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We study a d =2 Ising model where the veritcal bonds are fixed and ferromagnetic and the hor-
izontal bonds can vary randomly in sign and in magnitude (within some limits) but are same within
each now. The model therefore generalizes that of McCoy and Wu since it allows for the interesting
case of frustration. We use the transfer matrix to map our problem to a collection of random field
d =1 problems about which a lot is known. We find generally three transitions: a Griffiths transi-
tion, its dual version, and one with infinite correlation length and index v= l. In all cases the free
energy has infinitely differentiable singularities. In addition there are some zero-temperature transi-
tions.

I. INTRODUCTION

This paper is devoted to a study of a certain class of
random-bond Ising models in d =2. The reasons for
studying random systems are the usual ones: they are a
theoretical challenge and of considerable practical
relevence since the truly homogeneous model is only an
idealization (though there are enough real life systems that
resemble the latter to make their study worthwhile). The
choice of d =2 came from a desire to obtain some exact
information without the introduction of long-range in-
teractions (e.g. , following the procedure of Sherrington
and Kirkpatrick') which inake the problem tractable in
d =3. Here we allow only nearest-neighbor interactions,
avoid the replica trick, and obtain several exact results.

The models we study are described as follows: The
vertical coupling is ferromagnetic and equals K in the
whole lattice. The horizontal couplings are random, can
have either sign, but are required to be same in each row.
We will also assume that they are bound in their variation
by some Ki and Kq. Since this model is closely related to
the one studied by McCoy and Wu (MW), let us first
clarify the relation between the two. In the MW case the
horizontal bonds are fixed and the vertical bonds are ran-
dom but equal within each row. This makes the two
models inequivalent: our model can have frustration if
two adjacent horizontal rows have opposite signs for the
horizontal bonds while in their case the product of the
signs of the bonds around any plaquette is always posi-
tive. Indeed this is why they restricted their random in-
teractions to be ferromagnetic. (One could relate our
model to theirs by a duality transformation; however, this
can become awkward when ferromagnetic and antiferro-
magnetic bonds coexist, since the dual temperatures will
then become complex. ) The original MW papers, which
specialized to a very narrow distribution of randomness,
were eventually generalized by McCoy' to a broader class
for which he obtained the transition temperature and
showed that at the phase transition from paramagnetism
to ferromagnetism, the free energy had an infinitely
diA'erentiable singularity.

In this paper we show that for the case where Ki and

K2 are both positive there are three phase transitions: as
we lower T, there is a Griffiths transition, a paramagnetic
to ferromagnetic transition with correlation length index
v=1, and finally a new transition at finite correlation
length which can only be described as the dual of the
Griffith's transition in the McCoy-Wu model. If Ki is
negative, there are generically three transitions, but the or-
der parameter (if any) of the low Tphase i-s unclear. If
Ki ——Kq, the two finite correlation length transitions coin-
cide and there is a transition at T =0 with v= oo. In all
cases the free energy remains infinitely difT'erentiable at the
transition.

Not only is our problem difterent from that of MW as
explained above, so is our approach to the solution.
While they deal directly with the determinant that occurs
in the Pfaffian approach (but this time with random ele-
ments) we work with the row-to-row transfer matrix. We
exploit the translation invariance of each row to express
the free energy of the d =2 random-bond model as a sum
of the free energies of a collection of d = I random geld
models. Of course such a sum must and eventually does
appear in the MW formula, but they do not rely on this
mapping as we do. We find the mapping to d =1 Ising
models very useful since one has a lot of intuition for the
(d = I) problem as well as many exact results, especial-
ly due to Derrida and Hillhorst and Nieuwenhuizen and
Luck. We are also able to make some progress in the
calculation of correlations because of this mapping.
Overall, we find that this approach makes our research
easier in many ways.

In the next section we set up the notation and as an in-
troduction to our approach, provide a solution of the usu-
al nonrandorn problem via our mapping. In Sec. III we
consider the case where the horizontal coupling takes on
two values K& and Kz, both ferromagnetic, with equal
probability. We argue that nothing of substance changes
if we fill in the region between Ki and K2 with some
smooth distribution. We briefly sketch the proof that
v=1 and leave some details for the appendixes. Section
IV deals with the problem where Ki can be negative, i.e.,
there is frustration. Surprisingly, the computation of the
free energy is no more complicated than in the unfrustrat-
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ed case though the nature of the low-temperature phase
changes from being ferromagnetic to something unknown.
We summarily treat the special case K~ ———K2. The last
section contains a summary and discussion of this work.

mitian) fields at each site:

1 1
Pi(m ) = —(Pro i) o 2( m), it 2(m ) = —(vr cr i )o 3(m ),v'2

(2.3)

II. A NEW LOOK AT THE
HOMOGENEOUS MODEL

where m denotes a product from site m —1 to the left
end. It is readily verified that

In this section we explain what we mean by the d = 1

mapping by solving the homogeneous (Onsager) problem
using it. Let us begin with all couplings equal to K so
that

[P;(m), i}'j,(n)]+ =5,15

and that

T = exp —2iK* g Pi(m)$2(m)
E

(2.4)

Z= g exp K g $,$~
s,

(2.1)

We can write Z as TrT (where N is the number of rows)
if we choose as the row-to-row transfer matrix

where o(m) are Pauli matrices at site m in a row,
K*= ——,

' ln tanhK, and 7 denotes a factor that can be ig-

nored hereafter. We then introduce two Majorana (Her-

T=(V) exp K* g o i(m) exp K g o.3(m)o 3(m +1)
m

(2.2)
g;(n) = f [e' "C;(q)+e ' "Ct(q)] .

0 2%
(2.6)

The C's obey the usual fermion anticommutation rules.
In terms of these,

&& exp 2iK g Pi(m)$2(m +1) (2.5)

(The last few steps differ from Schultz, Mattis, and Lieb'
only in that we use Majorana and not Dirac spinors, the
former being the more natural ones for this problem. ) Fi-
nally, let us expand g; in plane waves, making manifest

I l '

T= exp f [Ci (q)C2(q)+ C i (q)C2(q)]( —2iK*)dq exp J [Ci(q)C2(q)e 'q+ C i (q)cz(q)e '~](2iK)dq
0 0

=8 T(q),
q

(2.7a)

(2.7b)

where

T(q) = exp[ —2iK*[ci(q)C2(q)+C 1 (q)C2(q)]]

X e px(2iK[C (qi)cq(q)e ' +Ci(q)C2(q)e' ]]
(2.8)

we may represent —CiC2 as r+ ———,(ri+ir2) (where ri1

and r2 are again Pauli matrices), and T(q) as

T(q) = exp[2iK*(r+ r)] exp[ —2—iK(r+e '~ re'~)]—
(2.11)

In going from (2.7a) to (2.7b) we have used the fact that
fermion bilinear operators at diA'erent q commute.

Let us next note that each T(q) acts on a four-
dimensional Fock space labeled by the eigenvalues n ~ and
nq (=0 or 1) of CiCi and Cqcq. Now T(q) = exp[ 2K*(r2 cosq+ri sinq—)] exp(2Kr2) . (2.13)

= exp[ —2K*r2] exp[2K(r2 cosq ri sinq)] . (2—.12)

If we now switch to ~ matrices "rotated" by an angle q,
we get

0&= l«=0 nz=0

T(q)
I

1 1

(2.9)

Finally, let us reverse the sign of ri and r2 (this does
not affect their anticommutation relations [r;,~~ ) =25;J )

and rename ~2 as ~3 to get

for all K, K', and q, a result that follows if we expand the
exponentials in Eq. (2.8) and note that these states are an-
nihilated by every operator in the exponents and hence by
every term in the expansion except the identity. Let us
therefore focus on f'(q), the restriction of T(q) to the sub-
space

~

—
& =:

~

01 & and
~

10&—:
~
+ &. Since

—c,c2 I+
—C, C,'~ —&= ~+&, (2.10)

T(q) = exp[2K*(r3 cosq+ri sinq)] exp( —2Kr3) . (2.14)

(2.15)

with

Let us now observe that T(q) is the transfer matrix for
the following d =1 Ising model in a magnetic field:

Z= g exp g [J(q)($;$;+i—I)+h(q)$;+f0(q)]
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2J (q) S slnq
e C*+S*cosq

(2.16)

h (q) = —ln —2K:—2[K*(q)—K],C' —S*cosq

it is given by 2 jK —K* j. Thus the q =0 model has a
ftrst ord-er transition in t =K —K *. However, models
with q=0, although not singular, are arbitrarily close to
being so and we must integrate over q, to get the singular-
ity in F. To do this we expand, ignoring fo,

(2.17) f(J,h) = ln[ coshh+[ sinhh+ exp( —4J)]'~2
} (2.22)

fo(q) = —,
' in[1+(S*) sin q]

with

(2.18) for small h and e

ln [ 1 + ( h 2 + —4J
)
1/2

] ( h 2 + 4J
)
1!—2

C*= cosh2K*, S*= sinh2K' . (2 19) In our problem

Note that J is always ferromagnetic. Let us denote the
free energy per site of this model (in the thermodynamic
limit) by f(J(q, K), h(q, K))=f(q, K). Now the partition
function of the original d =2 model is

Z=TrT =Tr T(q)
q

h =h (q) =2[K"(q) —K]=2[K '(0) —K]+O(q )

2(K*—K)+—O(q )

t+ O(—q'),
—4J(q1 (Se)2 2(1+O[ 2 t)]

(2.23a)

=gTr[T(q) ]

=g [2+TrT(q)"] . (2.20)

In reaching the last line we have used the fact that the
trace of a tensor product is the product of the traces in
each 4X4 space and that T equals 1 in the

j
00) and

j
11 ) subspace and equals T in remaining subspace.

Next, we observe that T(q) is the matrix of determinant 1

[see Eq. (2.12)] being a product of two matrices, both of
which are exponentials of traceless matrices. Consequent-
ly, its eigenvalues will be of the form exp[+A(q)]. Evi-
dently, the positive root will dominate in Eq. (2.20) and
the free energy per site of the d =2 model in the thermo-
dynamic limit will be

F(k)= f "q x(q)

= f f(q, K), (2.21)

since k(q) is none other than the free energy f (q, K) of the
d = I model defined in Eqs. (2. 14)—(2. 19).

Now, it is well known that F(K) has the form of a q in-
tegral due to translational invariance. However, the fact
that the integrand is the free energy of a d =1 model in a
field has not been exploited before to our knowledge
though Derrida and Hillhorst (DH) made a passing refer-
ence to it. Let us now begin this exploitation with this
homogeneous case as preparation for the random case.

In the complex q and K variables, F(K) is defined by
performing the line integral of f (q, K) in the q plane be-
tween q =0 and ~. The integral can be singular only if
the integrand is singular. When will that happen? We
know that the d =1 model has a transition only at J= ao,
h =0, i.e., q =0, K =K* according to Eqs.
(2. 16)—(2. 19). For future use let us recall why this is so.
Since exp f is an eigenvalue of a 2&&2 matrix T(q), it can
be singular only if it is degenerate with the other eigenval-
ue exp( f), i.e., when exp(+f)=1—or T=I. From in-

specting Eq. (2.14) we see T(q)=I at q=0, K =K*. In
fact, we can find f (O, K) simply by inspecting Eq. (2.14):

(2.24)

which is the familiar result. One point of this exercise
that we will recall later is that whenever the q =0 mode
(which is always trivial to study) goes singular, so will F,
but the singularity in F will be different (softer).

Our analysis reveals also that q =~ is just as easy to
study. Upon inspecting Eq. (2.14) we see that
f(rt, K)=

j

K+K* j. This becomes singular if K is anti-
ferromagnetic and the phase transition in d =2 corre-
sponds to the change from the paramagnetic state to the
striped one with the sign of magnetization alternating
with the columns.

We conclude with a pictorial description of all this in
preparation for the random case. Figure 1 shows, at low
temperatures, the range of K*(q) as a shaded region be-
tween —K*=K*(7r) and K*=K*(0). Also shown is K.
Each point in the shaded region corresponds to a d =1
model: its coupling J(q) is given by Eq. (2.16), and is
finite except at 0 and ~. Its h (q) is given (to a factor of
—2) by the distance between that point K*(q) and K (see
Fig. 1). At the low temperature shown, all models are
subject to negative h's. As we raise the temperature the
shaded region will expand out symmetrically and meet K

j= -'/zh(q)

i ZZll rill////I
K'(vr )=-K' Q K'(q) K '(O) =K.

I

I

K

FICx. 1. Schematic description of the homogeneous d =2
model as a collection of d =1 models. Each point in the shaded
region is a d =1 model labeled by some q between 0 and ~. The
coupling is infinite at 0 and ~. The field h (q) is as shown. As T
rises, the shaded area expands out to meet the left moving spike
marked K.

=q [1+0(q, t)] since S*(K=K* ) = 1, (2.23b)

f(q-O, K-K*)=(t +q )' [1+O(q, t, )]
0

F(t)= f dq(t +q )' =t lnt+less singular terms



36 NEAREST-NEIGHBOR FRUSTRATED RANDOM-BOND MODEL IN. . . 539

(which is moving inwards) at K =K . The picture tells
us something should happen now and of course it does:
the q =0 model has a sign reversal in its field. Since all
spins are rigidly locked by the infinite J, they Aip over at
this point and give a free energy f=

~

h
~

=
~

t
~

. Models
with q small but not zero [i.e., J(q) large but not oo] are
having their h's reversed as we raise the temperature fur-
ther. In fact for all %~K*, there is some model with
h(q)=0, i.e., h(q) changing sign, but only the J=go
model responds with a singularity. However, models at
arbitrarily small q are close to being singular and their
effect is to produce a t Int singularity in F(t). (Had we
chosen E negative, the q=~ front of the shaded region,
expanding leftwards would have collided with the nega-
tive K that is moving in. ) After this preparation we are
ready for the first random case.

III. RANDOM FERROMAGNETIC BONDS

Z =Tr(T, Ti T2Ti T2Ti ) (3.1)

for our sample. Next we can go to fermion operators and
using the translation invariance of T perform a Fourier
analysis to obtain

Let us begin with the simple case where all vertical
bonds equal K and the horizontal bonds, constrained to
be same within a row, can vary from row to row assum-
ing the values Ki or K2 (both &0) with equal probability.
Physical arguments or Furstenberg's theorem" can be in-
voked to show that the free energy per site will, with
probability 1, reach a sample-independent limit in the
thermodynamic limit. Consider the evaluation of this
limit for a given random sample. For illustrative pur-
poses we will assume that in the rows numbered I to 6 in
this sample the bonds have the values E], K], Kq, E ~, E2,
and K~. How far can we go with our analysis from Sec.
II? First, we can always write a row-to-row transfer ma-
trix, but it can be either T& or T2 obtained by setting
K=Ki or K2 in Eq. (2.2). We can then write

=—h] 2. The site index for these d =1 models is just the
row index for d =2 models. As a result, if the model at
q =0. 1 has the field hi(0. 1) at site 4, the one at q =0.2
(or another q) will also have hi(0. 2), reflecting the fact
that the horizontal coupling in row 4 was K~ in the d =2
model. This correlation between noni nteracting d = 1

models is of no consequence. The main point is that
within each model, as we move from site to site, h will be
hi or hq in a random way. That is all we need to use
Furstenberg's theorem and to be assured a sample in-

dependent f (q, K).
Let us now use this mapping to study the phase struc-

ture as T, the d =2 temperature, is raised. In Fig. 2(a), to
be interpreted like Fig. 1, we see two spikes at K~ and E2
that move leftwards (since Ki,K2 cc I/T), while the shad-
ed region moves outwards. In the low-temperature region
depicted in Fig. 2(a), the d =2 models at each q are sub-

ject to a field random in magnitude [hi(q) or hq(q)] but
fixed in sign (negative). There will be three special points
as T rises: (i) K* meets Ki, (ii) K* meets
(K) = —,'(Ki+K2), and (iii) K* meets Kq, which corre-

spond to singular points in F(K). Let us now study them
in turn.

Case (i) K* meets Ki. In the d =2 description this is

the T at which the system would have demagnetized had
all horizontal bonds been K~. Of course we now have
rows of K2 in between rows of K]. However, there can be
arbitrarily large islands of pure E ~ that occur with
nonzero probability and come arbitrarily close to being
critical. These will be seen to produce an essential singu-

-'/2h2 (q }
~-'/2h) {q)~

I rIIx.~xiiit
-K' 0 K' Kl gK& K2

Z=Tre [Ti(q)T, (q)T2(q)Ti(q) ]
q

= g Tr[T, (q)T, (q)Tq(q) ] . (3.2)

Since T
~

00) =
~

00) and T
~

11)=
~

11) for all values of
E, K*, and q, we can write as before

Z = g [2+2 coshNf (q, K,N)),
q

(3.3)

where exp(+Nf) are the eigenvalues of the N-fold random
product of Ti q(q) which also has det= l. Furstenberg's
theorem assures us that as N~ oo, f (q, K,N)~f (q, K)
with probability 1, so that just as in the homogeneous case
we have, in the thermodynamic limit,

F(K)= J f (q, K) (3.4)

independent of sample. From Eqs. (2.16) and (2.17) we
see that f (q, K) is the limiting free energy per site of a
d =1 Ising model with a nonrandom ferromagnetic J(q)
and a random magnetic field h (q)=2[K*(q)—Ki 2)

(b)
h2l2h /2IIIII .& II ARRN

-K' 0 K) K' (K) K2

FICr. 2. (a) Low-T picture for the case with horizontal bond
equal to Kl or K& both positive. Note that h(q) is random in
magnitude but not sign. (K) denotes the mean horizontal bond.
(b) The situation after the transition at K*=K&. The doubly
shaded region has magnetic frustration. [In the figure hi and h2
stand for hi(0) and hi(0}.] When the shaded front hits (K), we
have an infinite correlation length ferromagnetic-paramagnetic
transition. Finally, there will be a Griftiths transition at
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larity in temperature T. A similar singularity will occur
at K' =K2. The relationship between these and the
singularities briefly discussed by Griffiths in his paper on
rnagnetjc singularities will be discussed later in this sec-
tion.

To proceed further, it helps to think in the d = 1

description. As mentioned earlier, for K* &Ki, all the
models are subject to fields random in magnitude, but not
in sign: h i, h2 &0. The spins, ferromagnetically coupled,
follow (h), the average field. In our case, since (h) &0,
the total spin will be negative. However, when K '
crosses Ki the spins in the doubly hatched region of Fig.
2(b) are frustrated: there is a conflict between the tenden-
cy to order, induced by J, and the random sign of h.
(This magnetic frustration is not to be confused with
d =2 bond frustration, which is absent in this case with
K, K~, K2 positive. ) We will now show that this onset of
frustration leads to a nonanalyticity in f(q, K) at q =0
K =Ki. Since q =0 is an end point of integration, the
singularity will be reflected in F(K). ' The result from
Ref. 12 that we use is this: In an integral representation
like Eq. (3.4), when a mouing singularity q (K) of f (q, K)
hits the end point of integration it will lead to a singulari-
ty in the integral at that value of K.

It is not difficult to see why q =0 is a nonanalytic point
for K* & Ki, i.e., in the presence of frustration. From our
mapping we see q =0 implies J= ao. When J= ao, the
spins are insensitive to the randomness in h; they are
chained to each other by an infinite coupling and react to
(h ), which is still negative. However, for any other J,
large but finite, there is a genuine conflict or frustration
between alignment induced by the ferromagnetic J and a
magnetic field of random sign which gives conflicting sig-
nals on the direction of alignment. In other words, if
there is a large cluster of length L where h =hi ( & 0), all
the spins there can flip over and align with h i rather than
with (h) which is negative. The energy cost is 4J (from
the ends) —2Lh ~ (from within the cluster). Since the
probability for the cluster is 2, we will have an unstable
situation when

2
—Le ' e

—4'&1,2h L

2h l 2h2

(Z&=
1+ 2

2
(3.7)

so that the sum over L converges. If however, h~ turns
positive, (Z) can exceed 1. Assuming exp(2h2)
= exp( —2

~
h2

~

) && 1, the condition for the diverging first
derivative at x =0 becomes

2h
1e

(3.8)

which agrees with our crude estimate Eq. (3.5). Thus
what we were seeing there was the divergence of the first
derivative. But as DH point out, higher derivatives
diverge sooner. For example, they show explicitly that
the second derivative varies as (1 —(Z ) ) '. It is reason-
able to believe that the nth derivative goes as
(1—(Z") )

' and diverges at

ln21—
2n

(3.9)

As h i ~0, from above, the diverging derivative is
pushed further out in the series, but the limits hi ~0 and
n ~ oo cannot be exchanged, i.e., the function is nonana-
lytic at x =0, hi ——0, though infinitely differentiable. We
will now see exactly how it behaves for h i ~0+.

Let us look at the series, Eq. (3.6) for h~ &0. It does
not describe f (J, h ) in the sense of a power series for
h i & 0 since it is not a convergent series. However, any
derivative that exists for the true f is indeed given by the
coefficient of x " in that series. Our preceding analysis
tells us that for a small positive hi, f will have up to a(h)
derivatives, where ( Z ) = 1, but no more. One function
that has this feature is

f=
~

(h )
~

= —(h ) for our case. The next term de-
scribes the overturn of a cluster of adjacent spins. The
overturn produces a factor [besides the exp( —4J) from
the ends] of exp(2h;) exp(2h;+~) . . (exp2h;+L ) if spins
from i to i +L are flipped. The average penality factor is
(Z; ) (Zi ~r ) ' ' (Z;+L ) = (Z ) . When summed over
L, we get (Z)l(1 —(Z)). Specializing to our problem
where h =h ~ or h 2 (both negative),

i.e. , for

ln2
h, &

(3.5)
f (x, h) =x "'+analytic pieces,

where e is defined by

(z ) =1. (3.10)

large overturns are unsuppressed. Actually instability sets
in as soon as hi turns positive. To see this we follow the
argument of Derrida and Hillhorst. Consider f (J,h),
with h and J as independent variables instead as functions
of q and K. In the unfrustrated region, f(J,h) can be ex-
panded in a low-temperature series:

f(J,h)= —(h)+ x+O(x ),(Z&
1 —(Z (3.6)

where (Z) = exp(2h)), x= exp( —4J), and ( ) denotes
the average over the random field distribution.

The first term indicates that at J= ~, i.e., x=0, all
spins align with ( h ), and produce a free energy

We will take this to be the function in the frustrated re-
gion because DH show that in the case (Z ) ~ 1, i.e.,
where the erst derivative is divergent, Eq. (3.10) is indeed
correct.

Since we are now considering the region K* just past
Ki, i.e., hi small positive and h2 large negative let us use
the approximate solution,

ln2
0,'=

2hi

and write

f„„s(x,h) =x ', a = —,
' ln2 .
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x(q)=(K*q) +O(q ),
h i (q) =b i (0)——,

' S*q (3.12)

To apply this result to our problem where x and h are
controlled by K and q, we write [see Eqs. (2.16) and
(2.17)]

gion based on continuity and our derivative counting ar-
gument at the onset of frustration. ]

For the transition at hand a is very small. This is be-
cause (h ) =0 for q =0 at K*=(K) and (h ) is small for
small q and small t =K*—(K). A small (h ) in turn
implies small a. For example, if ( h ) =0, so that
h] ———h2,

=2(K' —Ki ) ——,'S*q
(Z ) = coshahi = 1~a=0 . (3.20)

=t —cq (c= —,'S*) . (3.13)

In Fig. 2(b) we must integrate f„„g over the doubly
shaded region, i.e., between q =0 and q =t/c where
h2 ——0. We ignore the analytic contribution that comes
from higher values of q, i.e., from the unfrustrated mod-
els. Thus

It is easy to go on to show that a is proportional to
—(h ), but the results of DH are not enough in the criti-
cal region since they exclude a=0. Here we turn to
Nieuwenhuizen and Luck, who show that for a special,
solvable distribution,

Ccc f(h)/
(q )' " 'dq (t&0),

F»ng(r) =
0 (r &0),

(3 14) in Eq. (3.18) and

g(x, (h) =0)= 1 (3.21)
In( 1/x)

We shall take these two to be general features. We also
know exactly that at x =0, f=

~

(h )
~

. However, to ana-
lyze the critical region we need a sing1e function and not
piecewise information of the above kind. We find that the
following function is valid throughout:

(3.15)

F„„g(r)-t'~', r &0

=0, t(0 .
f„„g(x,h)= (h) coth( —,'a lnx) .(3.16) (3.22)

where we have set constants like S*, —,
' ln2, etc. equal to

unity since they do not affect the singularity structure.
The evaluation of Eq. (3.14) by saddle-point methods is

described in Appendix A. The result is

f„„g(x,h)=
~
(h &

~

+Cx ' (3.18)

where C is x independent and a(h) is given by the solu-
tion to

(Z &=1 (3.19)

as long as 0&
~

a
~

&1. [In this region the singular piece
dominates the analytic piece in numerical importance,
which is what permitted DH to extract their result by
asymptotic methods. In this paper we have assumed that
Eqs. (3.18) and (3.19) are valid in the entire frustrated re-

We now turn to the next transition as T is raised.
Case (ii) K*=(K). Figure 2 makes it clear that there

are two points where we can expect something singular:
K*=K~, which we have studied, and K'=K2, which we
will study next. In the d=1 description these are the
points at which q =0 becomes singular and regular again.
We will see that these are transitions at finite correlation
length. We do, however, expect one more transition be-
tween these two, namely the ferromagnetic-to-
paramagnetic transition. It is clear it must happen after
K*=Ki (due to the admixture of stronger bonds K2) and
before K*=Kq (due to the admixture of weaker bonds
Kq). To locate the transition we turn to the q=0 mode,
which is trivial since ? (0) is diagonal:

f(O, K)=2
~

K*—(K)
~

=2
~

(h(0))
~

=
~

t
~

. (3.17)

Had F(t) been a sum over q of f (q, K), it too would have
had a

~

t
~

singularity. However, it is an integral, and to
find its singular part, we need f for small q and small t
This is precisely the region studied by DH. For a wide
class of distributions, they showed that as x ~0,

)fc

x =aq +, a =S'e
(h ) =2[K*(q)—(K)]=t+bq
a= c(t +bq'), —

(3.23)

(3.24)

(3.25)

so that

F»„g(t)= f '(t +q )(coth[(t +q ) In(1/q)]]dq,
0

(3.26)

where we have set constants like a, b, etc. to unity as they
do not control the form of the singularity, and where e is
some small fixed number. In the t plane, the integrand
has poles at

2 Int= —q +
lnq

(3.27)

As q~0, these poles pinch the origin, the direction of
approach being the imaginary axis, up to exponentially
small terms (q compared to lnq). Ignoring the q terms
on this basis, we get

F„„g(t)= f 't coth( —t lnq)dq .
0

(3.28)

Using the series for coth and performing the q integration,
we get

F„.„g(t)= g 2 "t "B2g I (2k)/(2k! ) .
k

(3.29)

One can consider various limits, such as a fixed, x~0;
x =0, a anything; x ~0 with ( h ) & 0, etc. , and verify its
correctness. We were also gratified to discover subse-
quently that the same function enters the analysis of
McCoy in his study of a general ferromagnetic MW mod-
el. Turning to our model where x and h are functions of
q and K:
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as

&Z & =-,'[exp( —i (
I

~
I )+ exp(

I
~

I I
h~

I
)]

which is identical to what we saw at K =K~ with the
roles of h) and hq exchanged, and a replaced by

~

a ~,
i.e.,

~

a
~

= +0[exp( —h(
~

a
~
)] .ln2

hp
(3.31)

From Fig. 2(b) it is clear that hq(q, t) =t +q, in our re-
duced units.

The integrand has a moving singularity at q = —t
which hits the lower limit of integration at t =0. It is
easy to check that F„„s(t) is infinitely differentiable at
t =0. We cannot, however, evaluate F„„s(t) by saddle-
point methods. We can, however, advance a plausibility
argument that it also behaves as t ' '.

Physically, it is clear that we are witnessing here a
Gri%ths singularity due to arbitrarily large islands of pure
K2 that are coming arbitrarily close to a phase transition.
Presumably, a similar thing is happening at K =K &.

There are, however, dift'erences. The former is the usual
Gri%ths singularity associated with the temperature above
which no bond in the ensemble can become critical. On
the other hand, no such interpretation exists for the tran-
sition at K*=K~ where the weakest bonds are involved in
the virtual transition. The correct way to interpret it
(pointed out by Chayes' ) is as the dual of the Griffiths
transition of the MW model. In other words, the dual of
our model is MW model (as stated in the Introduction)
with fixed horizontal bonds K ' and random vertical
bonds which can be K ~ or Kq. The highest temperature
at which any member of the ensemble can go critical is
given by (K( )*=K*,which coincides with our condition
K~ ——K* upon dropping a pair of stars. Thus the t' '

singularity we found is the Gvifgths singularity for the MW
model. If we believe that the singularity is the same for

Since the Bernoulli numbers B2k grow as (2k!)/(2n)
with k, we see that the series representing F„„s(t)has zero
radius of convergence. The same singularity was
discovered years ago by McCoy in his study of a general
ferromagnetic MW model. Since in the ferromagnetic
case, there exists a real duality relation between our mod-
els, it follows that they should have the same singularity
structure for this transition. We now turn to the third
and final transition as T is raised.

Case (iii) K*=Kq. Figure 2(b) suggests that singular
behavior is to be expected when the expanding shaded re-
gion hits the second spike at K2. Our analysis of the frus-
trated models near q =0 tells us that at K*=K2—t,
F„„s(t) takes the form (setting all irrelevant factors to uni-
ty):

(r) f (q 2)1/( +q )dq (3.30)

The integrand is just the x ~ term with

~

a
~

= ln2/
~

h2
~

. To see how we get a in this region, we
write

(Z & = —,'[ exp(h)a)+ exp( —
~

h2
~
a)]

Tr[T(R (R2)02T(R2R ()]
X (2~1)

Tr[T(R) Rq)T(R2R ()]
(3.32)

where T(R;RJ) is the product of transfer matrices be-
tween rows R; and R~ and where (2~1) means that the
subscripts 2 and 1 are interchanged. (It is assumed that
R)v+(=R). ) The above correlation function will depend
on R~ and R2 separately and will also be sample depen-
dent. We fix both up by performing an average over all
values of R&. The resulting object, denoted by an over-
bar, will define a correlation length g if it falls as
exp( L /g). —

Each operator will have the form

0 = f O(q)dq, (3.33)
0

where the fermion bilinear operator O(q) will be chosen
to be nonzero only in the

~

10 & and
~

01 & subspace [e.g.
C)(q)Cq(q)]. Thus we can write

(Oqo(&, = f dq( 0(2q) O()q)
0

(3.34)

where the integrand is computed using a formula like
(3.31) with T replaced by T(q) everywhere. Let us denote
by 2 and B the random products of such matrices from
R ~ to R2 back to R ~, respectively. Then

Tr(BO2 Ao) )
&o,«)o, (q) &, = Tr AB

Let us write

~

e &(e,
~

e'""+
~

o & (o
B= ~e &(o

~

("-"f+o( -'
)

Tr(BO2 A)Tr( Ao(B)
Tr(B A )Tr( AB)

(3.35)

(3.36)

(3.37)

In the above equations,
~

(9+ & and
~

0 & are the two

both kinds of randomness, then the one at K*=Kq must
also be t' '.

Let us now note that if the two spikes are replaced by a
smooth weight function between them, the transitions will
occur at exactly the same points. For example, K*=K&,
when q =0 turns nonanalytic, will be a singular point.
As we cross this point, q =0 will continue to be singular
whether we have just two spikes or a smooth density. For
the middle transition, all one has to note is that the q =0
mode has a r

~

singularity when K*=(K&, where (K&
is now the average horizontal bond [given in the two-spike
case by (K) +Kq)/2].

We now pause to investigate another by-product of our
d = 1 mapping.

Correlation functions A.n unexpected bonus in our ap-
proach is that it is possible to express the correlation
length in the vertical direction in terms off (q, K). Let 0)
and 02 be two translationally invariant operators, bilinear
in the fermions (so as to be local in the spins) and associ-
ated with rows R~ and R2 separated by a distance L in
the vertical direction. The connected correlation function
1S

Tr[T(R(Rz)02T(R~R()o) l

Tr[T(R(Rp)T(RpR) )]
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f (q, t) = t coth( —r lnq ) +analytic term . (3.40)

The analytic term varies as 3+Bq while the singular
piece varies as

~

t
~
(1+2q ' ). However, A =0 since

f(O, t)=
~

t
~

. Thus the singular part is also numerically
dominant in the critical region. Inserting it into (3.39)
and evaluating it by saddle point (Appendix 8), we get

(O O ) —m(L)L

eigenkets of the L fo-ld products of the T(q) matrices.
The real ket

~
9+ ) points along a direction 0+ in the first

quadrant, and
~

8 ) will be at an angle 7r/2 with respect
to it. [Here we are assuming T(q) is Hermitian to simpli-
fy the discussion. A Hermitian T(q) can always be
chosen without affecting the free energy. Alternately, one
can repeat this analysis using left and right eigenvectors. ]
Since detA =1, its two eigenvalues will be inverses of
each other, as implied in Eq. (3.36). We also know that
as L ~ oo, A,(L)~f, the free energy per site of the ran-
dom field model at that q. As for B, we keep only its
leading ket, since we can let X be arbitrarily large early in
the game: We are still careful with terms down by
exp( L) but —not exp( N). —In this case we can also use

f in the exponent in Eq. (3.37). If one inserts the above
forms for A and B into Eq. (3.35), one finds

(O2(q)O&(q)), =e ' ' ' S((9o,&+,q)[I+O(e ' )] .

(3.38)
The answer is very much sample dependent since S con-
tains a variety of scalars like (8+

~
Oi

~
Oo), etc. That is,

even though the eigenvalues of B stabilize to exp(+Nf),
the eigenkets are drawn randomly from a distribution and
depend on the sample. Similarly, even though we may re-
place A.(L) by f in A (the errors being corrections to the
leading behavior we are trying to extract) its eigenkets are
sample dependent. Suppose now that we average over R ~

and R2, keeping the separation fixed at L. Then the ran-
dom products occurring in 3 and B will vary over the en-
semble and the various angles 0 will occur with the limit-
ing probability distribution arising in Furstenberg's
theorem. In other words, a spatial average will lead to an
integration over the densities p(go) and p(9+), where p(0)
is the limiting distribution for the leading eigenvector.
(The distribution of 0 is fixed, given that of 0+, by
orthogonality. ) Thus we get

(020i)c= I e '~'R(q)dq, (3.39)
0

where R has no L dependence. Let us now use what we
know about f (q) in the region K*= (K ):

(3.43)

Thus we find that at criticality, correlations fall faster
than any power but slower than exponentially.

At the other two singular points, the correlation length
is finite and equal to 2

~
(h(0) )

~

. [In calculating m, it is
this analytic numerically important part of f which is to
be used in Eq. (3.39).] Let us recall what made it possible
for us to calculate the bulk correlations using
Furstenberg's theorem, which only tells us something
about the leading eigenvalue and eigenvector of the ran-
dom product of T(q)'s at each q, whereas the correlation
length requires knowledge of the nonleading eigenvalue
and eigenvector. The answer of course was the fact that
the random product of T(q)'s, like each of its factors, is
unimodular and 2&&2. Thus, given the leading eigenval-
ue, the next one, which is also the only other one, follows.
Likewise, given a limiting distribution for the leading
eigenvector, that of the other one (shifted by a rr/2 rota-
tion) follows from orthogonality. For example if 1(q) had
been 3&(3, we could not have carried out the calculation
of the mass gap m.

IV. RANDOM BANDS WITH FRUSTRATION

We now consider the very interesting case where K~
has turned negative (Fig. 3). Now the d =2 model faces
frustration whenever a row of K

~
's is adjacent to a row of

K2's. It turns out that with respect to the free energy,
things are no more complicated than in the unfrustrated
case depicted in Fig. 2. (This is because the d = 1 models
are frustrated even in the unfrustrated d =2 problem.
Making the d =2 model frustrated does not cause compli-
cations. ) From Fig. 3 we see that there will be three tran-
sitions: K*=K2, K*=(K), and K'(n)(= —K*)=Ki.
The sequence of these three transitions depends on which
is larger,

~

K
~

~

or (K ) . (Figure 3 corresponds to the
case

~

K i
~

& (K ) .) From Fig. 3 it is clear that near
K =K2, the free-energy singularity is the same as in Fig.
2 near K*=K2, since the neighborhood of q =0, which
controls the singularity, is locally the same. Next consid-
er K*(rr) (= K")=K~. This is —the mirror image of the
transition at K*=K2, as J (q = sr) is the same as J(q =0).
It is also clear from the figure that the transition at
K*=(K) has the same singularity as before for similar
reasons.

If we turn away from the free energy and ask what the
spins are doing we get a completely different picture. For
example, the singularity at K*(vr)=Ki, now comes from

where
1/2

m(L)=2 r'+
2L

+ sinh '(t&2L ) .
1

tL
(3.41)

so that

If we keep t fixed and let L ~ oo, we get m =2
~

t
~

so
that v= l. At t =0, toegnd

1/2

m (O,L)= 8
(3.42)

I /XX/X. ~XEXX3
K )

-K' 0 (K) K'
I

Kg

FIG. 3. The model with d =2 frustration. The
ferromagnetic-paramagnetic transition has already occurred at
K = (K). This will be followed by Csriffiths transitions at
—%*=El and E*=E2.
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arbitrarily large strips of pure K~ undergoing a virtual
transition from a state of striped order to disorder. Since
K~ is the strongest antiferrornagnetic bond, this is the
usual Griffiths transition. The transition at K =K2 is
once again the Griffiths transition and has the same inter-
pretation as before.

The situation at K*=K~ poses a greater challenge: It
is not clear what the order parameter is at low T. The
following arguments suggest that both the magnetization
M and the Edwards-Anderson (EA) order parameter'

qE~ vanish. As a prelude to K~ &0, let us consider the
borderline case K ~

——0. Consider L rows of zero K ~

separating two clusters of pure Kq. Since spins in these
rows have no horizontal interactions, they can be summed
exactly using the d = 1 relation: tanhK ~(tanhk ) . In
other words, we now have a MW system with fixed hor-
izontal bonds K2 and vertical bonds whose tanh can be
( tanhk ) with probability 2 . Since arbitrarily weak
vertical bonds occur here, the system comes arbitrarily
close to being quasi-one-dimensional. We conjecture that
P is large, and possibly infinite [i.e., M(t) =t '~'] in the
low-T phase and that M=O at K~ ——0.

Let K~ now turn negative. Let us start with T=O and
think in terms of the bond energies J~, Jq, and J where
K~ =J~/T, etc. Assume for convenience that

~

J~
~

& J.
Then the fate of each spin is controlled by the horizontal
coupling and the lattice will contain layers of ferromag-
netically ordered spins separated by layers of striped
spins. The ground state is, however, infinitely degenerate
since global sign reversal of any cluster costs no extra en-
ergy: half the vertical bonds separating the clusters are
broken in either case. We can put the system in a unique
state by applying an infinitesimal positive field to every
other column. Now M = —,

' and M = —,
' where M is striped

magnetization. However, this order will be destroyed at
any T&0, i.e., T=O will be critical point for K~ &0.
Consider, for example, a ferromagnetic cluster of L rows.
If there is a thermal fluctuation in which a vertical seam
of L Aipped spins occurs, this seam can spread out with
no resistance either from the bonds within the cluster or
from the vertical bonds linking it to the striped clusters on
either side. This situation wherein the perfect order of
each type of cluster (ferromagnetic and striped) annihi-
lates order of the other was observed earlier by Wolf and
Zittartz. ' Given the one-dimensional nature of the sys-
tern it seems that M, M, and qE~ are all zero in the low-T
phase. The physics of the infinite correlation length tran-
sition at K*=(K) is an open question that may be
resolved by computer simulation or furter cerebration.

We conclude this section with a few words on the spe-
cial case K~ ———Kq. First, the two Griffiths transitions
coalesce. Next, the transition at K * = ( K ) moves to
T=0. The mass gap m cc K*= exp( —1/T) i.e., v= m.
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APPENDIX A

Here we consider

0
(A 1)

The integrand is zero at both limits and has a maximum
in between. The saddle point q is given by

lnq =1-
q

which leads to

(A2)

(A3)

Zittartz, who took v layers of randomly chosen bonds
(same within a row) and repeated them indefinitely. (In
doing so they missed the transitions at K*=K~ and Kq
since the arbitrarily large islands of pure K~ or Kq do not
occur at any fixed v. ) However, our model needs to be
generalized in one very important way: removal of bond
correlations within each row. There is one problem where
correlated bonds will appear naturally. ' Suppose we take
a fermion Hamiltonian H with random on-site or hopping
terms and consider the quantum partition function,
Trexp( 13H). —If we evaluate this trace as a partition
function using intermediate states of Ising spins after a
Jordan-Wigner transformation, we will get a problem like
ours except for a 90' rotation of the lattice.

Our strategy of mapping the random-bond problem to a
random-field problem allowed us to exploit our intuition
for the latter as well as to use existing results on this sub-
ject. We were able to evaluate the transition points exact-
ly and to obtain explicit forms for many of the singulari-
ties. We were also able to evaluate bulk correlation func-
tions by exploiting the special properties of the T(q) ma-
trices. We also learned that in addition to the Griffiths
singularity associated with the strongest bond in the dis-
tribution there is its dual version associated with the
weakest bond. We were able to show that it went as t ' '.

We were not so successful with the order parameter in
the low-T region for the problem with frustration. It is an
open problem to see what happens below the transition at
K =(K). In summary, it seems that despite its simplici-
ty our model has yielded many interesting results and
promises a few more.

V. CONCLUSIONS

In this paper we obtained several exact results for a
random-bond Ising model without introducing the replica
trick or long-range interactions. The model was more
general than that of McCoy and Wu since it allowed for
frustration. It was more general than that of Wolf and

We must now express q as a function of t. Let x stand
for I/q . Then Eq. (A2) reveals that

lnx=tx —1 . (A4)

As t~O, x must be large so that tx —1 can equal lnx,
which is at least as large as ln(1/t) (See the limits o. f the
integral. ) Since Inx itself is large, it follows from above
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that xt is also large. Ignoring the —1 in the equation and
taking logarithms, we get

~, we can evaluate the integral at the saddle point. But
first we use a new variable q =e in terms of which

lnx = ln( 1/t ) + ln lnx . (A5) G (L)= f exp[ —2tL coth(xt)] exp( —x)dx .—]ne
(B2)

This equation can be solved iteratively since lnx && ln lnx.
At the first level we find lnx equals ln(1/t). Inserting
this, we get

lnx = ln(1/t)+ ln ln(1/t)+

which in turn leads to F (t) = t ' '.

APPENDIX 8

Consider the correlation function

G (L)= (O)02), = f 'exp[ —2tL coth( —t lnq)]dq,
0

The saddle point X obeys

2t I.= sinh (Xt),

so that

G (L ) = exp 2tL-1+2t'L
2Lt

=—exp( —mL),

where

1/2

(B3)

1——sinh '(tY2L )
t

(B4)

(Bl)
which we get by combining Eqs. (3.9) and (3.40), and set-
ting R (q) =R (0) and ignoring the latter. Since L tends to

m= 2 t+ 1

2L

1/2

+ sinh '(tv'2L )
1

tL
(B5)
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