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Critical dynamics of random-field Ising systems with conserved order parameter
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Motivated by recent experiments on critical binary Auid mixtures in porous media, the dynamics

of random-field Ising systems with conserved order parameter are considered. In the one-phase re-

gime a new dynamic crossover length l„ is found: for q &&q =2~/l„ the temporal decay of S (q, t)

is well approximated by a single exponential whose decay rate is determined by diffusive dynamics,

while for q ~q, the temporal decay has a strongly nonexponential component, reAecting the ac-

tivated dynamics of this system. As the ordering transition is approached, this dynamic length l„
diverges as l„-exp(cg~), where g is the static correlation length, and the activation free-energy

barriers are of order eT(~ (T being the temperature and e a nonuniversal constant).

A consistent picture of the dynamic critical behavior
of random-field Ising systems has recently been put for-
ward by Villain' and Fisher. In these systems the criti-
cal point is found to be governed by a zero-temperature
renormalization-group (RG) fixed point. This results in
a new type of actiuated dynamic scaling, different from
the conventional dynamic scaling found at critical
points governed by finite-temperature RG fixed points.
In conventional dynamic scaling, the characteristic time
scale ~ diverges as the critical point is approached as a
power of the correlation length g, i.e., r-P. For ac-
tivated dynamic scaling, free-energy barriers of height
of order g~, $~0, and thus large compared to the tem-
perature T have to be crossed to relax fluctuations on
length scale g. This results in a relaxation time that
diverges exponentially with g, i.e. , (in~)-g~.

However, only dynamics in the absence of conserva-
tion laws were explicitly treated by Villain' and Fisher.
Such dynamics, i.e., a random-field model A in the
classification of Hohenberg and Halperin, should be ap-
propriate for dilute Ising antiferromagnets in a uniform
field, which are random-field Ising systems that have at-
tracted much experimental study. Binary fluid mixtures
in random porous media are another class of random-
field Ising systems of experimental interest, ' whose dy-
namics are constrained by order-parameter conservation.
Recent light-scattering experiments by Dierker and
Wiltzius probing relaxation in such a system prompted
the present theoretical study of the dynamics of
random-field Ising systems with order-parameter conser-
vation, i.e., model B. I find that in the one-phase re-
girne when the random-field is strong, the conservation
law causes a qualitative change [e.g. , in S (q, t)] from the
equilibrium dynamics without the conservation law at
momenta q satisfying qg & 1, where g is the static corre-
lation length. There should be a crossover from nonex-
ponential, activated dynamics at qg=O(1) to standard
diffusive exponential relaxation for q «q . The cross-
over momentum q is found to vanish exponentially with

g as g diverges For q &. q «g ', S(q, t) is found to
consist of a sum of a diffusive part, whose temporal de-
cay is well approximated by a single exponential, and an

activated, strongly nonexponential part. The former
part dominates for q «q, while the latter dominates
for q(=O(1). This picture is quite consistent with the
behavior seen by Dierker and Wiltzius near the phase-
separation point of a critical mixture of lutidine and wa-
ter in porous Vycor glass.

In many physical random-field systems there are also
other crossovers occurring as g increases, and the full
picture can be very complicated. For binary fluids in
random porous media there is a crossover from a regime
where momentum conservation is playing a role in the
dynamics (a model H regime ) for g smaller than a
length presumably of order the typical pore size, to a re-
gime for larger g where hydrodynamic damping due to
the random medium completely removes momentum
conservation at length scales of order g. If the random
fields generated by the random medium are sufficiently
weak, there will be a subsequent crossover from a regime
of weak random field but strongly random geometry to a
strong random-field regime as g increases further.
Otherwise, the random field is already strong for g of or-
der the hydrodynamic crossover length. In this paper I
focus only on the crossover from activated to diffusive
dynamics, considering only length scales larger than the
typical pore size and assuming g is large enough that we
are in the strong random-field regime, where the activa-
tion free-energy barriers hindering the system's relaxa-
tion are large compared to the temperature T. Only
three-dimensional systems will be explicitly considered;
generalization to other dimensionalities is straightfor-
ward. The behavior discussed here will even occur in
two-dimensional random-field systems if g gets large
enough, though two-dimensional random-field systems
do not appear to have a true phase transition at which g
divei ges.

When the correlation length is g, each correlation
volume of linear size of order g has its own relaxation
time due to thermally activated crossing of a free-energy
barrier of height of order g~. ' The exponent f is prob-
ably equal to 6, where —0 is the renormalization-group
eigenvalue of the temperature at the zero-temperature
fixed point governing random-field Ising critical behav-
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S(O, t) =S(0,0)f(T ln(t/to)/bg~), (2)

where f (x) is a scaling function. Such behavior has
been seen, at least qualitatively, in recent Monte Carlo
simulations by Ogielski and Huse, who fit their data to
the empirical form f (x)= exp( —x )." If the random
field is weak at microscopic scales and g is large com-
pared to the length, lo, at which the crossover from
weak to strong random field regimes occurs, then the
typical values of b will be of order T, /lo. If the ran-
dom field (RF) is strong, on the other hand, b will be of
order ERF/a~, where a is a microscopic length and
ERF ~ T is a measure of the free-energy barriers at that
length scale. For phase-separating binary fluids in ran-
dom porous media, a is presumably of order the typical
pore size, while ERF is the typical free-energy barrier
that must be crossed to change the composition in a
pore (e.g. , by moving a microscopic interface across the
pore).

If we now have order parameter conservation (model
B), a local fluctuation on length scale g will have some-
what slower relaxation, since its dynamics are con-
strained by the conservation law. The activation bar-
riers that must be crossed are a little higher due to the
constraint, but there should be no qualitative change at
this length scale. The local relaxation time for such fluc-
tuations is

(r r) = t exop [b ( T, r )g~ /T J,
with b again varying substantially from correlation
volume to correlation volume, and taking on somewhat
larger values than b (but b/b is of order unity). A fluc-
tuation of momentum q, with q g = 2m can relax by
more-or-less independent, parallel relaxation of regions
of linear size of order g, even with the conservation law.
Thus for g large and q /=2' we expect the time depen-
dence of S(q, t) to be qualitatively similar for both model
A and model B random-field systems, both being qualita-
tively like the S(q =O, t) with model A dynamics as dis-
cussed above and seen in the simulations of Ogielski and
Huse. In fact, the conservation law may actually be
dangerously irrelevant at the RG fixed point governing
random-field critical behavior, in which case the scaling
function for S(q, t) at qg=O(l) in the limit g~ oo, will
be the same for models A and B.

ior. For two-dimensional systems 0=1, while 0=1.5
for three-dimensiona1 systems. ' ' ' Because of these
free-energy barriers, the local relaxation time for a fluc-
tuation that changes the order parameter (the composi-
tion of a binary Quid) in a region of linear size g at r is

r(r) =to exp[b(T, r)g~/T J, (1)
where to is a "microscopic" time (which may vary as a
power of g) and the amplitude of the barriers b ( T, r) & 0
varies from correlation volume to correlation volume
and is broadly distributed so the variations in b are com-
parable to its typical magnitude b. In the absence of a
conservation law (model A), this variation of b with r re-
sults in a spatially averaged relaxation function
S(q =0, t) whose decay occurs over a range in (lnt) pro-
portional to g~. For large g, the scaling form expected
1S

S(q, t) = (p(q, O)p( —q, t) ) —(p(q) ) (p( —q) ), (4)

where p(q, t) is the Fourier transform of the local order
parameter (the composition for a binary fluid) at
momentum q and time t. If the diffusion constant is D,
then the di(fusive relaxation of p(q) will be at a rate Dq .
The local relaxation of correlation volume i is at a rate

Thus, in discussing S(q, t) at a particular momen-
tum q, we may divide the correlation volumes into "fast"
modes with ~;q D ~ 1 and "slow" modes with ~;q D g 1.
Note these "modes" are local relaxational modes within
each correlation volume. Assuming we are in the strong
random-field regime so that lnr; is broadly distributed,
there are very few modes near the borderline between
"fast" and "slow" at ~;q D=1. The relaxation of the
fast modes contribution to S(q, t) is diff'usion limited,
since the local relaxation rate ~,

' is so fast, while the re-
laxation of the slow modes' contribution is limited by
the local relaxation. Dividing the modes this way we
have

S(q, t)= —g I;e1

V
slow

q~agI;
1

fast

where the sums run over all the slow and fast, respec-
tively, modes in the system, and V is its volume. This
expression exhibits the crossover from a simple exponen-
tial decay due to diffusive relaxation for small q, where
there are essentially no slow modes, to a sum of a
diffusive exponential decay and a nonexponential decay
due to the broad distribution of relaxation rates of the
slow modes at larger q. This crossover occurs at
momentum q„, where

For long-wavelength (qg « 1) order-parameter fluc-
tuations, diffusive transport over distances of order the
wavelength must occur in order to relax the fluctuation
when we have order-parameter conservation. Thus we
must consider both the activated relaxation of individual
correlation volumes and diffusion between correlation
volumes. The local relaxation times are broadly distri-
buted on a logarithmic scale and this results in some
spatial variation in local diffusion rates. However, the
distribution of local diffusion rates is not broad on a log-
arithmic scale, as will be argued below, so we first con-
sider a model in which the diffusion rates are assumed to
be spatially uniform. Let us also restrict our attention to
lengths large compared to the correlation length, so the
individual correlation volumes may be treated as points.

Thus we consider the following model for the dynamic
correlations at equilibrium: Each correlation volume i
has its own relaxation time r, = exp(b;g~/T), and the
fluctuations of the total order parameter in i have inten-
sity I;. The variations in b; and I; from correlation
volume to correlation volume are comparable to their
typical magnitudes. As the fluctuations in the order pa-
rameter in volume i occur, the conservation law on the
order parameter tells us that diffusion into and out of
the surrounding domains is also occurring. Let us con-
sider the contribution of correlation volume i to the
truncated dynamic correlation function



36 CRITICAL DYNAMICS OF RANDOM-FIELD ISING SYSTEMS. . . 5385

~

ln(toq D )
~

—bg~/T —( 1n(r; Ito) )

for g in the strong random-field regime, where the angu-
lar brackets denote an average over correlation volumes
i. This introduces a new dynamic crossover length,
1„=2qrlq, that diverges as I —exp(cg~). The
coefficient c is of order b /T, but since the crossover is
gradual, the precise value of c is somewhat arbitrary, de-
pending on the details of the definition of q chosen.
This crossover has apparently been observed experimen-
tally by Dierker and %'iltzius in a critical mixture of Iu-
tidine and water in porous Vycor glass. Note that q„g
vanishes in the scaling limit g~ oo. This means that the
conservation law is acting as a dangerously irrelevant
variable and the diffusive regime q «q, does not exist in
the scaling limit where g~ oo with qg fixed.

Now let us examine the approximation of the uniform
diff'usion constant D that was made above. Since we are
dealing with a random system that has slow dynamics,
the local diffusion rate actually varies in both space and
time. Thus we should replace D with D;(t) and divide
the modes into "fast" and "slow" at r;q D;(t)=1. Be-
cause of the time- and space-dependence of D;(t), the
Fourier transform of the diffusion away from volume i
will not necessarily be of the simple Gaussian form
exp[ —tq D, (t)], but can be of a somewhat difFerent
shape. This changes the simple exponential decay in (5)
due to the fast modes into a somewhat nonexponential
decay, the magnitude of the effect depending on the time
dependence and the breadth of the distribution of D, (t)
at times t such that tq D;(t)=O(1). The local time-
dependent diffusion "coefficient" D;(t) is essentially the
ratio of the suitably coarse-grained local-order-
parameter conductivity coefficient X; (t) and susceptibili-
ty X;(t). For diffusion away from i, the mean-square dis-
tance diff'used in time t is tD;(t); this self-consistently
sets the length scale over which the local transport
coefficient and susceptibility are averaged to get X;(t),
X;(t), and thus D;(t) The local. susceptibilities in each
individual correlation volume i are broadly distributed,
with relative variations of order unity. The local trans-
port coefficients, on the other hand, do not have critical
divergences for model B dynamics, and are therefore
not expected to be highly correlated at any distances
larger than a microscopic length a (a pore size for fluids
in random porous media). Thus for g»a the relative
variations in A.;(t) should be smaller than those of X;(t)
by a factor of (a/g) . Now, X, (t) is coarse grained
over [tD;(t)lg' ] ~ correlation volumes so the relative
breadth of its distribution, and thus that of D; (t) is

3/4
&X, (t) &D;(t)
X;(t) D, (t)

g2

tD;(t)

Therefore, as long as tD; (t) »g, the distribution of
D;(t) is quite narrow. This means that for qg«1 it is a

good approximation to ignore the spatial dependence of
D;(t), instead using D(t)=(D;(t)).

The relative intensities of the activated and diffusive
parts of S(q, t) change with q. Let us define a time tq

such that tqq D(t )=1. The fast modes are those that
have relaxation times w; &tq. Thus they are the modes
that contribute to the time-dependent susceptibility'
X(t) at t =tq. The total intensity of the diffusive part of
S(q, t) therefore is

—QI, =TX(tq) .
1

V

fast

(8)

Similarly, the total intensity of the slow, activated Auc-
tuations is

1—g I;=T[Xp—X(t, )],
1

slow

(9)

X(t) =Xog( T ln(t lt, ) Ibg&), (10)

where the scaling function g (x)~1 for x ~ oo. The sus-
ceptibility scales as Xo-g~ for large g, so in order to
have a sensible limit [X(t) finite] for g~ oo at fixed large
t we have g(x)-x~ ~ for x~0. Thus for q &&q„(actu-
ally, Inq » lnq ) the diff'usive part of $(q, t) represents a
fraction

X(tq )
=g(x )-x~ ~ =

q q
0

T ln(t, lt, )

bg~

of the total intensity of S(q), where xq is defined by this
equation. Note that for q =q„xq =O(1), and the total
intensities of the diffusive and activated parts are compa-
rable, while for q «q the activated part represents only
a small fraction of the total intensity.

The time dependence of D(t) for t » to arises from
that of X(t), since the conductivity A, (t) is set at micro-
scopic scales and for t ~&t0 should be time independent,
A,(t)=k, where A, remains finite and nonzero in the limit
g~ ao. ' (The usual divergence of A, for binary fluids is
suppressed by the random porous medium. ) Thus we
have D (t) = A, /X(t ) and, for qg « 1, we can approximate
$(q, t) as

$(q, t)= I + TX(t )
—tq 2.lx( tl (12)1 q

I

slow

The second term here represents the diffusive part of the
decay and has characteristic time tq In order to deter-
mine how far this term differs from a single exponential,
let us expand about this time as

where Xo is the equilibrium (t~ oo ) susceptibility. Note
Xo——$(q~O, t =0)/T=X(t ca ). For large g, the time
dependent susceptibility should scale as in (2) as

e ' ~/2+[']=e q 1+—,'t(t —t
ter — 1 dX(t)

X2(t) dt t=t
q

+ I ~ ~ (13)
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For times of order tq, the correction to the single ex-
ponential decay is of relative order

tain a long-time decay of S (q, t) of the form

S(q, r) —exp[ —(g/go)' " x' '], (17)
T dg (x)

bg~g(x)
(14)

Near the crossover at q =q, where the activated part of
S(q, t) becomes substantial, g (x) and dg (x)ldx are both
of order unity so the relative correction is of order
T/bg~ and thus small. For q &&q„, the correction is
still smaller. For q »q„, the correction is of relative or-
der T /( b g~x~ ) and thus becomes substantial for
sufficiently high momenta (low x~). However, for
bg~&& T this does not occur until, by (11), the intensity
of the diffusive part is a very small fraction of the total
intensity of S (q). Thus for all momenta where the
diffusive part represents a substantial fraction of the to-
tal intensity of S(q, t) its temporal decay is well approxi-
mated by a single exponential with decay time tq.

The activated part of the decay has a functional form
that is undetermined. However, for qg«1 and t » tq,
where the activated part dominates, S(q, t) should be q
independent. When qg becomes of order unity, on the
other hand, we have for t » tq

S(q, t)= —g I;(q)e
V

slow

(15)

where I;(q) is the structure factor of the ith mode.
There is a tendency for the regions with longer-ranged
than average local spatial correlations to have larger
than average activation barriers and thus slower relaxa-
tion; this results in a stronger momentum dependence
for S(q, t) at long times than at short times. Thus, if we
approximate with a Lorentzian, the momentum depen-
dence of S (q, t) for t » t~ is of the form

S(q, t) —[1+q g (t)] (16)

where the time-dependent correlation length g( t ) in-
creases with increasing time. The modes with very long
relaxation times will be rare locally ordered regions' of
size L, with activation barriers proportional to their
cross section L . This suggests g (t) —(Int/to) for the
longest times. [The static correlation length is

g=g(t =0).] Arguments similar to those in Refs. 13 ob-

where, as before, x = T ln( t /to ) Ib g~ is the appropriate
scaling variable, and go is a length of order (T/b)' ~.

However, since d v & 2, ' ' ' this form for S (q, t}'
vanishes in the scaling limit g~ co and, for finite g, is
due to corrections to scaling and holds only at very long
times. ' It is not clear at this point what the long-time
form of the decay of S(q, t) is in the scaling limit. This
requires a better understanding of the scaling distribu-
tion of barriers. If the fraction of the total intensity of
S(q) that is due to barriers with height greater than E is
ii (E/bge), then for E » T these modes will not have re-
laxed significantly at time t=toe and we have, for
qg «1

S (q, t) =S (q ~0,0)h (T in(t/t, )/bg~) .

Thus the scaling function h (x), which may be identical
to the f (x) in Eq. (2) for model A, is just the scaled and

weighted integrated density of barriers. If, as one might
expect, this density of barriers vanishes exponentially for
x »1 (large barriers) as h (x)—exp( —kx}'), where k is a
number of order unity, then S (q, t) will decay as

—lnS (q, t) —[ln(t /to ) ]~

for t )&t .
In conclusion, I have shown how a new dynamic

correlation or crossover length l which diverges ex-
ponentially as a function of the static correlation length
g enters in random-field Ising systems with conserved or-
der parameter. For momenta q « 1/l, simple diffusive
relaxation of S(q, r) occurs, while for higher momenta,
extreme variations in local relaxation times leads to
more complicated behavior, with S(q, t) being the sum
of a diffusive term that is well approximated by a single
exponential, and an activated part with a strongly
nonexponential temporal decay. This crossover to ac-
tivated dynamics appears to have been observed in re-
cent light-scattering experiments on a critical mixture of
lutidine and water in porous Vycor glass.
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