming that C'(co) has a time-persistent part with a
nonzero value of q and a decaying part, Eqs. (3.1) yield
the equation of state,

(3.2b)

This equation leads to a physical q at a critical tempera-
ture given by Eq (3.1c.) and p~p„

p —2

C, =ro, (S —1} .p —1
(3.3a)

p —2

The critical EA order parameter is

p —2
q, =q

r=r, Fo, (p —1)

For T = Tg the approach to Eq. (3.3b) is given by

p —2C(tab oo )=
1 —aro, (p —1) t '

(3.3b)

(3.4a)

Here, A is a constant and a is an exponent that is be-
tween 0 and 1. An equation for a is obtained by insert-
ing Eq. (3.4a) into Eq. (3.1). We obtain

2I (1 —a) = I (1—2a), (3.4b)

with I the gamma function. In deriving Eq. (3.4b) from
Eqs. (3.1) it is clear that it is valid for any p & 2 but not
for p =2. Also, note that the EA order parameter at Tg
is discontinuous for any p &2. We conclude that the
usual SK model is an exceptional case. Solving Eq.
(3.4b) yields a =0.395. For T~ T~+ one also finds

I (T~T+)-
~

T —T [
"+ ' =

~

T —T

(3.5)
for any p &2.

The analytic results given by Eqs. (3.4) and (3.5) are
quite surprising because they are independent of p for
any p & 2. For p =2 the exponent in Eq. (3.5) is clearly

For use below we note that in the domain,
P( t ) =C ( t) /C (0) satisfies the equation

v, 'p(r)+p(t)+& f dr, qY '(r r, )p(r, )=0, (3.le)—
0
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p, =r(), '(1 —e inc+@), (3.6a)

q, =
roc

(3.6b)

Next, for small e we discuss the two-loop or O(u )

corrections to Eqs. (3.1). At T =Tg, the equation for ro,
is modified by a term of 0[u C (t =0)). This term can
be made arbitrarily small by a proper choice of u. The
equation for q, has an additional term that leads to
O(e ) corrections to Eq. (3.6b). We conclude that at Ts
the two-loop corrections do not change the structure of

unity. To check the asymptotic results presented above,
we have numerically solved Eq. (3.1e) for several values
of p. In Fig. 1 a plot of in/(t) as a function of t for
p =2.01 for various values of the coupling constants A,

are given. For A, &A., ( —1.06) the decay is clearly ex-
ponential at long times. The predicted behavior of P(t),
as taboo for A, =A,, [cf. Eq. (3.4a)], was confirmed by
plotting In[/(t) —qE&] as a function of t for various
values of p. This figure (not shown) yielded a straight
line, the slope of which is 1 —cx. The value of a for
p =2.01, 2.5, and 3.0 was equal to 0.39, in accord with
the solution given by Eq. (3.4b). It should be pointed
out that for p sufficiently close to 2, Eq. (3.4a) was
satisfied, with a=0.395, only for very long times.

From the results shown in Fig. 1, the value of the
effective kinetic coefticient I can be obtained as a func-
tion of A, . In Fig. 2 we show a plot of F as a function of
A,, —A, for p =2.01 and 2.5. Curves labeled (2) and (4)
correspond to I obtained numerically for p =2.5 and
2.01, respectively. For comparison the asymptotic be-
havior predicted by Eqs. (3.5) is also shown. Curve (1)
corresponds to p =2.5, while that labeled (3) is for
p =2.01. The value of F is normalized so that, for A, =O,
I is unity. Note that the value of I for p =2.01 have
been divided by 10. It is clear that A,, —A, &0.008, and
the asymptotic result given by Eqs. (3.5) is in agreement
with the numerical solution. This also suggests that Eqs.
(3.5) are really only valid for T sufficiently close to Tg.
Thus the numerical results shown in Figs. 1 and 2 sup-
port the asymptotic predictions of Eqs. (3.4) and (3.5).

For use later on we give Eqs. (3.3) to O(e=p —2),

0i
0.00 0.02 0.04

(x,-x)

FIG. 2. Renormalized kinetic coefficient I as a function of
X, —g for p =2.01 and 2.5. Curves (1) and (3) represent the
asymptotic result, given by Eq. (3.5), for p =2.5 and 2.01, re-
spectively. Curves (2) and (4) correspond to I obtained by nu-
merically integrating Eq. (3.1e). The parameters are the same
as for Fig. 1. The value of I for p =2.01 has been divided by
10.

C(t =0)=,+q .
1

ro+ pq J' —' (3.7a)

the theory to O(e). This will also be confirmed in Sec.
IV.

Before continuing we wish to point out an important
technical feature. The self-consistent equation for
C(t =0) given by Eq. (3.1c) ceases to have a physical
solution for sufficiently large p or low temperature.
With the one-loop approximation given by Eq. (3.1c) the
glass-transition temperature is in the physical range only
for small e and for u ~O(gine). For larger e, higher-
order u terms are needed in Eq. (3.1c).

Finally, we discuss the assumption that C(t =0) is
continuous at T~. This assumption seems physically well
motivated for any glass transition. Our discussion
here, however, will lead to an interesting paradox which
will be clarified in Sec. IV of this paper. We first argue
that Eqs. (3.1) and (2.4) naively lead to a complete
specification of the problem and that no assumption on
C(t =0) is needed. Assuming C(t~ co )=q, Eq. (2.4)
yields

Equations (2.14a) and (2.14c) give,

pq&-'

(ro+ pq~ ')' (3.7b)

-43.0
0 2000 4000

FICx. 1. Plot of lnt1i{t) for p =2.01 as a function of t [cf. Eq.
(3.1e)] for various values of the coupling constants. The pa-
rameters correspond to vo ——1.0 and ro ——1.0. The critical cou-
pling constant A,, is given by Eq. (3.3a).

Equations (3.7a) and (3.7b) are not consistent with a con-
tinuous C(t =0) at T =Ts, nor is Eq. (3.7b) consistent
with Eq. (3.2b). It is straightforward to verify that the
Eqs. (3.7) are identical to the equations (cf. Sec. IV ob-
tained by a replica-symmetric (RS) equilibrium solution
of the p-spin model ~ We conclude that a RS solution of
the p-spin model does not lead to a Tg where the dynam-
ical equations predict a glass transition. We solve this
apparent paradox in Sec. IV (and the Appendix) by not-
ing that a RS solution to the (p &2)-spin model is al-
ways unstable and cannot be used to locate Tg. We then
relate the dynamical T~ to a broken RS solution of the
p-spin model.
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IV. EQUILIBRIUM DESCRIPTION
OF THE SG TRANSITION

IN p =2+ e MODELS

In this section we use equilibrium statistical mechan-
ics and replica methods to discuss the SG transition in
p-spin interaction SG models. In order to make our dis-
cussion as simple as possible, we will restrict ourselves to
p =2+a, with e&(1. For this case we will show that
the discontinuities at the equilibrium glass-transition
temperature Ts, are of O(e), and that the expansion of
the free energy in terms of the order parameter is possi-
ble (at least near Tg). In order to make connections with
the dynamical calculations presented in Secs. II and III,
we start with the soft-spin Hamiltonian given by Eq.
(2.2). In our equilibrium calculation the hard or Ising
limit is easily taken. In fact, the hard limit is algebrai-
cally simplier.

Generalizing the formalism of Gross and Mezard for
the hard p-spin model to the soft p-spin model, we find
that the free energy per spin is given by the maximum of
the function (J =1 from now on),

PF P C~ P+~,C — g Q.'b+
2 g ~.bQ.b4 '

a~/ a~b

Here, n (~0) is the number of replicas and a, b, c are re-
plica indices. C gives the equal-time spin-correlation
function (C =Cp ——1, in the hard limit) which we have
assumed to be replica independent, and Q,b is the usual
replica order parameter. A., and X,b are Lagrange multi-
pliers related to C and Q,b that have been introduced to
carry out spin integrals in the mean-field limit.

We can discuss the equilibrium SG transition in the
p =2+@ model in one of two equivalent ways. Earlier
work on the Potts glass and on the p~ao model sug-
gest that only one replica-symmetry breaking (RSB) is
needed to discuss the SG transition in the p =2+a mod-
el. If the free energy is expressed in terms of one replica
breaking, which introduces the parameters A,p, qp,
q& (=q), and A,

&
(=A, ), it can be shown that the varia-

tional equations yield the solution qp=kp=0. Thus one
obtains a free energy that depends only on two SG order
parameters, q and y =1—m. The replicas overlap with
strength q or they do not, and the fraction of replicas
that overlap is given by y =1—m. Both q and y are
determined variationally from Eq. (4.1a). An equivalent
procedure is to use the continuum of order parameters,
q(x) [and A(x)], introduced by Parisi to solve the SK
model. Examination of the theory shows that the only
physical order parameter must have the form, 0 & x ( 1,

Cp—lnAp — g A,,b4n, b

C
,blab, A,„+O(,A, ),

a~b~c

where Cp ——A 2/A p, with

A„=f dcr cr" exp[ —,'(rp —2—A,, )cr —ucr ) .

(4.1a)

(4.1b)

q (x)=qe(x —x ), (4.2)

with q the strength of the overlap and x ( ~m) related
to the fraction of replicas that overlap. Once again, q
and the break point x can be determined variationally.
We use the second procedure here because it is easier to
discuss (cf. the Appendix) the stabihty of the theory
within this formulation.

With the Parisi ansatz, Eq. (4.1a) reads

PF PC~ p q~(x) q(xQ, (x) CO~ (x)
+A.,C —ln Ap+ dx +N 4 0 4 2 4

C3
f dx xA, (x)+3k(x) f dy A, (y) +O(X4) .

6 0 0
(4.3)

The saddle-point (SP) equation PF/Qq(x) =0 yields,

A,(x)=pq~ '(x), (4.4a)

PF P2Cu
+~,C —lndp

and oF/6A, (x) =0 gives

q(x)=Cp, (x)—Cpxk (x) —C,' f"dy p (y)
0

—2CpA(x) f dy X(y)+O(A3) .
X

(4.4b)

+(1—x) /3 q~ qA. Co~
4 2 4

Cp

6
(1—x )(2 —x )X (4.5)

By repeated differentiation of Eq. (4.4b) with respect to x
it is easy to show that if the O(A, ) term is neglected,
then a physical, nondecreasing-function-of-x, continuous,
Parisi order parameter is not possible. The conclusion is
that the only possible Parisi order parameter is the
discontinuous one given by Eq. (4.2). Using Eq. (4.2) in
Eq. (4.3) yields

The SP solution of Eq. (4.5) yields

1=Cppq~ —Cpp q ~ (2 —x),
2 2 3

3 1 p pCp 2 p Cp
2q 2

+
4 q

0P p

(4.6a)

(4.6b)
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(4.6c)

A nontrivial dependence of Eqs. (4.2) and (4.6a) on x in-
dicates that RS is broken. For p =2 it is easy to show
that Eqs. (4.6a) and (4.6b) lead to x =0. This is due to
the fact that RS is broken in the SK model only if terms
of O(A, ) are retained in Eqs. (4.1). We show here that
RS is broken much more strongly, even in the A, theory,
in p ) 2 SG models. We also note that structure of the
theory to O(A, ) is independent of the order in u con-
sidered since in Eqs. (4.6) only Co appears. We conclude
that the SG transition in the hard and soft models are
identical for small e.

An equation for C follows from maximizing Eq. (4.5)
with respect to A, The equilibrium critical temperature
Tg is obtained when these equations first have a physical
solution, q )0, 1 —x )0. At critically, x = 1, and the
self-consistent one-loop equation for C(T = Tz)=C, is
given by

1
C, —=Co. =

roc
=(ro —p, C~ '+12uC, ) (4.7a)

The critical parameters, to 0 ( e ) are

36
qc=

2 roc

p, =ro,+'[I —@In( —', e)+ —,'e] .

(4.7b)

(4.7c)

Comparing Eqs. (3.6a) and (4.7c) and using p=P p/2,
we see that the dynamical transition occurs before the
equilibrium transition. This will be discussed further
below. To O(t =1—T/T~) the soft model is cumber-
some. In the hard limit one obtains

q = —3(@+t),

x =1—t/e,
( T~ ) —1+e ln( —', —e ) —e,

and the free energy given by

/3I' j3 p p, 'q
N 4 6

(4.8a)

(4.8b)

(4.8c)

(4.8d)

1 Co2pqP
—2 Cp3pq 2P —3 (4.9a)

with Co given by Eq. (4.7a) or (3.1c). For comparison
we also expand Eq. (3.7b),

1=Copq —2Cop q (4.9b)

We next compare these expansions with Eq. (4.6a).
Equation (4.9b) corresponds to Eq. (4.6a) with x =0 and,

Note that FsG)FPM, as is usual for SG. From Eq.
(4.8d) it follows that there is no latent heat at Ts and
that the specific heat is discontinuous at Tg. In the Ap-
pendix we show that this SG phase is stable (within the
Parisi subspace) according to a local replica-based stabil-
ity analysis.

Next, we discuss the connection between this equilibri-
um SG transition and the dynamical transition discussed
in Sec. III. First we expand Eq. (3.2b) in powers of q to
an order consistent with Eqs. (4.1a) and (4.6a),

as discussed in Sec. III, it is the RS solution of the p-spin
model. The dynamical theory leads to Eq. (4.9a), which
corresponds to Eq. (4.6b) with X= 1, and it corresponds
to the BRS solution of the p-spin model at critically,
where x =1. However, at Tg the static theory also re-
quires that Eq. (4.6b) be satisfied, and this additional
equation leads to Tg & Tg, with Tg the transition temper-
ature according to the dynamical theory. The important
point is that the dynamical theories for this class of
models lead to a Tg that is apparently greater than that
predicted by the equilibrium theory. We interpret this
as the free energy being maximized at Tg by the value x
at its physical endpoint x = 1 in the temperature
Tg ) T ) Tg The variation al equation for x given by
Eq. (4.6b) is not a relevant equation if F as a function of
x is not maximized in the physical region, 0&x & 1. We
discuss this point further in Sec. V. Finally, we point
out that the BRS solution gives a continuous C at T
since x =1. This is in accord with the dynamical theory.

Technically, the freezing predicted by the dynamical
theory is easy to understand using local stability theory.
For T & Tz the dynamical equation for q =C(tab oo )
has the stable trivial solutions and unphysical and unsta-
ble complex solutions. At Tg two of the complex solu-
tions become degenerate real solutions. At T there are
three real critical points x; (i =1,2, 3) of the dynamical
equation that satisfy x

~

——0 &x2 &x3 ——q, & C(t =0).
The fixed points x& and x3 ——q, are stable and xz is an
unstable fixed point. We then have a situation where
C(t~ao)=0 and C(taboo)=q, are both stable solu-
tions, but where it is impossible to reach C (t ~ oo ) =0
due to the intervening unstable fixed point. The only
possible conclusion is that the system freezes into a SG
state because it cannot reach the equilibrium state
defined by C(taboo)=0. It is interesting to point out
that in the SK model the situation is quite different. The
dynamical equation has only two fixed points and at T
there is an exchange of stability between the fixed points.

V. DISCUSSION

We conclude this paper with a discussion of our re-
sults.

(1) We have emphasized the discontinuous nature of
the SG transition in the p )2 SG models. It is interest-
ing to point out that the transition is only partly discon-
tinuous. In the thermodynamic transition qEA is discon-
tinuous, but there is no latent heat at Tg and the specific
heat is discontinuous at Tg. These last two features are
common to standard mean-field continuous transitions.
In the dynamical transition, qEA is also discontinuous,
but there is a continuous slowing down as Tg is ap-
proached from above.

It is also interesting to point out the close formal con-
nections with the dynamical structural glass theories.
The analog of qE& is the long-time limit of the density
correlation function (DCF), which is discontinuous at
the (mean-field) dynamical transition temperature T~.
Physically, the discontinuity seems unavoidable. It
reflects the fact that the static elastic constants, or
Debye-Wailer factors, in the glassy phase are also
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nonzero in the liquid phase at finite frequency. At Tg
the finite-frequency elastic constants in the liquid phase
cross over smoothly to the static elastic constants in the
glass. (2) The SG transition in the usual SK model is a
blocking transition. A continuation, to T & Tg, of the
paramagnetic free energy, FpM is a lower than the SG
free energy Fs&. The physical reason for the occurrence
of the SG transition is the occurrence of a shattered
spin-glass susceptability in the paramagnetic phase at
Tg. The occurrence of the SG phase prevents a catas-
trophe for all T & Tg.

The situation in the p ~ 2 SG model is less clear. The
thermodynamic transition discussed in Sec. IV does not
appear to be a blocking transition. It has been conjec-
tured that in the Potts model the physical mechanism
for the transition is related to finite-X fluctuations that
become divergent as T~Tg. This is in agreement with
results for the phoo SG model. It is interesting to
point out that in the dynamical transition discussed in
Sec. III, the effective SG susceptability is singular (cf.
the Appendix) as T~T~.

(3) It is interesting to consider the free-energy surface
as a function of q and x. At Tz, Fso(q, x ) is a maximum
in the physical region, 0 &x & 1, the x =1 and q given by
Eq. (4.6a). For Tg & T& T~, this solution continues to be
a maximum as long as q is given in Eq. (4.6a) and x is
fixed to be unity. For T & Tg, Fsz develops a maximum
for q and x given by Eqs. (4.6a) and (4.6b). This suggests
that the break point x has a step-function structure and
that in reality there are two transitions. The first occurs
at Tg and corresponds to the dynamical transition where
there is critical slowing down as T~Tg+. The free ener-
gy is simply FPM since x is fixed to be unity and, as a
consequence, there are no obvious thermodynamic
anomalies. The second transition is the thermodynamic
one at T~, which was discussed in Sec. IV. There is no
latent heat, but the specific heat is discontinuous at Tg.

(4) Spin glasses are characterized by many macroscop-
ically equivalent free-energy states. In mean-field SG
models, the barriers between these states are macroscopi-
cally large. It is unclear whether the barriers are macro-
scopic in finite-range spin glasses. It seems likely that in
structural glasses some of the barriers are not macro-
scopic. The transitions between the states will be re-
sponsible for the slow transport processes and hyster-
isis phenomena, which occur in the glass-transition re-
gion. Using this and the discussion in point (3) above,
we can present a scenario for the glass transition and an
interpretation of the dynamical theories of the structural
glass transition.

We first assume that the dynamical structural glass
theories are at the level of the mean-field SG theory
presented here and that glass transitions with discontinu-
ous EA order parameters are all similar. The predicted
transition temperature should be identified with a tem-
perature where there is a dramatic change (at least in
fragile glass formers) in the slope of the Arrhenius plot
of the transport properties. Owing to transitions be-
tween different free-energy states, transport processes are
not frozen below this temperature, but they are extreme-
ly slow. At lower temperature, at the analog of Tg here,

there is a smeared-out thermodynamic transition where
there is a rapid change in the heat capacity. This tern-
perature would correspond to the conventional glass-
transition temperature. In agreement with the picture
given above, it is interesting to point out that in
structural glasses transport changes smoothly as one
goes through the region where the specific heat changes
markedly.

(5) The role of frustration (in the sense of competing
interactions) in dictating the dynamics in supercooled
liquids, as the structural glass transition is approached,
is not obvious. In fact, noting that a system of particles
interacting by purely repulsive potential (in the
extreme-limit hard spheres) can form structures resem-
bling those of metallic glasses suggests that frustration
in the sense used in the context of spin glasses is not re-
quired. If frustration is evident then it is of a different
type. Furthermore, the equations containing the non-
linear feedback mechanism, which lead to the continu-
ous slowing down of the transport coeScients in the
structural glass problem, were obtained without any ob-
vious appeal to frustration.

It is interesting to point out that in spin models with
randomness but no frustration the dynamics in the er-
godic phase at low temperatures is similar to that ob-
served in a frustrated and disordered spin system as the
spin-glass —transition temperature is approached.
This is because in both cases the free-energy surface has
a large number of local minima (metastable states)
separated by barriers which can be surmounted by dy-
namics involving a small number of spins. The only
effect of frustration seems to be in producing many
symmetry-unrelated ground states. This probably has an
insignificant consequence on the continuous slowing
down at temperatures where the system does not explore
the topology of the free-energy surface near the ground
state.

Finally, we point out that, in the dynamical theories
of the spin-glass transition, the role of frustration in the
ergodic phase is not obvious after the quenched average
over the random interactions is carried out. What seems
essential in causing the critica1 slowing down as T~T~+
is the form of the nonlinearities in the dynamical equa-
tions. As has already been emphasized, the dynamical
theory for the p & 2 spin-glass models (at least in the er-
godic phase) are actually very similar to the dynamical
equations in the structural glass theories.

(6) In the analysis presented in Sec. IV, we neglected
the 0 (A, ) term in Eq. (4.3). Including this term leads to
another SG transition at temperatures less than Tg. The
new SG phase has a more complicated (there are many
RS breakings) Parisi order parameter. The resulting
spin-glass transition can be investigated by retaining
higher-order A, terms in the expansion of the free ener-
gy. It is interesting to note that in structural glasses
there are often additional transitions below the conven-
tional glass-transition temperature.

(7) We caution the reader that our discussion at the
end of Sec. III does not imply a violation of fluctuation
dissipation theorem in our solution. Rather, it implies
that Eqs. (2.14) are not valid for T =Tg if C(t =0) is
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continuous at T~ and if qz& is discontinuous at T~. For
a discussion of this point in a different context, see the
Appendix of the paper by Goetze and Sjogren.

(8) It should be pointed out that if there is an equilib-
rium transition at T~, with x fixed to be 1, then it seems
problematic to describe it with the replica approach, as
is done here. The reason is because in the replica ap-
proach there are factors of 1 —x that are assumed to be
nonzero in obtaining the equation of state given by Eq.
(4.6a). This technical problem is due to the fact that
x =1 implies that there is no overlap between replicas
for the discontinuous Parisi solution of the form given in
Eq. (4.2). On the other hand, Eqs. (4.1) arise from a for-
malism which involves an order-parameter expansion of
what is essentially a replica overlap. Even with this

problem we feel that the procedure used in Sec. IV is
reasonable. If x =1, then there is only self-overlap, q
However, it is known that q(x =1)=qz~ in the Parisi
approach.
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APPENDIX

In this Appendix we consider the stability of the equilibrium SG phase discussed in Sec. IV. Here we restrict our-
selves to a stability analysis in the Parisi subspace. We also comment on the local stability of the dynamic transition
discussed in Sec. III. For algebraic simplicity, we consider the hard p ( =2+.e) model for which the free energy may
be written as

2 2

= —ln2 — +max —— g Q,q+ —, g A,,qQ, q
——, g A,,q

—
—, g A,,qA, q, A,„

a, b a, b a, b a&b&c

Using the Parisi ansatz for Q,l„ the continuum limit of Eq. (Al) becomes

+O(A. ) . (A 1)

= —ln2 — —f dx ——,'A, (x)q(x)+ —,'A, (x) ——,
' f dx xk (x)+3k(x) f A, (x)dxX 4 o 2p 0 0

(A2)

Thus, in order to ascertain the stability of the solution
presented in Sec. IV, we have to analyze the second vari-
ation of /iF/N with respect to both A, (x) and q (x). This
would yield a 2X2 matrix whose eigenvalue spectrum
will indicate the stability of the variational solution.
Here we perform a restricted analysis; i.e., in the free
energy given by Eq. (A2) we use A, (x) =pqP '(x) [cf. Eq.
(4.4a)] to eliminate k(x). Therefore, fluctuations in A, (x)
are manifested only through fluctuations in q (x ).

With this the crucial quantity that determines the sta-
bility of the SG phase is

where

(p —1)[—(p —1)qP +p(2p —3)q P
2

—2p'(2p —3)q'p '+p (p —2)q' 'x ] .

(A4d)

Since F22 is a negative semidefinite, we concentrate here
on Fz&. Letting p =2+@and using Eq. (4.8a), we obtain,
at t=0,

Fz ———,
' f dx f dy 5q(x)5q(y) .

5'/iF /X
o o 5q x 5q y

(A3) (p —1)q'[e+O(e lnE)] .
4

(A5)

F2 F21 +F22

with

(A4a)

Here, 5q(x) is the fluctuation in the order parameter
q(x), and Eq. (A3) denotes that the second variational of
/3F/N is to be evaluated with the equilibrium q (x) given
by Eqs. (4.2) and (4.8). The SG phase is locally stable if
Fz &0 for any 5q(x). Substituting Eq. (4.2) into (A3)
yields

Since 6 &0, we conclude that the variational solution of
the SG phase discussed in Sec. IV is locally stable.

We conclude with two comments. First, the SG tran-
sition predicted by the RS solution (x =0) can be easily
shown to be unstable even at t =0. This implies that RS
methods cannot be used to locate the glass-transition
temperature if the transition is discontinuous. Second, if
we use the critical parameters implied by the dynamical
theory,

and

Fz| ———,
' f dx[5q(x)] 6

X
(A4b)

p, =1—e In@+@,

(A6a)

(A6b)

3( 1)2 3P —5 2F„= "P q f—dx5q(x)
2 X

(A4c) then this phase transition can be shown to be marginally
stable at Ts according to Eq. (A4d).
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