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Gapless phasons and transverse sound-wave asymmetries in K&seO4
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Based on an inelastic neutron scattering experiment, it has recently been suggested that phasons
in the incommensurate phase of K2Se04 possess a gap of approximately 50 GHz [M. Quilichini
and R. Currat, Solid State Commun. 48, 1011 (1983)]. We have found that these data may also be
explained using a coupled phason sound-wave theory, for which the phasons are gapless. We then
use the coupled excitation theory to predict certain velocity and attenuation asymmetries for
transverse sound waves under interchange of their propagation and polarization directions. Last-
ly, we find that, in the long-wavelength limit, the attenuation asymmetry present for a system with

gapless phasons is absent for a system possessing a phason gap.

I. INTRODUCTION

The incommensurate phase of potassium selenate has
been extensively studied over the last decade, and Axe
et al. ' have recently reviewed much of this work. Of
particular interest is the inelastic neutron scattering ex-
periment of Quilichini and Currat which was consistent
with a phason branch with a gap of approximately 50
CiHz. To be specific, their data analysis was dependent
upon an overdamped phase excitation. The intensity of
scattered neutrons is directly proportional to a response
function S(k, co), and Quilichini and Currat employed
the damped oscillator response function given by

S (k, co)=
[co —co~(k)] +(col )

At 120 K, their data led to the interpretation that for k
parallel to a*

co~(k) =coo+ vk (2)

with a gap frequency of coo ——0.05 THz, a phason veloci-
ty of v =266 m/s, and a phason damping constant of
I =0.31 THz, independent of k. They estimated an er-
ror of +10% for I . Inoue and Ishibashi have found
Raman scattering results which seem to be consistent'
quantitatively with the results expressed by Eqs. (1) and
(2).

Axe et a/. ' have discussed these results and suggest
that the gap may be explained by the following con-
siderations. On the one hand, higher harmonics describ-
ing the modulation pattern may be present at tempera-
tures near the paraelectric-incommensurate transition
(T; =129 K, T, =93 K). Then, in the continuum
description of the modulation pattern, the soliton or
domain-wall picture may be applicable. However,
analysis of the discreteness of such systems has sug-
gested that the domain walls can be pinned, in contrast
to the continuum solutions for which they are unpinned.
For example, it can happen that the local wall energy is
much greater than the wall-wall interaction energy, and
then the phason gap can correspond to a domain wall

oscillating about some equilibrium position. On the oth-
er hand, a distribution of impurities in the crystal can
pin the modulation pattern, directly leading to a gap.

Besides the presence of a phason gap, a possible ex-
planation of the observed lineshapes concerns the cou-
pling of the phason with other excitations in the crystal.
The authors of Ref. 2 do note that the phason couples to
the longitudinal acoustic phonon (for k parallel to a*),
but have discounted the possibility that this can explain
their experimental results. As we shall detail below, our
analysis uses precisely this coupling to demonstrate the
compatibility of their data with a coupled phason and
sound-wave system.

The present authors have recently formulated a mac-
roscopic theory of the long-wavelength excitations of
incommensurate solids for which co~O as k~O. Cen-
tral to this theory is a coupling of the phason and
center-of-mass motions and a consequence of this cou-
pling is that the phason-phason response function will be
different from that given by Eq. (1). In Sec. II we show
that the resulting response function, when applied to
K2Se04 for k parallel to a', is in excellent agreement
with S (k, co), even when no phason gap is included.
Thus the coupled excitation theory of Ref. 6 provides an
alternate explanation to the data of Ref. 2.

One of the predictions of the theory of Ref. 6 concerns
transverse sound-wave asymmetries. For a given trans-
verse sound-wave normal mode, with certain propaga-
tion and polarization directions, it may happen that
another sound-wave normal mode exists for these direc-
tions being interchanged. According to Ref. 6, in the
long-wavelength limit these modes, in general, will have
different attenuations. In Sec. III we examine some of
the sound-wave solutions for incommensurate K&Se04
that result from the coupled excitation theory. We
display the transition from the low- to the high-
frequency regime for a system with typical sound-wave
and phason velocity and damping parameters, and then
display the solutions that are obtained for the incom-
mensurate phase of K2Se04 in both of these limits.

The presence of transverse sound-wave asymmetries in
incommensurate solids was first observed in BaMnF4 by
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Fritz, and later observed in KbH3(Se03)z by Esayan
et a/. An explanation of these observations has been
proposed by Scott and is based on nonequilibrium de-
fects being present in certain incommensurate crystals.
Dvorak and Esayan' have used a Landau-type theory to
discuss the RbH3(Se03)z experiment and predict that the
results may be explained via dispersive sound velocities.
In Sec. III we shall show that our theory, over a small
range of wave vectors, also produces dispersive sound
velocities, although in the high-frequency regime the
sound waves reobtain a nondispersive character. Final-
ly, Poulet and Pick" have produced an elegant theory of
coupled phasons and acoustic phonons based on a
Landau-type theory. However, unlike our theory, their
treatment of this coupling ignores the damping of these
motions. In the high-frequency regime we shall show
that our theory and that of Poulet and Pick predict iden-
tical sound wave asymmetries. This is to be expected
since at high frequencies the damping of the propagating
modes will not effect their speeds.

Next, in Sec. IV an extension of the theory of Ref. 6 is
made to systems possessing a phason gap. It is found
that the long-wavelength attenuation asymmetry, under
interchange of the directions of propagation and polar-
ization, present for systems with gapless phasons, is re-
moved for systems possessing a phason gap. Then, for
the incommensurate phase of K2Se04, we propose a pos-
sible test for determining whether or not the 50 GHz

phason gap suggested by the authors of Ref. 2 is indeed
present in the incommensurate phase of K2Se04. Final-
ly, in Sec. V we summarize the application of the cou-
pled phason and sound-wave theory to K2Se04.

II. RESPONSE FUNCTION
FOR COUPLED EXCITATIONS

In order to derive the necessary phason-phason
response function, we require the Lagrangian density
and dissipation function introduced in Ref. 6 that are
appropriate for KzSe04. Thus we need (i) the form of
the relative phase-displacement field and (ii) the nonzero
tensor coefficients which enter into these functions
which are consistent with the incommensurate crystal's
point-group symmetry. The relative phase-displacement
field, viz. the vector field describing the motion of the
modulation pattern with respect to the underlying crys-
tal lattice, has only one component for K2Se04. We
shall denote it by U where we follow the convention
that the (fundamental) incommensurate-modulation
wave vector is given by q;= —,'(l —5)a*. Furthermore,
Janner and Janssen' have determined the superspace
group of the incommensurate phase of K2Se04 and have
found the associated point-group symmetry to be ortho-
rhombic mmm. Thus following the notation of Ref. 6,
the Lagrangian density appropriate to the incommensu-
rate phase of K2Se04 is given by

ZP i i + pPXX x Z
' xxxx {xx) 2

'
yyyy (yy) 2 "zzzz {zz) yyzz (yy) (zz)

~zzxx + (zz) (xx) ~xxyy ~ (xx) ~ (zz) ~xyxy ~ (xy) 2 ~zxzx ~ (zx) 2'~yzyz + (yz) 2 ~XXXX Ux, x

1 2 ] 2
2 +xyxy Ux, y 2 +xzxz Ux, z xxxx (xx) Ux, x +xyxy ~ (xy) Ux, y +zxxz ~ (zx) x,z (3)

Also, the dissipation function is given by

1
Pxx

z Cljkl+((J)~(kl) + U x27-
(4)

where the components of the tensor g;~k( that are
nonzero are the same as those of the A, ;~kI tensor which
appear in Eq. (3). In the above equations, u; for
i =x,y, z represents the components of the center-of-
mass displacement field, u(;~) the linearized symmetric
strain tensor, U„;= BU„ /Bx; the components of the rela-
tive phase-displacement field gradient, the summation
convention is used and the overdot represents
differentiation with respect to time. Note that the g;j
terms in Eq. (32) of Ref. 6 vanish due to the mmm or-
thorhombic point-group symmetry. Also note that this
point-group symmetry requires that no linear piezoelec-
tric effects be present.

If k is parallel to a* (in our coordinate system this im-
plies k=ke„, e, being a unit vector in the x direction),
one then has that the phason-phason response function
is given by

S (k, co) =—ImXU U(k, (u),1

CO

I

~here

Up
=

1/2
+XXXX

Pxx

rr

( ))/z

XU U(k, cu)= —(co —u( k +&d(cuk )

X I (co u(k +i—d(cok )[cu u~k +i—I (k)(u]

—(IIk ) I (6)

The function defined in Eq. (5), like that of Eq. (I), is
directly proportional to the intensity of neutrons scat-
tered by the phason modes, where k=ke„ is the wave
vector of these excitations relative to the incommensu-
rate wave vector q;. The constants in these equations
are defined by

j. /2
XXXX

VI =
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Note that we have accounted for the dispersion of the
phason damping constant by including an additional
term in the dissipation function expressed by Eq. (4), viz.

R'=p dp U

such that in Eq. (6) we have

I (k) =r '+d k

(8)

In order to apply Eq. (5) to K2Se04 we have used the
following numerical values for the longitudinal sound
wave. From the ultrasonic data of Rehwald et aI. ' we
take C» (=A,„„„)=53GPa, p=3066 kgm, and thus
vL ——4160 m/s. No data is available for the attenuation
of this mode. However, from the transverse acoustic
peaks of Fig. 2 of Ref. 2 one may estimate' that dI is of
the order of 10 THz A; we note that choosing any value
of dI between 0 and 100 THzA leaves our results
unaffected.

Figure 1 displays S and S' for k =0.04, 0.06, and
0.08 A ' over the range of frequencies 0.025(~(0.3
THz (thus ignoring the central-peak contribution) for
the following parameter values: vz ——346 m/s, H=30
THZ2A2 ~-1=0.235 THZ, and dp=14 THZA2 Thus
I (k) varies between 0.26 and 0.32 THz in approximate
agreement with the value of 0.31 THz +10% estimated
by Quilichini and Currat. The curves in Fig. 1 are
scaled such that their maximum value over this frequen-
cy range is 1.

Clearly, the response functions are very nearly equal.
Thus as an alternative to the conclusion of Ref. 2, we
find that the coupling of the longitudinal acoustic pho-

non to a gapless phason can account for the observed
lineshape anomalies. In fact, if one desires to know
whether or not the phasons in K2SeO& are gapless, one
must rely on further experimental studies. In Secs. III
and IV we discuss how studies of the sound waves could
provide this information.

As a final point, we present the long-wavelength
phason eigenfrequencies which are predicted from both
the gapless phason theory of Eqs. (3) and (4) and the
response function of Quilichini and Currat. For the cou-
pled excitation theory we find that as k~0 the phason
eigenfrequency behaves according to

H 2

0= —LT v — k
2

vr
(10a)

6) = —LDk ( lob)

+( +2+4~2)1/2—L' I
2

(1 la)

Using the values given in Ref. 2 we have that Eq. (1 la)
becomes

(1 lb)

where T '=10 GHz. Thus the gapless phason theory
predicts a dift'usive mode at long wavelengths, while the
presence of a gap produces a fast relaxing mode.

Using the values obtained in this section, we find D =49
THz A . However, in the presence of a gap Eq. (1)
shows that at k =0 the phason eigenfrequency behaves
as

I.O—
III. TRANSVERSE SOUND-WA VE ASYMMETRIES

Before we solve for the sound-wave normal modes, we
wish to demonstrate the low- and high-frequency re-
gimes' that can result for the eigenfrequencies of sound
waves in incommensurate systems, based on the theory
of Ref. 6. Suppose that a coupled phason sound-wave
system has eigenfrequencies corresponding to the poles
of XU U(k, co), defined in Eq. (6). Then, for ui ——1000
m/s, u„=500 m/s, dI ——8 THz A and I (k) =0.06 THz,
independent of k, we plot the resulting co& /k values,
where cuz is the real part of the sound-wave eigenfre-
quency, for II=16, 32, and 48 (THzA), in Fig. 2. We
shall refer to the low-frequency regime as that for which

Gag= lim
k t-o k

(12)

0
O. I 0.2 0.5
FREQUENCY(THz)

FICx. 1. The response functions given by S (k, co) in Eqs. (1)
and (2) (solid lines) and S'(k, co) in Eqs. (5) and (6) (dashed
lines) for (a) k =0.04 A ', (b) k =0.06 A ', and (c) k =0.08
A ', scaled to a maximum value of 1 over this frequency
range.

Figure 2 shows that when k «0.0005 A ', Eq. (12) is
satisfied. Also, from this figure we see that at shorter
wavelengths, viz. for the wave vector being greater than
0.02 A ', this ratio approaches a constant value that is
larger than that implicit in Eq. (12). (It is important to
note that the increase in the sound velocity occurs be-
cause the bare speed of sound, viz. v&, is greater than the
bare phason speed, viz. vz. If we considered a system for
which v~ & vI we would find that the speed of the sound-



5380 R. J. GOODING AND M. B. WALKER 36

co(j,v)=+v(P, v)k i—D(P, v)k +O(k ) . (15)

1090

In the analytic results given below, we shall ignore the
third and higher order terms in k.

The co(e„,e ) solution is obtained from Eq. (13). We
find

v(e„,e~)=
1/2

~xyxy

p
(16)

~ l060E

3

I 030

D(e„,e~)=—
V

provided that

4p~xyxy
k

&'v-~

xyxy

p

(18)

wave mode decreased for increasing k. ) For the three II
values, we see that at shorter wavelengths the ratio of
co+ /k is greater than vi by 1.6, 5.6, and 10.9%, respec-
tively. We shall refer to this regime as the high-
frequency regime. Furthermore, we shall use the wave
vector k, to represent the cross-over region.

Now we examine the sound-wave solutions corre-
sponding to particular transverse modes of the incom-
mensurate phase of K2Se04. We assume plane-wave
solutions characterized by wave vector k =kg, p, being a
unit vector. Firstly, we consider the k=ke transverse
sound wave whose eigenfrequency is found from the
solution of

~ ~

p y ~xyxy ~y, xx +bxyxy y, xx (13)

This mode is polarized along the y direction. Then, for
k=key, we consider a transverse sound wave polarized
along the x direction which is found when one solves the
coupled equations of motion given by

~ ~ 1 TT TTp~X ~XVXV ~X,yy + ~~XVXy UX, VV +&XVXV +X,yy (14a)

~ ~

PXX X +Xyxy X,yy + XyXy X,yy

PXX
X

7
(14b)

For a given k we choose to denote the eigenfrequencies
found from Eqs. (13) and (14) by co(j,v), where v is a
unit vector in the direction of the polarization. The
form of these solutions may be expressed as a power
series in k:

IOOO
0.00 O. OI 0.02 0.03

WAvE vECTOR (A )

FICs. 2. The real part of the sound-wave eigenfrequency di-
vided by k, found from the poles of Eq. (6) where vI ——1000
m/s, U~ =500 m/s, dt ——8 THzA, and I (k)=0.06 THz, for
H=16 (a), 32 (b), and 48 (c) (THzA) . If H=O this ratio
would remain at the constant value of 1000 m/s (=vI ).

Since the center-of-mass displacement field is uncoupled
from the relative phase-displacement field, as shown in
Eq. (13), one does not speak of two frequency regimes
for this mode. Instead, Eq. (18) mathematically states
the propagating character of this long-wavelength mode.

Solutions for co(e~, e„), however, do involve coupled
excitations, as seen from Eqs. (14a) and (14b). In the
low-frequency regime we find that

v (e~, e„)= v (e„,e~ ), (19)

~H
D (e~, e„)=D (e, , e~ )+-

xyxy
(20)

results that may also be obtained directly from Eqs. (31)
and (32) of Ref. 6. The high-frequency regime results
may be expressed in terms of

1/2
~XVXV

(21a)Vp—
PXX

+xyxy

)
1i2 (21b)

where we shall use a weak-coupling approximation, viz.
~

v (e,e~) —
vz ~

&&II. For the speed of this mode we
find

2

v (e~, e )=v (e„,e~)+
[v (e„e~ ) —v~ ]

(22)

H
D (e~, e„)=D(e, e~ ) 1 — . (23)

[v (e„,e~ ) —v~ )

from which it follows that if the transverse speed of
sound v(e„,e~) is greater than the bare phason speed,
viz. vz, then v (e,e„)& v (e„,e~ ). Note that Eq. (22)
differs fundamentally from the theory of Dvorak and
Esayan' [that was applied to the incommensurate phase
of RbH3(Se03)2] in that the sound-velocity asymmetry
expressed by Eq. (22) is independent of k in the high-
frequency regime. Also note that Eq. (22) is identical to
the result that follows from Eq. (4-10) of Poulet and
Pick" (for their coupling parameter h '~ ~ satisfying
h„'~~ ~ II) when the coupling to the amplitude mode is
ignored. For the attenuation of this mode we find
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Thus we see that this asymmetry is reversed in compar-
ison to that expressed by Eq. (20).

Note that (v(e, e, ) and co(e„e ) are also eigenfre-
quencies of normal modes and thus all of the above rela-
tions apply if (i) ey is replaced by e„and (ii) the ap-
propriate tensor coefficients are interchanged (e.g. ,

xyxy zxxz ).
Our theory thus predicts the following relations: For

k «k„
v(ey, e„)=u (e, , ey ),
D ( ey, e„)& D (e, ey ),
u (e„e„)= v (e,e, ),
D(e„e„)& D (e„,e, ),

(24a)

(24b)

(24c)

(24d)

and for k, « k,

v (ey, e ) & u(e, e ),
D(ey, e ) &D(e„,e ),
v (e„e„)& v(e, e, ),
D (e„e ) &D(e,e, ),

(25a)

(25b)

(25c)

(25d)

where the greater than or less than inequality of Eq.
(25a) pertains to u(e, ey) & vy or v(e, ey) &uy, respec-
tively. Similiarly for Eq. (25c). Also note that k, for the
iv(ey, e„) mode is not necessarily the same as that of the
co(e„e„)mode.

Unfortunately, the data of Ref. 2 does not allow for
the numerical estimation of p, A y y Az H y y and
II, , A number of experiments for k parallel to both
b* and c would be required. Thus we cannot predict
whether or not these asymmetries are large enough to be
seen. These parameters are also required in order to es-
timate the k, values and thus we cannot predict for what
wavelengths one could possibly see the high-frequency
regime results. However, if these asymmetries are ob-
served the validity of applying the gapless phason theory
of Ref. 6 to K2Se04 [as expressed by Eqs. (3) and (4)]
will be strongly supported.

where

1 1 1 — 2rr
2 Igkl (Ig) (kl) 2pab &0~a Ub —KIja u (ij) U (26)

Pab =Pba ~

~ij kl ~klij ~ji kl ~ij lk

Pab —Pba ~

(27a)

(27b)

(27c)

KIja =K~Ia (27d)

with i,j,k, I =x,y, z, a, b label the components of the rela-
tive phase-displacement field and the summation conven-
tion is used. The dissipation function is the same as that
of Ref. 6, viz.

1 1R = , Pijkl (ij—) (kl)+ z'llab Ua Ub+g jiau( ji) Ua (28)

where

0jikl kklij gjikl gijlk

lab Iha

kij a kjia

The resulting equations of motion are

Pui =Xij kl ul j k +Kija Ua j + 0ij kl u lj k +gij a Ua j
TT 2TT TT f

pab ~b pab~a~b +Kija ui j Iab ~b Sija i,j

(29a)

(29b)

(29c)

(30a)

(30b)

We now solve for the sound-wave eigenfrequencies by
assuming co=0(k). Then, the contribution of the rela-
tive phase-displacement field to the sound-wave eigen-
vectors is determined by Eq. (30b), and for k ~0 we find

proportional to U. Thus in the elastic-energy density we
must include a term like —,

' CcoQU, where co0 is the
phason gap and C is a constant. Restricting our atten-
tion to contributions to the Lagrangian density that are
the lowest order in k, we find that the most general ex-
pression for an incommensurate crystal with a phason
gap (that is consistent with the rotational invariance of
X) is given by

X= —,'pu;u;+ ,'p, b U—,Ub

IV. SOUND-WAVE EIGENFREQUENCIES
FOR PHASONS WITH A GAP

b b

2
Q)0 BXj

(31)

The results of Sec. III were derived for an incommens-
urate phase for which no phason gap is present. Howev-
er, all real crystals have some impurities, as well as other
imperfections, and thus according to the present theoret-
ical view all real incommensurate crystals will have a
small but nonzero phason gap. In this section we ad-
dress the following question: how will the presence of a
phason gap affect the asymmetries that are predicted in
Eqs. (24) and (25)?

The inclusion of a gap in the phason spectrum has
been discussed by a number of authors. ' ' Here we
extend the coupled excitation theory of Ref. 6 and in-
corporate a phason gap. In an incommensurate system
for which the modulation pattern is pinned, we assume a
rigid translation of the relative phason-displacement field
by a small distance U produces a restoring force directly

where the matrix o. is defined by

+abPbc ~ac

Equation (31) is valid when (v is such that

2
pab ~0 +&pab ~ + l lab ~

(32)

(33)

is satisfied.
From Eq. (3 1) we see that U —0 (k )u. Then, substitu-

tion of Eq. (31) into Eq. (30a) yields sound-wave eigen-
values for k ~0. We find [see Eq. (15)]

v (P, v) =(P A ijklviP jPk VI )

D(P~v)= zp PijklviPjPkvl ~

(34a)

(34b)

where the renormalized stiffness and viscosity tensors are
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given by

~ij kl ~jilk

Kijp Kklb~ ab
~ij kl

COO

(35a)

0ij kl 0j i Ik

ouija

kklb ~ ah
0ij kl

Ct70

(35b)

From Eqs. (34) and (35) we see that v (P,v ) = U ( v, p ) and
D(j,v)=D(v, P). This last relation is in direct contra-
diction to the gapless phason theory of Ref. 6, where it
was found that in the long-wavelength limit, in general,
D (jj„v)&D (v,P).

From Eq. (33) one may show that Eqs. (34) and (35)
may be applied to the incommensurate phase of K2Se04,
in which a phason gap is present, provided that
co((min(coo, coo/I ). Using the values from Ref. 2 this
restriction implies that co (&0.01 THz. Thus we propose
that if an experimental probe for which co(0.001 THz
observes the attenuation asymmetries expressed by Eqs.
(24b) and/or (24d), the 50 GHz phason gap suggested in
Ref. 2 cannot be present in the incommensurate phase of
K2Se04.

V. SUMMARY

We have shown that the phason gap suggested in Ref.
2 is not essential in analyzing their lineshape anomalies.
Instead, the phason-phason response function derived
from the coupled excitation theory of Ref. 6 provides an
alternate explanation.

The gapless-phason coupled excitation theory predicts
certain sound-wave asymmetries. To be specific, under
interchange of the directions of propagation and polar-
ization we find attenuation asymmetries in the low-
frequency regime, viz. those expressed in Eq. (24), as
well as sound-velocity and attenuation asymmetries in
the high-frequency regime, viz. , those expressed by Eq.
(25).

Finally, we showed how a phason gap may be includ-
ed into the coupled excitation theory of Ref. 6. Then, at
su%cient1y long wavelengths the attenuation asymmetry
is predicted to be absent. Thus if a low-frequency probe
(viz. energies less than 1 GHz) does observe the asym-
metries expressed in Eq. (24), a 50-GHz phason gap can-
not be present in the incommensurate phase of K2Se04.
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