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A general formalism recently introduced for the study of physical systems exhibiting uniaxial,
spatially modulated commensurate phases is applied to the axial next-nearest-neighbor Ising
(ANNNI) model in d &2 dimensions with arbitrary interlayer coordination numbers. Asymptoti-
cally exact low-temperature expressions for the domain-wall tension, and for the pair, triplet, and
higher-order wall-wall interaction potentials characterizing the low-temperature phases, are calcu-
lated explicitly by a transfer-matrix method. The wall interaction potentials determine the phase
diagram at low temperatures and reveal a new infinite sequence of mixed phases, (2"32"+'3)
(k =1,2, . . .). Some confusing discrepancies in earlier work are resolved and certain approxima-
tions are exhibited as limiting cases of the general results. The limit of infinite coordination num-
bers yields the exact low-temperature mean field pha-se diagram, which, contrary to some specula-
tions, is seen to be qualitatively correct in the low-temperature limit.

I. INTRODUCTION AND SUMMARY

In a previous paper, ' hereinafter designated I, we
presented a general formalism for the study of physical
systems exhibiting uniaxial striped phases, in which
homogeneous domains of an underlying ordered phase
are separated by an array of parallel, localized walls at
successive separations l &, l2, l3, The basis for this
formalism was a rendition of the free-energy density of
the system as a sum of domain-wall tensions,
X(T,p, . ), associated with individual walls, plus pair,
triplet, quadruplet, and all higher-order many-wall in-
teraction potentials, W„(T,p, , . . ; j 1; J ), n )2, to ac-
count for the effective forces exerted by the walls on one
another. It was demonstrated in I that the main features
of the (T,p, . ) phase diagram are governed by the
functional form of the wall tension and the pair interac-
tions W2(l) alone, although the triplet, W3(l, l'), and
higher-order interactions can lead to a succession of fur-
ther refinements of the phase diagram which may, in
some cases, yield infinite sequences of spatially modulat-
ed, commensurate ordered phases.

For models with short-range couplings, asymptotically
exact low-temperature expressions for these fundamental
domain-wall interactions, 8'„, in d ~2 dimensions can
be constructed by a transfer-matrix method, as explained
briefly in I. The purpose of the present paper is to carry
through this program explicitly for a well-known model
that has already been shown to exhibit uniaxial striped
phases, namely, the axial next-nearest-neighbor Ising, or
ANNNI, model. The last paper in this series will de-
scribe the results obtained for a distinct model, the
three-state chiral clock, or CC3, model. Although the
ANNNI and CC3 phase diagrams possess many similari-
ties, there are also significant differences that directly
reflect the different character of the wall interactions in
these two models, so illustrating the different types of be-

havior that may be anticipated in real systems. A brief
summary of the main results has been published.

The ANNNI model has by now accumulated a history
of applications to various physical systems, as well as
numerous theoretical analyses. The model arose origi-
nally from attempts to understand spatially modulated
magnetic ordering observed in various lanthanide rare-
earth metals and in certain alloys. Although Elliott
considered only (n = 1)-component or Ising spins, the
suggestion that the complex magnetic ordering could be
modeled by spins interacting only through near-neighbor
couplings was advanced at about the same time by
several others, who studied models with (n =2)-
component or XY spins. More recently, the ANNNI
model has been adopted in attempts to model complex
ordering in ferroelectrics, ' mineral polytypes, " and
binary alloys, ' as well as the structure of chemisorbed
gas films' and microemulsions. ' (For recent reviews,
see Bak, ' Selke, ' or Yeomans. '

)

Although neither the ANNNI model nor its mean-
field theory is analytically solvable, many details of its
phase diagram in d & 2 dimensions have already been re-
vealed through (i) Monte Carlo simulations, ' (ii) nu-
merical solutions of the mean-field equations on finite lat-
tices or by iteration of a discrete mapping, 6 (iii) an-
alytic solutions of approximations to the mean-field
Hamiltonian, and (iv) low-temperature series expan-
sions of the exact free energy. ' ' These numerous
calculations have revealed a rich variety of phases
displaying complicated spatially modulated order.

Of particular interest for the present work, however, is
the discovery in several of the earlier calculations that
many of these phases at low temperatures can be simply
characterized by the particular interwall spacings arising
in an elementary uniaxial striped structure. Here
we determine, without resorting to mean-field or other
approximations, which of these possible wall patterns ac-
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tually exist as stable phases, using the method developed
in I. In this way, we rederive the asymptotically exact
low-temperature results of Fisher and Selke in a
way which eliminates much of the algebraic complexity
of their approach and, furthermore, is based on the
transparent and physically intuitive notion of interacting
domain walls. The present analysis, however, goes
beyond these previous calculations, which only revealed
the existence of the "simple periodic" striped phases
(having a single interwall spacing) ( 2"3 ) for
k =0, 1,2, . . . : here we demonstrate how "mixed"
phases {in which two or more different interwall spacings
alternate), such as (2"32"+'3), are stabilized by the
many-wall interactions 8'~„&3) These phases are found
to exist down to arbitrarily low temperatures, although
previously there had been numerical evidence of the ex-
istence of mixed phases only at considerably higher tem-
peratures.

Furthermore, the transfer-matrix calculations reported
here extend the model to arbitrary in-layer and inter-
layer coordination numbers, qp, and q& and q2, previous-
ly, only qi ——qz ——2 had been considered. One reward of
this effort is that by taking, appropriately, the limits qp,
q i, and q z ~ ao, we can deduce the exact low-
temperature mean geld phase diagram of the ANNNI
model. This permits the resolution of an apparent
discrepancy between the results of Fisher and Selke, and
those of a harmonic approximation to mean-field theory
developed by Villain and Gordon. ' We find that,
contrary to some speculations, the mean-field theory of
the ANNNI model does qualitatively reproduce the
correct low-temperature phase diagram for finite qp, qi,
and q2. It transpires, ho~ever, that the same is not true
for the CC3 model, ' so that the result is nontrivial.

The layout of this paper is as follows. Section II
presents the necessary notation and the general ANNNI
Hamiltonian and defines, in this context, the "domains"
and "walls. " Certain elements of the notation of Fisher
and Selke are also recalled and adopted in Sec. II 8, both
for convenience and in order to facilitate comparison of
their approach with the present one: it turns out that
the "standard structural coefficients" of their free-energy
expansion are closely related to the domain-wall interac-
tions, 8'„, as explored in Sec. II C. Section III explains
the actual transfer-matrix calculation of the 8'„, and
derives the resulting phase diagram: see Fig. 4. The
original model, as defined on a simple cubic lattice with

q i
——q2 ——2, is treated first, in Secs. III A —III D: then, in

Secs. III E and III F the calculations are extended to ar-
bitrary lattice coordination numbers. Some concluding
remarks are made in Sec. IV.

II. DEFINITIONS AND FORMALISM

A. Domains and walls at low temperature

The ANNNI model is constructed from a set of com-
muting Ising spin variables s, which take the values + 1

or —1 (also denoted as t or 1, or "up" or "down, " re-
spectively) and reside on the sites r of a d-dimensional

lattice. One direction in this lattice (call it the z axis) is
singled out: within every (d —1)-dimensional lattice
"plane" or "layer" normal to this axis, there is a spin
coupling JQ(5) along each nearest-neighbor lattice vector
5. Between adjacent layers, however, there is a coupling
J, (5') along every one of a set of equivalent lattice vec-
tors 5' (where the equivalence is with respect to spatial
translations); similarly, between next-nearest-neighbor
layers, there is a coupling J2(5") along every one of a set
of equivalent lattice vectors 6". On physical grounds,
the vectors 6' and 5" are usually taken to be the shortest
vectors between nearest-neighbor and next-nearest-
neighbor pairs of layers, respectively, although formally
that is not required. If, further, H, denotes the magnet-
ic field at site r, then the ANNNI Harniltonian may be
written as

—g J0(5)s,s,+s —g J,(5')s,s,+s
r 5 5'

—g J2(5")s,s,+s., H, s, —
Ql I

(2. 1)

(Here, the minus sign is introduced purely for conveni-
ence, and the scalar 5 bears no relation to the vector 5.)

For Jz &0 (lr&0), it is clear that the ground state is al-
ways fully ferromagnetic; for J2 &0 (a. &0), however, a
competition arises between the ferromagnetic coupling
Ji which prefers parallel alignment of spins in adjacent
layers, and the antiferromagnetic coupling Jz which
prefers antiparallel alignment of spins in next-nearest-
neighbor layers. The resulting ground state is easily cal-
culated (see e.g. , Selke and Fisher' ' ): for Ir& —,

' (5&0),
one finds that Ji dominates and the ground state is fer-
romagnetic, but for ~& —,

' {5&0), it is Jz which dom-
inates and the ground-state layer sequence is a periodic
"two up, two down" pattern ( . t t J. J, t t l l ). This
sequence is conveniently denoted ( 22 ) or ( 2 ), where, in
general,

The coordination numbers within a layer, among adja-
cent layers, and among next-nearest-neighbor layers, will
be denoted qp =q j, q &, and q2, respectively. Typically,
the couplings Jp, Ji, and J2 are taken to be constants in-
dependent of the 5; that assumption will also be made
throughout this work, except where a dependence is
specifically indicated. Thus, for the commonly con-
sidered case of the simple cubic lattice, one has d =3,
6=x or y, 5'= —,5"=z, qp =4, arid qi =q2 =2.

The remainder of this paper will primarily be con-
cerned with the model in zero field. When H, —=0, it
suffices to restrict attention to J, (5') &0, since the model
is invariant under the mapping J, (5')~ —J, (5') if all
spins in every second layer are reversed. It will also be
assumed throughout that J0(5) &0, corresponding to fer-
romagnetic in-layer coupling, so that, in the ground
state, the spins of each layer will be aligned all & or all ~.
To minimize &, then, one need only find the optimum
stacking arrangement of these & and & layers: in this
one-dimensional problem, the sole remaining parameter
of relevance is the "competition ratio"

(2.2)
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—2K()
w —=e ' with E; =—J;/k&T for i =0, 1,2 . (2.3)

Hence, overturning one spin in a fully ferromagnetic lay-
er gives rise to a total in-layer Boltzmann factor of

(j,k, j~k2 . . j„k„)
represents a periodic layer sequence whose fundamental
period consists of j & & layers (a "j

&
band"), followed by

k, t layers (a "k, band"), then a jz band, and so on,
concluding with a k„band. The abbreviation ( 2 ) for
(22) is useful in zero field, where the model is invariant
under reversal of all spins: thus, the ferromagnetic
phase is denoted simply ( oc ) . At the "multiphase
point" a= —,

' (5=0) separating the ( oo ) and (2) ground
states, there occurs an infinite degeneracy, insofar as any
layer sequence containing no 1 or 1 bands is a possible
ground state. This degeneracy implies a finite zero-
temperature entropy per layer of ks ln(1+ &5)/2;
note, however, that the entropy per spin is still zero, so
that the Third Law of Thermodynamics is not violated.
It is the breaking of this multiphase-point degeneracy at
nonzero temperatures that leads to the complicated
phase diagram of the ANNNI model.

Fisher and Selke developed a systematic low-
temperature series expansion of the free energy of the
zero-field ANNNI model, ' ' to examine how the
infinite ground-state degeneracy at the multiphase point
is broken at small positive temperatures. In their
scheme, the calculation of the partition function (or,
more precisely, of its logarithm, the free energy) is con-
structed order by order, with the nth-order term arising
from all those excited states having n spins flipped from
their respective ground-state orientations. From the
Hamiltonian (2.1), breaking a single "in-layer" bond is
associated with a Boltzmann factor

order transition of the model. [This statement breaks—2K)
down in the sufticiently anisotropic case x =—e ' &wp
(i.e., J»qpJp), and also at the other extreme, where
1 —x =2K, & w p: in these cases, the new phase ( 4 ) ac-
quires a narrow region of stability between ( oo ) and
(».]

On the (3):(2) pseudoboundary, however, all layer
sequences composed of 2 and 3 bands only remain degen-
erate: this is indicated in Fig. 1 by the dots decorating
this boundary. One must proceed to higher orders of
the free-energy series expansion in order to resolve this
degeneracy, and then any phases found to be stable be-
tween ( 3 ) and ( 2 ) must necessarily have widths
K&b~=O(wp) or less.

This first step of the Fisher-Selke expansion thus es-
tablishes that in the vicinity of the (3):(2)pseudoboun-
dary at low temperatures, any stable phase can be writ-
ten in the form

(21312232. . . 2m3m)

(where m would be infinite for an aperiodic phase).
Equivalently, any such phase may be regarded as com-
posed of (2)-phase domains separated by 3-band walls,
where a domain of width k is comprised of k adjacent 2
bands, and a wall consists of a single 3-band. Clearly, in
order to retain full generality, (2)-phase domains of
zero width must then be allowed. Of course, no reason
has been given so far for preferring this description of
the possible phases to the alternative which regards
them as composed of (3)-phase domains separated by
2-band walls: our choice of convention is guided by the
results of the complete Fisher-Selke expansion and oth-
er early work, which indicated that the phases in-

Wp =W Lfp (2.4)

This is the principal small parameter of the Fisher-Selke
expansion: it defines the temperature range over which
their approach (and the one we present below) are valid.
Provided

wp «1 (i.e. , k&T «qpJp),
each individual layer retains a nonzero net magnetiza-
tion (t or t), and all stable phases can be characterized
by their stacking sequence of & and & layers along the
axial direction.

The first step of this calculation, which considers only
a single flipped spin, is quite easy to carry out. It indi-
cates a wedge of (3) phase springing from the multi-
phase point and separating ( ao ) from (2), as illustrated
in Fig. 1. The width of this (3) phase along the z axis
at fixed small T is O(K~ 'wp). On the ( ao ):(3) bound-
ary, only the ( ao ) and ( 3 ) phases can coexist: any oth-
er phase would have a free energy larger by a term of or-
der wo. Since further terms of the free-energy expansion
will arise from excited states with at least two flipped
spins and hence be of order wo or smaller, they cannot
overcome this difference. Thus for small wo one con-
cludes that the ( oo ):(3) boundary marks a stable, first-

0
& = -qz~z~qi ~

FIG. 1. Schematic phase diagram of the zero-field (d &2)-
dimensional ANNNI model from a low-temperature series ex-
pansion of the free energy to leading order (one-spin-flip excita-
tions). The ( oo ):(3) phase boundary, drawn as a solid line,
marks a first-order transition, stable against all higher-order
excitations (except in certain cases of sufficiently anisotropic

spin couplings —see text). The (3):(2)pseudoboundary, how-
ever, shown as a line decorated with dots, may be, and, in this
case, is, unstable to intermediate phases composed of 2 and 3
bands only.
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terpolating between (3) and (2) are of the form (2"3),
in which 3 bands do indeed occur only singly as "walls. "
It is important to note, however, that our identification
of domains and walls at this point is purely arbitrary and
will not influence or restrict the set of phases that we
subsequently establish as being stable. In particular, we
shall explicitly demonstrate the stability of phases more
complicated than just the "simple periodic" (2"3 )
phases.

Given that all stable phases on the (3):(2) pseu-
doboundary may be characterized as uniaxial "striped"
phases, we may now employ the formalism developed in
I to obtain further refinements of the phase diagram of
Fig. 1. For computational convenience we introduce the
reduced free-energy density

where I'& is the total free energy of a lattice of N sites,
and the reduced domain wall tension and wall interac-
tions

o ( T,~ ) =X( T, Ir }/ks T,
(2.6)

W„(T,lr;1, , . . . , i„,)= W„(T,lr;l„. . . , i„,)/ksT .

f (T,~; Il; })—:fo(T,K)+Af (T,K; Il; I ), (2.7)

Then the reduced free-energy density may be written ex-
actly in terms of the background free-energy density fo
of the pure ( 2 ) phase and the reduced n-wall interac-
tions W„among the 3-band walls, as

f=F~/Nks —T, (2.5) with the basic decomposition

Af (T ~; II; })—:lim
L,JV'~ oo

JV QO

o(T,x')+ g W„(T,~;1;„1;+„.. . , I;+„2)
i=1 n =2

JVo. + g [W, (l, )+W, (1, , 1, +, )+ . ]
1

i =1
(2.8)

Here JV denotes the number of walls in a system of L
layers, and the 1; denote the "axial" distances between
successive walls: specifically, if there are k; 2 bands be-
tween the ith and (i +1)th 3-band walls, then these two
walls are l; =2k;+3 lattice layers apart (with l, & 3).

As discussed in I, the phase diagram of the model can
now be deduced from the variation of the (reduced)
domain wall tension o (T,x ) and the functional form and
variation of the pair interaction, W2(T, a;1), of the trip-.
let interaction, W3(T, x.;l, l'), etc. To compute these n

wall interactions, it is convenient at this point to adopt
some of the notation introduced by Fisher and Selke;
moreover, the use of this notation will facilitate compar-
ison of their approach with the present one and reveal
the physical significance of some of their formalism.

ity (i.e., T is near 0), one can treat (2.9) as a series expan-
sion in w. (One sees immediately that such an expansion
will not work for d =2 dimensions, however, because on,
say, a square lattice, where the "layers" are lines, flip-
ping any number of in-layer nearest-neighbor spins al-
ways yields an in-layer Boltzmann factor of only
w '—=w .) An important simplifying feature of this ex-
pansion is that, according to a linked cluster theorem,
all terms in AZ&"' involving the second or higher powers
of 1V cancel exactly on taking the logarithm in (2.9).
(This feature is, of course, necessary to ensure the ex-
istence of a regular thermodynamic limit. ) As a result, if

(2.10)

then f is simply given by

B. Free-energy expansion of Fisher and Selke f =ISED
n=1

(2.1 1)

The reduced free-energy density to be minimized at
nonzero temperatures may be written as

oof (T,v; Iq; J; } )=PEO ——ln 1+ g bZ~"'
n=1

(2.9)

where P= 1/kz T and Eo is the ground-state energy per
spin, and hZ&"' denotes the partial partition function
summed only over those states having n spins flipped
from their ground-state orientations, with energies mea-
sured relative to Eo. As discussed above, each term in
AZ~" contains an in-layer Boltzmann factor wo=—w ',

2qpeach one in hZg' contains either w ' or (if the two
2qp —2

spins flipped are in-layer nearest neighbors) w, and,
similarly, each term of AZ&" ' is roughly of order
w '=wo. Therefore, provided wo is much less than un-

Consider now the first step of the calculation (one spin
flip). The Boltzmann factor associated with the flip de-
pends on the orientations of the nearby layers: since axi-
al couplings extend to second-nearest neighbors, there
are (modulo reflections and spin inversion) only five dis-
tinct layer sequences, p, in which the spin to be flipped—Pe„can reside. The associated Boltzmann factors, e
may be written as products of the in-layer Boltzmann—2Kpfactor w =e ' and the "axial" Boltzmann factors

—2K q x/q 2K
1 ~K ~ 1 2 e 2 (2.12}

To construct the partial partition function hZ&", one
must also know the count, N&, or number of excited
states of the lattice containing each of the possible layer
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P2= 4~ P3= 6

P22 ~ P23 P32 6 ~ P33

P 222 O P 223
1

(2.13)

By virtue of the linked-cluster theorem as embodied in
(2.10) and (2.11), the free energy f remains, to all orders
in wo, a linear function of the [p„}, and may conse-
quently be written as

f ( [p„};w, x, 5)—=ao(w, x;5)+g a „(w,x;5)p„

sequences p, respectively. This count clearly will depend
on the particular ground-state layer configuration of the
lattice about which one has chosen to expand: that
configuration may in turn be characterized by specific
values of the single-band "structural variables" pk
(k =1,2, 3, . . . ), which denote the number of k bands
per layer. Thus, the necessary counts N& are polyno-
mial functions of the [pk }.

In higher orders of the expansion, where the excited
states contain two or more Ripped spins, the set of dis-
tinct layer sequences p in which those Hipped spins can
reside grows more complicated than the five simple se-
quences mentioned above. Accordingly, the description
of their counts, N&, can no longer be accomplished by
the single-band structural variables [pk }, but requires
more general variables p, which denote the number of
occurrences per layer in the ground-state configuration
of the layer sequence v. For example, the periodic lat-
tice layer configuration (232 3) leads to the structural
variables

Pv=P2v+P3v=Pv2+Pv3 ~

P2v P2v2+P2v3& P v2 P2v2+P3v2

P3v P3v2+P3v3~ Pv3 P2v3+P3v3

(2.16)

Hence, given any one of the set of the four structural
variables [pz„z, p2„3,p3 2,p3, 3 } for sequences of length
m +2 bands, one can express the other three variables in
terms of it and the structural variables for shorter se-
quences. The choice of the one independent or standard
structural variable from the set is of course arbitrary,
but the following convention will prove the most con-
venient for the layer configurations encountered hereaf-
ter.

Let the standard structural Uariable for length m+2
based on a "core" sequence v of length m bands be p3 3.
The first few standard structural variables are thus

C. Relation of domain-wall interactions
to structural coe%cients

p3 (m =1); p33 (m =2); p3q3, p333 (m =3);
(2.17)

P3223~ P3233~ P3323, P3333 (m 4)

By rewriting the free energy in terms of a set of stan-
dard structural variables p, as in (2.14) and (2.15), the
Fisher-Selke approach thus transforms the problem of
calculating f into that of computing the standard
structural coefficients, a . At this point, these
coefficients have no apparent physical significance but
we shall now show that they are intimately related to the
n-wall interactions, W„, among the 3-band walls.

gf (n)

n=1
(2.14)

To relate the domain wall interactions W„ to the stan-
dard structural coefficients a, consider first the single-
wall tension o in (2.8). As discussed in I, this is given by
the reduced free-energy di6'erence

where the nth-order contribution (n spins flipped) to the
free energy is

b f '"'( [p, };w,x, 5) —=g a'„"'(w, x;5)p„. (2.15)

Assuming one can compute the coefficients a'"' here,
the actual values to be assigned to the p, would then be
those that minimize f: those values of [p, } would in
turn characterize (in practice, uniquely) the layer se-
quence of the stable phase, as in the example (2.13) for
(232 3). The minimization of f over the [p, } at each
order constitutes a linear programming problem, provid-
ed f has been expressed as a function only of a subset of
the [p„} which are linearly independent and hence
represent "standard" structural variables. Indeed, the
standard structural variables, by their definition and con-
struction, satisfy various linear inequalities which serve
to define the linear programming problem.

In the study of the ( 3 ):( 2 ) pseudoboundary, the
dependency relations among the [p, } are easily
identified. If v denotes a sequence of length m bands,
then longer sequences of length m +1 or m +2 bands
which contain v can be formed only by adding 2 or 3
bands before or after it, so one has

(2.18)

where the configuration C consists of a single 3-band
wall within an otherwise homogeneous (2) background
phase (whose free energy is f o ). In the Fisher-Selke pro-
cedure, these reduced free-energy densities f [C] and fo
are given by (2.14), where the sum runs only over those
"standard" sequences v constructed according to the
convention stated above (2.17). Since p, denotes the
number of occurrences per layer of the layer sequence v
in the given configuration, then for the pure background
( 2 ) phase, having no 3-band walls, all p, vanish [see
(2.17)], whence one simply has

fo=ao (2.19)

in (2.18). In the configuration C, the only nonzero p, is

p3, which evidently assumes the value 1/L. Thus (2.18)
yields

o(T,~)=a3 . (2.20)

An expression for this coefficient a 3, exact through order
mo, can be obtained from the one —spin-Aip calculation
of a~2" by Fisher and Selke [see their Eq. (4.7)], by ap-

o(T, v) —=X(T,z)/k&T = lim L (f [C] fo), —
L~ oo
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a'(T, lr)=a3 ———', a2" +0(wo)

=2K, (5—52")+O(w ' ),
where the explicit formula

K&5& '(w, x):—(2/q~)wo(I —x ' )'(I+ —,'x '

(2.21)

(2.22)

specifies the locus of the ( 3 ):( 2 ) pseudoboundary in the
(~= —,'+5, T) plane; see Fig. 1. The surface tension o.

therefore exhibits the canonical behavior discussed in I,
by vanishing on the boundary which separates the (2)
phase with no walls from the ( 3 ) phase with walls
packed as densely as possible.

The two-wall interaction W2(l) can be similarly ex-
pressed in terms of the a . Recall from I that it is
defined by

pealing to the sum rule 2p2+ 3p3 ——1 which holds near
the (3):(2) pseudoboundary (since no other bands are
allowed at low T). One thus has

W2(T, lr;1)= lim Lb,f [C(1)]—2o. ,L~ oo

(2.23)

Wz(2k +3)=(2a3+a321,3)—2o =(32"3), (2.24)

where we have used (2.20) for o and introduced the con-
venient abbreviation

a =—(v). (2.25)

By similar reasoning, one readily arrives at the general
form for W'„. Recall from I the definition [analogous to
(2.23)]

where the configuration C (1) consists of two 3-band
walls at separation l within an otherwise homogeneous
background (2) phase. [Recall that our convention in
(2.8) takes 1 =2k +3, where k is the number of 2 bands
between the two walls. ] Since each standard sequence v
begins and ends with a 3 band [recall (2.17)], the only
nonzero p in C(2k+3) are those with v=3 (for which

p =2/L) and v=32"3 (for which p„= 1/L). Thus,
(2.23) becomes

n —1 n+1 —m

W„(1|,lz, . . . , 1„&)=— lim Lb,f((32 '32 ' 32 " '32 "))—na —g g W (1;,l;+~, . . . , 1;+ 2), (2.26)
L, k„-~ oo m=2 i=1

with l; =2k; +3. Again, according to our convention
above (2.17), all standard sequences v with nonzero p, in
b,f must be of the form

W„(li, l2, . . . , 1„ i)=(32 '32 ' 32 " '3) . (2.27)

Thus we conclude that the standard structural
coefficients a„=—(v), suitably defined, are none other
than the wall interaction potentials 8'„entering the
basic free-energy decomposition (2.8). As a consequence,
note that the various relations among the wall potentials,
like

W3(l'[ 12 ) —W3(l~, l, ) (2.28)

which arise from the ANNNI model's symmetry with
respect to reflection in any lattice layer, imply corre-
sponding identities among the a .

III. THE DOMAIN-WALL POTENTIALS
AND THE PHASE DIAGRAM

In order to refine the phase diagram of Fig. 1 within
the crossover regime of width O(wo) about the (3):(2)
pseudoboundary (2.22), one must, according to Sec. IV
of I, calculate the domain-wall interactions

W, (1)=(32"3) (1 =2k +3),
W3(1, 1)=(32"32"3),

(3.l)

(3.2)

32 l32 l +I, , 32 i +f3

in addition to the single-band sequence v=3 itself. By
induction, it is immediately apparent that only the long-
est of these sequences survives the subtractions in (2.26),
so that, for all n )2,

and so on, where we have recalled the equivalences to
the standard structural coefficients (v)=a„ from (2.24)
and (2.27). This we shall now undertake on the basis of
a transfer-matrix method. The transfer matrix V( T, x )

=V(w, x) serves to generate in a systematic way the
leading low-temperature diagrammatic contributions to
the potentials, W„. The appropriate diagrams and the
weights and signs with which they enter were analyzed
by Fisher and Selke (FS). Accordingly, we start, in
Sec. III A, by reviewing the basic results established by
FS on which we build. The transfer-matrix calculations
begin, in Secs. III B—III D, with the simplest case of axi-
al coordination numbers q& ——q2 ——2 (as considered by
FS). Here we find, to leading order in temperature, that
V may be taken as a 2 & 2 matrix, Vo. The low-
temperature phase diagram found by FS, ' with
infinitely many phases, (2"3) (k =0, 1,2, . . . ), is then
recovered; see Fig. 2. The matrix Vo, however, displays
a degeneracy which is broken by the inclusion of higher-
order diagrammatic terms that enlarge Vo into a 4 & 4
matrix, Vi. The breaking of this degeneracy reveals that
at fixed low temperature, T )0, the ANNNI model ac-
tually exhibits a "harmless staircase" or case B behavior,
in the notation of I. This is in contrast to a quasicon-
tinuous transition to the (2) phase, with a "devil's last
step" or case A behavior, as is, at first sight, suggested
by Fig. 2. The point, in a nutshell, is that each bound-
ary ( 2"3 ):( 2" + '3 ) in the FS diagram represents a
stable first-order boundary at sufticiently low tempera-
ture, thus ensuring the stability of infinitely many
discrete phases in the vicinity of the multiphase point.
However, "su%ciently low" turns out to entail, as we
show here, T ( Tq, where Tk ~0 as k ~ ~! For T ) Tq
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A. Analysis of the structural coe%cients

0
1

2 m = —Jp/J)

FIG. 2. Sketch of the phase diagram of the (d & 2)-
dimensional ANNNI model near the multiphase point, for
qi ——q2

——2, following from the analytic low-temperature calcu-
lations of Fisher and Selke (Ref. 31). All phases (2"3) for
k =0, 1,2, . . . , are encountered between the ferromagnetic
and ( 2 ) phases sufficiently close to the multiphase point
(T =0, ~=

2
). All phase boundaries (2"3):(2"+'3) are of first

order at low enough T, but that character is established only
up to a bound, Tk, which vanishes as k ~ oo . No phases
beyond the infinite (2"3) sequence are predicted by the calcu-
lations.

qojo »ka T »qz I ~r
l

—=x'q (3.3)

The calculations of the 8'„we now describe are, of
necessity, fairly technical: the reader uninterested in the
details might skip Sec. III A and advance directly to the
leading-order results, (3.19) and (3.22), for Wz(l) and
W3(l, l).

the boundary (2"3):(2"+'3) is only a pseudoboundary
and, in fact, is unstable, opening to admit a narrow re-
gion of the mixed phase ( 2"32"+ '3 ) . The resulting
phase diagram, valid now for any fixed low T (indepen
dent of k), is shown in Fig. 4, below.

In Sec. III E we go on to show how the principal
findings for q &

——q2
——2 can alternatively be deduced from

an appropriately modified 2 X 2 matrix formalism. By
generalizing that formalism to arbitrary q, and q2 (in
Sec. III F) we demonstrate that the ANNNI model does
not exhibit any qualitative change of behavior as the axi-
al coordination numbers q& and q2 increase, even in the
full mean-field limit qo, q&, q2~ ~. In fact, the asymp-
totically exact low-temperature mean-field phase dia-
gram which we obtain for the ANNNI model agrees
quantitatively with that deduced by Villain and Gor-
don from a harmonic approximation to mean-field
theory, even though their calculation can be justified
only for a model with highly anisotropic spin couplings
in the "intermediate»» temperature regime

The leading low-temperature term of the standard
structural coeflicient (32"3), needed in (3.1), is deter-
mined by the lowest-order excited states of the lattice
whose counts involve a nonzero value of p k3. As dis-

cussed in Sec. VI of I, these states must obviously pos-
sess a cluster of flipped spins, linked to one another by
the couplings J;, which extend across or "span" a layer
sequence at least as long as 32 3. Since axial couplings
extend to second-nearest neighbors, one state with the
fewest flipped spins satisfying this requirement is a
"chain" along the z axis, having every second spin
flipped and spanning 32 3. We can represent this excit-
ed state by the symbol

sss
/

sG
/

ss
/

ss
/
ss

/ /

ss
/

sos
/

k 2-bands
(3.4)

Here, each s denotes the orientation of an entire layer
(s = t or L), so that a string of s's represents a band of
layers with parallel magnetizations: band edges are
denoted by vertical bars. An s marked with a
circumflex, s, indicates that a single spin has been flipped
in that layer. The in-layer Boltzmann factor of this state
(3.4) is wc+, which, by comparing (2.11) with (2.14), is
seen to contribute negatively to (32 3). This result es-
tablishes that (32 3)=0 (wc+ ) for all k & 0.

In addition to (3.4), one must sum over all similar
chains with the same number of flipped spins in order to
obtain the complete leading term of (32"3). This sum-
mation is governed by two rules identified by FS (Ref.
32) which we summarize briefly here.

Let v' =2" denote the "core" of 32"3 (i.e., the se-
quence obtained from 32 3 by removing its first and last
bands). By virtue of the relations (2.16), the standard
structural coefficient p I, also appears in the counts Nz
of any excited states involving the (nonstandard) se-
quences 2v'2, 2v'3, and 3v'2. Since these three se-
quences can support chains of k +2 flipped spins, simi-
lar to (3.4), they too will contribute to (32"3) at leading
order wc+ . From (2.16), one has

p 2v'2 p 2v' pv'3 +p 32k3

p2v'3 Pv'3 P32k3» P3v'2 p3v' P32&3

(3.5)

Since, as noted above, the Boltzmann factor of the stan-
dard sequence 32 3 is to be counted negatively in (32"3),
it follows that the contributions of these nonstandard se-
quences to (32 3) are equal to their Boltzmann factors
times the extra signs given by:

Rule 1: The sequences 2v'2 and 3v'3 contribute nega-
tively to a 32k&

——(32"3), but 2v'3 and 3v'2 contribute pos-
itively.

A further set of contributions to (32"3) at leading or-
der comes from disconnected excited states (those con-
taining two or more noninteracting clusters of flipped
spins) which, when "collapsed, " can yield one of the four
sequences of Rule 1. For example, the disconnected
configuration p consisting of the two separated spin flips

~

ss
~

and
~

ssS
~

has a count N„=(Np )(N2p ) —3Xp23,



5350 MICHAEL E. FISHER AND ANTHONY M. SZPILKA 36

where —Npz3, the "excluded volume" term, is needed to
subtract from (Np2)(Np3) the number of "collapsed"
states,

f

ss
f

ssS f, in which the two flipped spins interact
(thereby giving rise to a total Boltzmann factor different
from that of p. ) Hence, p would contribute to a33 but
note the extra minus sign introduced by the decomposi-
tion. Now, a chain with k +2 flipped spins can be
decomposed into disconnected states having 2,3, . . . , or
k +2 separated segments. A little reflection on the
above example reveals that the excluded volume contri-
bution to (32"3) of each such decomposition is equal to
the Boltzmann factor of the disconnected state times an
extra sign given by:

Rule 2: A decomposition into p segments of one of the
sequences listed in Rule 1 contributes to (32"3) with a
sign of ( —1)

One therefore obtains the leading term of (32"3) by
summing the total Boltzmann factors of all chains of
k+2 flipped spins spanning the sequences governed by
Rules 1 and 2. Note that there is some freedom avail-
able in the placement of the flipped spins: Adopting for
convenience in the remainder of this subsection the sim-
plest case of axial coordination numbers q~

——qz
——2, we

see from the definitions (2.12) that (3.4) has Boltzmann
factor x wo+, whereas other possible chains spanning
32 3 and having the same Boltzmann factor are

and

f
sss

f

ss
f
ss

f

ss
f
ss

f

.
f

ss
f

ssS
f

(3.6)

f
sss

f

ss
f
ss

f

ss
f
ss

f

.
f
ss

f
sss

f
(3.7)

In the last example, however, notice that the "defect, "
"kink, " or "soliton, " ss

f
ss, where two flipped spins are

nearest neighbors instead of next-nearest neighbors,
could occur at any of the k +1 interior band edges.

At first glance, one might suppose that a next-to-
leading excited state contributing to (32"3) would be
formed by adding to, say, (3.4) an extra flipped spin
which is an in-plane nearest-neighbor to one of the
flipped spins of the chain, namely,

f

ssS'
f

ss
f

ss ss
f
ss

f f
ss

f
sss

f

(3.8)

f
ssS

f

ss
f

s s
f

ss
f

ss
f f

ss
f

sss
f

(3.9)

(note the s s pair), and hence be reduced from the lead-

where the notation introduced in (3.4) has been general-
ized in an obvious manner. The extra flipped spin intro-

qo —z
duces an extra in-layer Boltzmann factor of w ' (not
w '), as well as an axial factor of x . Since it could be
adjacent to any of the k +2 flipped spins of the chain, it
follows that the total contribution of all such states to
(32"3) is reduced from the leading term by a factor of
order kx w ' . Actually, however, in the limit k~ao
with T &0 fixed, it transpires that the leading correction
is given not by states like (3.8), but by states having an
extra spin flipped in the chain. It might seem that such
states would be formed from (3.4) as, say,

ing term by a factor of order kx w ', which is much
less than the factor kx w ' associated with (3.8).
However, one must recognize that (3.9) contains a
"bound pair" of defects, s

f

s s J ss f, which can unbind
to form a state like

f

ssS
f

s s
f

ss
f

ss
f

ss
f

. .
f
ss

f

sss
f

(3.10)

f

Ws
f

ss
f

ss
f
ss

f

sss
f

(3.1 1)

where the umlaut denotes a superposition of two flipped
spins. Such "doubly flipped spins" cannot, however, be
separated like the pair of defects in (3.9). Hence, the to-
tal contribution to (32"3) of all such chains containing
doubly flipped spins is reduced from the leading term by
a factor of order kx w ', which is negligible compared
to either the factor k x "w ' associated with (3.10), or to
kx w ' associated with (3.8).

B. Lowest-order transfer-matrix resu1ts

From the examples in (3.4) and (3.6) and (3.7), one sees
that each of the lowest-order chains, with exactly k +2
flipped spins spanning one of the four layer sequences
2v'2, 2v'3, 3v'2, or 3v'3 (v'—=2"), has only one spin
flipped in each band. It is therefore convenient to imag-
ine constructing the chain by successively adding to its
left end a single 2 band with one flipped spin. We
choose to add bands on the left in order to obtain a
closer correspondence with standard matrix notation:
for the same reason we will count bands m =1,2, . . .
starting on the right. Note that each newly added 2
band (label it m) interacts only with its nearest-neighbor
2 band, m —1, to the right. Of course, the spin flipped
within band m may reside in either its first (left) or
second (right) layer, and similarly for band m —1: let
these two possible configurations of each band be called
states 1 and 2, respectively. In this way, one is led to as-
sociate a 2&(2 matrix with the transfer operator V which
adds band m to the chain. The (i,j ) entry of this matrix,
V~, will be taken to describe the case where the flipping
of spins has promoted band m to state i and band m —1

to state j. The value of V~ is then the total Boltzmann
factor, relative to the ground state, for all the bonds bro-
ken within band m and between bands m and m —1.

with separated defects. Such a state has just as many
flipped spins as (3.9), but now each defect has the free-
dom to occupy roughly k positions, so the total contri-
bution of such states to (32"3) is reduced from the lead-

ing term by a factor of order k x w '. For suSciently
large k and fixed T & 0 this dominates the factor
kx w ' associated with (3.8).

Finally, for the sake of completeness, we mention the
one other type of excited state that contributes to (32"3),
which may not be obvious. That is what might be called
a "doubly flipped spin, " which can arise from the super-
position of two parts of a disconnected configuration.
For example, the disconnected configuration p consisting
of the two separated chains

f

ssS
f
ss

f
ss

f

and

f

ss
f
ss

f
sss

f
contributes to (32 3) through the exclud-

ed volume term associated with
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[This must, of course, include the standard factor
wp=w ' to account for the in-layer broken bonds in
band m; however, it is convenient explicitly to factor wp
out of V; see (3.12) below. ]

To illustrate this definition, consider the element V»,
which describes the situation ss

I
ss

I

. . . Henceforth,
through Sec. III D, we restrict our attention to the sim-
plest case of axial coordination numbers q1 ——q2

——2: in
that case, the chain is perfectly straight. According to
the Boltzmann factors defined in (2.12), one has
V» ——x )&x ' = 1, where the factors x and x ' account,
respectively, for the broken nearest neighbor bonds be-
tween layers 1 and 2 of band m, and between layer 2 of
band m and layer 1 of band m —1. In similar fashion
one obtains the remaining elements of the matrix

1
WpV =WO 1+2KX

1+2K

(3.12)

In constructing and checking this and other matrices
below, it is helpful to refer to Table I, which lists, for all
possible combinations of flipped and unflipped spins, the
Boltzmann factors of the broken nearest neighbor and
next-nearest-neighbor axial bonds emanating from the
leftmost spin and extending to its right.

The partial partition function associated with adding
k +1 2 bands to the chain, properly summed over the
two possible states of each band, is clearly given by the
matrix product (woV)" +'. [Note that we consider add-
ing A: + 1 2 bands since, from the point of view of in-
teractions with flipped spins to its right, the addition of
a leftmost, or terminal 3 band after k 2 bands is

equivalent to adding on a (k+1)th 2 band. The effects
due to the actual terminations of the sequence of bands
will be accounted for by the vectors defined in (3.15) and
(3.16) below. ] One must note, however, that not every
state generated by the powers of woVO should contribute
to the coefficient (32"3). In particular, there should be
no contribution from chains having some band m in
state 1 and the adjacent band m —1 in state 2, since in
that case the two flipped spins are third-nearest neigh-
bors and so are not linked by any bond. This is
equivalent to saying that the matrix element V12 should
be 0. That change is automatically brought about by the
subtraction which results from accounting for all the
disconnected chains as required by Rule 2 above. To in-
corporate Rule 2 into this transfer-matrix formalism,
note that a chain can be disconnected between any two
flipped spins (which here means between any two bands),
and each such decomposition carries an extra factor of
—1. Therefore, one can account for a decomposition be-
tween, say, two bands both in state 1, (ss

I
ss), by sub

tracting from the transfer operator element
V» ——V(s s

I
s is i ), which adds s s to the

chain, the element

V(s~s~
I
s~ is~ i

. s~s~
I
s~ is~

associated with adding the underlined bands: the argu-
ment of this latter element is meant to indicate that it
accounts for the two interior ends of the two subchains
that result when the chain constructed by V» is discon-
nected between bands m and m —1. To include all pos-
sible decompositions, one should then replace wpV by

(ss
I
ss) —(ss

I
ss . ss

I
ss) (ss

I
ss) —(ss

I
ss . ss

I
ss )

(ss Iss) —(ss Iss . . ss Iss) (ss Iss) —(ss Iss ss Iss)

Arp

—x '(1 —x ) Ao
(3.13)

where one finds and

kp=—1 —x ". (3.14)

In the first line of (3.13), the band being added to the left
end of the chain has been identified by an underbar.

Now the matrix product (woVo)" +' correctly sums
over all connected and disconnected states of the chain
contributing to W2 ( l ) = ( 32"3). It remains only to ac-
count for the broken bonds beyond the endmost bands,
by pre- and post-multiplying (woVo)" +' by appropriate
row and column vectors, respectively. Since all four of
the layer sequences 2 +, 2"+'3, 32"+', and 32 3 con-
tribute to (32"3), each endmost flipped spin may lie
within either a 2 or a 3 band. On enumerating all possi-
bilities the needed vectors are then found to be

Iss Iss
wobi =wo

Isss Is
woci=wo

=wp XK

X 1 —K

=WP K+2X

(3.16)

X[1+0(k x "w ', kx "w ' )] . (3.17)

(Here the spins being added to the chain have again been
underlined. ) On summing the contributions of the four
1ayer sequences with signs as given by Rule 1 and using
(3.1), one concludes

W~(2k +3)= (co—bo)Vo+'(b, —ci)w o+

bo ——[ssIss I, ss Iss I]=[x" ', x ],
cot ——[s IWs I, s Isss

I

]=[x'+', x ], (3.15)
The error terms shown here arise from the higher-order
excited states illustrated in (3.10) and (3.8); these will be
considered further in Sec. III C.
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TABLE I. Axial Boltzmann factors associated with adding a new spin to the left end of a chain of
spins in the ANNNI model with q1 ——q&

——2: each factor accounts for all broken nearest-neighbor and
next-nearest-neighbor axial bonds emanating from the leftmost spin and extending to its right. The
vertical bars denote the band edges separating adjacent & and l bands, and a circumflex identifies a
spin which is flipped.

ss is

ss fs

ss fs

ss is

ss is

ss is

ss is

xK

1+a.

X 1+a.

X

X

s iss
s iss
s iss
S SS

s iss
s iss
s iss

x-'
—1+x

—1

year
SSS

SSS

SSS

SSS

SSS

SSS

SSS

x'

X 1 —ir

X

The next step (see I) would normally be to express
W2(l) as a sum of the (k +1)th powers of the two eigen-
values of V0. Notice, however, that V0 has a special tri-
angular form and only a single eigenvalue X0. as men-
tioned above, one has V1&

—=0 because axial third-
nearest-neighbor spins are not linked by any bond; more-
over, V&1

——Vzz because of the symmetry of the ANNNI
model with respect to reflection in any lattice layer. The

r

(k + 1)th power of such a triangular matrix is simply

gk+1
0 0

(k + I )gkx 2m —i( 1 x 2) gk+ 1 (3.18)

whence one can directly compute the product in (3.17)
to obtain (with 1 =2k +3)

W2(1) = (k +3)(1—x )(AQwQ)" +

)&[1+0(k x "w ', kx w ' )] . (3.19)

This lowest-order result for the pair potential
W2(l)=(32"3) agrees completely with that found by FS
(Ref. 32) [see their Eq. (A2)]. For k )0, W2(l) is a posi-
tive, convex function, decaying exponentially and mono-
tonically to 0 as l ~ ao. It therefore belongs to case A in
the classification of two-wall interactions in I, and the
naively predicted phase diagram would exhibit all simple
periodic phases (2 3), k)1, between (3) and (2) at
any temperature T ~0, as suggested by Fig. 2. One can-
not, however, accept this indication of "devil's last step*'
or quasicontinuous behavior unreservedly without ac-
counting for the 0(k wQ) corrections to (3.19), which
clearly may become significant as k~ ~ when T is
fixed! In the context of the present transfer-matrix for-
mulation, the danger can be identified in another way,
namely, by considering the degeneracy of the matrix V0.
The contributions of higher-order excited states of the
lattice may well split its eigenvalues from the single
value A.0, leading to two distinct real or, perhaps, com-
plex conjugate values, thereby qualitatively changing the
form of W2(l): recall that oscillatory potentials always
belong to case B which entails a discontinuous rather
than a quasicontinuous transition.

Before this problem is addressed, the results at leading
order will be completed by calculating the three-wall po-

tential W3(l, l) =(32"32"3). Here the four layer se-
quences to be spanned by flipped spins are 2v'2, 2v'3,
3v'2, and 3v'3 with a core of v'=2"32". As for (32 3),
each lowest-order chain of flipped spins spanning one of
these layer sequences has exactly one flipped spin in each
band. Because of the presence of the intermediate 3
band in the core v', however, there is no longer as much
freedom in the placement of these flipped spins: indeed,
one can readily see that the middle layer of that 3 band
must contain a flipped spin, and thereafter every second
spin to right and left must be flipped. The presence of
the 3 band within the core v' is therefore properly de-
scribed by the special transfer matrix

0 0

(ssS
i
ss) —(ssS,

i
ss sss

i
ss) 0

0
x(1—x ') 0 (3.20)

By employing (3.18) one can compute this product
directly to obtain, finally (with l =2k +3),

W3(l, l)= —x " 'AQ(AQwQ) "+

X[1+0(k x w ', kx "w ' )] . (3.22)

This result is also in agreement with the FS expression
[see their Eq. (A3)]. Since (neglecting again the correc-
tion factor) it suggests that W3(l, l) &0 for all k &0, one

would conclude from the discussion of Sec. V in I that
every (2"3):(2 +'3) phase boundary of Fig. 2 is stable
against any possible intermediate phases. With that, the
refinement of the low-temperature phase diagram would
be finished, all the results of FS having been completely
recovered. If, however, one recognizes the danger posed
by the factor k w ', one sees that the FS conclusions are

whence, using (3.2),

W3(2k +3,2k +3)= (cQ —bQ)VQ CVQ(bi —ci)wQ"+

)&[1+0(k x w ', kx 'w ' )] .

(3.21)
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justified provided that, on the kth boundary, the temper-
ature remains less than

W3(lfpl2): W3(l), 12)—W2(l, +1~ —1 )

=[(32 '32 '3) —(32 ' ' 3)], (3.23)

assumes, for l
&
——l2 = l, the value

W3(/, I)= —[2(k +2)( 1 —x )+x ' (1 —x )]

X[(1—x ")wo] "+'[1+0(wo)]
= —2(k +2)[(1—x ')wo] "+ (3.24)

On the other hand, the three-wall potential as we have
defined it is given by

W~(l, l)= —x' (1 —x ')[(1—x ')w ] "+ [1+0(w )]

= —x[(1—x )w ]
"+ (3.25)

In each of these expressions, the last form given is a val-
—2Ki

id approximation when x =—e « I, as true in the
l

Tk $0JO/ kB ln(c0k)

where co »1. [FS did not actually discuss the uniformi-
ty of their results in T and k but they left the impression
that they would be uniform. It is worth stressing that

gp —2
the second correction term varying as kw is unlikely
to be dangerous, since it may be, and, in fact, as seen
below, is, simply generated by changes in the eigenvalues
of V of order w ' which do not alter the form of
W2(l) or W3(l, l).]

Using these explicit expressions for 8'2 and 8'3,
which are valid at fixed T ~ 0 at least for k not too large,
one can isolate from W3(l, l) the further-neighbor two-
wall interaction Wz(21) which is contained therein, ac-
cording to the definition (2.26). Thus, the residual
three wall po-tential given by (see I, Sec. III)

—2Kplow-temperature regime w —=e « 1 when J] —Jp.
One now sees that W3(l, i) is much larger in magnitude
than W3(l, l), being dominated by the contribution from
Wz(l, +lz) in (3.23). This demonstrates the physical ap-
propriateness of the definition of 8'3 introduced in I and
adopted here.

C. Leading corrections to the two-wall potential

To go beyond these lowest-order results, one must
sum the contributions of all the next-to-leading excited
states of the lattice. As illustrated in (3.10) for (32"3),
such states are characterized by having an additional in-
chain flipped spin, so that one band in the chain will
have two spins fIipped. This band will be neither in state
1 nor in state 2 as defined above, but in a new state, call
it 3. It would therefore appear that the transfer matrix
Vp must be enlarged to a 3 & 3 matrix to include this new
state. In fact, however, because the chain may be
disconnected between the two flipped spins of a band in
state 3, such a "disconnected state 3" must be recog-
nized as yet another distinct state of the band, call it 4.
The reason for distinguishing between states 3 and 4 is
that if a band m in, say, state 2 is added to the left of a
band m —1 in state 3, the broken bonds between those
two bands are different from what they would be if band
m —1 were in state 4; in other words, Vz3&Vz4. Thus,
Up must be enlarged into a 4)&4 matrix, V&, to allow for
any band in the chain which may have both in-chain
spins flipped. The upper left quadrant of V& is just Vp
again; the additional entries of V&, involving bands in
states 3 and 4, are listed explicitly in Table II, along
with the definitions of states 1 —4. Note that all entries
of the form V4j must carry an extra factor of —1 to
satisfy Rule 2. When these Vj are evaluated using the
Boltzmann factors of Table I, one obtains

XQ

—x' '(1 —x )

—x (x —x )wo
K—2 2K

—x V2& wp
K+1

AQ

x Apw P

—x V22wp
K+1

(1—x '
)wo

—x V23wp
K+1

x V3)

x V4)

x'V))
—x' (x ' —x ) x'V2,

(3.26)

Notice that all entries V3j and V4j of U& carry an addi-
tional factor wp because of the extra flipped spin in the
band. The identities

V;4 ——x V;&, for all i

V4j ———x +'V2jwp, for all j
(3.27)

(3.28)

arise directly from the separated nature of the band in
state 4, as is evident from the expressions of Table II.

Now, adopting V& as the transfer matrix in the form
analogous to (3.17) adds to the lowest-order result for
W2(l) not only the leading correction, which determines
the nature of the splitting of the two eigenvalues kp, but
also higher-order corrections, arising from the presence

t

of more than one additional in-chain flipped spin. These
latter corrections, which can be identified by the addi-
tional factors of wp that they carry, are not of prime in-
terest here. Moreover, they are, in any case, less
significant than the higher-order correction due to flip-
ping an extra spin outside the chain [as illustrated in
(3.8)], which has so far been ignored but will be con-
sidered later. Indeed, the full 4X4 matrix formalism is
not actually needed to ascertain the effects of the leading
corrections: as shown below in Sec. IIIE, an appropri-
ately modified 2)& 2 matrix formalism su%ces.

To adapt the form (3.17) to the 4&&4 matrix V&, one
needs the appropriate four-component versions of the
vectors b; and e; (i =0, 1). To leading order, these are
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bo ——[ss fss f, ss fss f, ss fss f, (ss fss
f

ss fss)]
gc —1 a. 2' —1 2a. —1 ]

(3.29)

fss fss

fss fss
b =

$$ $$

f
ss

f
ss . ss

f

ss

K+1

X
2K —1

p

X 2K+1
LOp

(3.30)

C1=

fsss fs

f

sssr fs

fsss fs
fsss fs . fWs fs

1 —K

K+2

XWp

—X

leap

3

co=[s I ssS f, s I sss f, s
I
ss s f, (s

I
ssS

f

. . s
I
sss)]

=[x "+', x ", x, x],
where we have not troubled to distinguish them from the
two-component forms, and

= ——,'Ao(1+wp)+ —,'kowo[3+p(x)+0 (wp)]

+x (1 —x )( —,'kpwp)' [1+0(wp)] . (3.38)

Then the two complex eigenvalues are found to be

X+——Ap[1+O(wp)]+ix (1—x )(Aowo)' [1+O(wp)],

servation will be useful when examining the results in
the highly anisotropic regime (3.3), in which x ~1 and
the Villain-Gordon harmonic approximation to mean-
field theory is valid.

Provided the magnitude of these two complex roots
dominates that of the remaining real root (as verified
below), one can immediately conclude that the two-wall
potential W2(l) is an exponentially damped sinusoidal
function, exhibiting a negative absolute minimum and
hence belonging to case B. Consequently, as explained,
there can be no devil's last step in the phase diagram at
any fixed temperature T ~ 0.

To make these observations more quantitative, set

S+ =—(R+&D )'~

Since the rank of V1 is only three, one of its eigenval-
ues is identically zero; the other three satisfy the cubic
equation

while the remaining real eigenvalue is

A3=(S++S ) ——,'az ——Apwp[1+O(wp)] . (3.40)
3+F2 +a1X+ap ——0,

with

az —= —2Ap —wp[1 —x —x (1—x ) ],
ai =to(1+2wp+wpx ), ap= —Apwp

4

(3.31)

(3.32) Wz(l) =2wp+ ReI A+ A++'] [1+0(wp)], (3.41)

Since the magnitude of A, 3 is smaller than that of A, + by a
factor Apwp, one obtains, from the analog of (3.17), the
simple form

According to the standard method of solving a cubic
equation, one defines

where

3+=—fA fe'+ (3.42)

M =-&1—-&21

= —[ ~~Ao(1+wo)] I 1 Aowo[4p(—x)+O(wo)]I

(3.33)

where for brevity we have introduced

p(x)=1+x (1—x ) /A, o, (3.35)

with, as before, 6=~——,'. Now there will be a complex
conjugate pair of roots if and only if

8 = 6O,'1CX2 —TCXp —
27 CX2

1 1

= —[—,'Ao(1+wo)] (1+ApwpI 3[5@(x)—9]+O(wp)I ),
(3.34)

is a complex amplitude to be determined, while the
correction term subsumes the additional term in A, 3+'.
Note that the leading forms (3.39) and (3.40) for the ei-
genvalues A, + and A, 3 could, of course, be obtained by
perturbation theory from the characteristic equation
(3.31), without resorting to the general cubic solution.

At this point one can also consider the eHect of the
further corrections arising from extra spins which are
flipped outside the chain, the principal contribution be-
ing that illustrated in (3.8). One may incorporate these
extra excited states into the present transfer-matrix for-
malism by replacing each matrix element V~ by a matrix

V;~. The apparent correction to 8'2(l) of O(kx w )

associated with (3.8) is then seen to reflect a shift in the
leading eigenvalues A, + (as mentioned above): the result
(3.39) becomes

D—:Q +R &0. (3.36)

In the present case it is easy to check this condition
since one has

A+ ——Ap[1+ic2(x)(wo)' +O(x w ' )],
where the abbreviation

(3.43)

D = —,', x (1—x ) Apwp[1+O(wp)]&0 . (3.37) c2(x) =x (1 —x )Ao
'i -(1—x)'i (3.44)

This result is valid for ali x in (0,1): D vanishes at least
as fast as ( 1 —x ) when x ~ 1 —,and at least as fast as
x when x~0+. (We will only need 5&0.) This ob-

as x~1, has been introduced. Note that, as written,
(3.43) also implies that each additive correction term to
the A, + vanishes like A,p(x), i.e., at least as fast as (1—x),
when x ~1. This feature is to be expected on quite gen-
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TABLE II. Definitions of the four possible states of a band when arbitrarily many in-chain spin flips are allowed, and expres-
sions for the entries of the transfer matrix V~ involving states 3 and 4. Bands being added to the chain in each case are underlined.

Band state:
Layers with

spins flipped: [s s
[

(first)
[
s s (second)

[
s s (both) s s

[

. [s s
[

(both and separated)

Vi3 —(ss [s s) —(ss [ss . ss [ss),

V/3 —(ss [ss)—(ss [ss ss [ss),

Vii = (s s
[
ss) —(s s

[
ss . . ss

[
ss),

Vqi=(ss [ss)—(ss [ss . ss [ss),

Vi& ——(ss [ss ss ss) —(ss ss . . ss [ss ss [ss)

V&4 ——(ss [ss ss ss) —(ss [ss . ss [ss ss [ss)

Viz —(s s [ss)—(s s [ss ss [ss)

Viq ——(s s [ss ss [ss) —(s s [ss ss ss . ss ss)

V4i ———(ss [ss ss [ss)+(ss [ss ss [ss . ss [ss)

Vq2 = —(ss
[
ss . ss

[
ss )+ (ss

[
ss ss

[
ss . ss

[
ss )

V43 ———(ss [ss . . ss [ss)+(ss [ss . ss [ss ss [ss)
V44 ———(ss

[
ss . ss

[
ss . ss

[
ss )+(ss

[
ss . ss

[
ss ss

[
ss . ss

[
ss )

eral grounds. First observe that each entry Vj of the
matrix Vi in (3.26) vanishes like (1—x). This is due to
the separation of the chain which can occur between any
two flipped spins: the connected and disconnected
configurations contributing to V;~ exhibit identical
powers of w but difterent powers of x; since the discon-
nected configuration carries an extra minus sign, their
sum VJ must therefore vanish as x ~1. (See the expres-
sions of Table II.) Now even if arbitrarily many spins
are flipped in each layer of the chain, this argument still
applies to show that each element of each matrix V;~,
and hence every eigenvalue of V, must again vanish like
(1 —x). Consequently, one sees from the general analog
of (3.17) that W2(l) must vanish like (1—x)"+, the ad-

ditional two factors of (1—x) coming from the vector
differences (cp —bp) and (bi —ci ) [see (3.29) and (3.30)].

The error terms in (3.43) are negligible provided
qo —4

x w «1—x, or

@(x,w)—:0 I [w ' /(1 —x)]' (3.47)

For I:—2k+3 sufficiently small that the sine can be
linearized, one recovers the FS result (3.19), as must
happen. For larger I, however, Wz(l) becomes negative,
as sketched in Fig. 3, having an absolute minimum at
1,„=2k „+3with

k,„(T)= [~/cz(x)(wp)' ][1+x@(x,w)] . (3.49)

Thus, with (3.14) and (3.44), the pair potential is finally
given by

W, (l)= Apx 'sIkpwp[l+x&(x, w)]}"+'~'

&(sin[(k +3)c2(x)(wp)' [1+x8(x, w)]I .

(3.48)

(qp —4)Jp +2J») ks T ln( 1 —x ) (3.45) w, (g) g. = 2k+3

This constraint covers the ANNNI model with isotropic
couplings on a simple cubic lattice (Jp=J„qp=4),
favored for numerical studies.

To evaluate the amplitude A+ in (3.41) and complete
the calculation of W2(l), it is not actually necessary to
obtain the eigenvectors of Vi. Instead, using (3.43) for
A, +, one can expand (3.41) as a formal power series in k,
and equate the coefficients of k and k with the corre-
sponding coefficients in the expression (3.19) for W2(1).
Equivalently, one could equate (3.19) and (3.41) directly
for k =0, 1. In either case, solving the resulting equa-
tions yields

30 357
4,„-exp (qoJ kBT)

Ap(1 —x )
[1+x6 (x, w) ],

2c2(x)( wp )

P = ——,'m. +2c2(x)(wp )' [1+x6'(x, w )],
(3.46)

where the magnitude of error is indicated conveniently
by the new order symbol

FIG. 3. Character of the wall pair interaction 8'q(l) with
l =2k+3 for the ANNNI model, for axial coordination num-
bers ql ——q&

——2. The solid curve represents the complete ex-
pression (3.48), while the dashed curve shows the "short-
distance" approximation obtained by linearizing the sine func-
tion. The dotted curve depicts the overall exponential en-
velope. The minimum at k,„moves to oo as T~O.
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Note also that W2(l) is a convex function on [1,1,„):
by using the "short-distance" expression W2(l)
~ (k +3)(kp(pp)" +, one can easily check that when

Inwp & —1 (or k2(T &2qp Jp) the maximum of W2(l) is at
I & —1 and its point of inflection is at l & 1, as indicated
in Fig. 3. One therefore concludes that, among the sim-
ple periodic phases (2"3), only those with 1 & k & k
appear between ( 3 ) and ( 2 ) at any fixed small tempera-
ture. Since the cutoff spacing, k „,divevges as T~O,
however, it is still true that all phases of the form (2"3)
spring from the multiphase point (v= —,', T =0), as illus-

trated in Fig. 2. Recall from I that the phase widths de-
crease exponentially fast as k increases, according to

l(Irk(T)-K( 'k w" +' for (2"3) (3.50)

Another, surprising, aspect of the result (3.48) is seen
when one compares W2(l) to the corresponding two-wall
interaction PU((2k+3) in the notation of the Villain-
Gordon approximation to mean-field theory. In the re-
gime (3.3), which can be seen to limit the validity of
their treatment, one has

~p= 1 —x =41K2
I

—2K' 2a

c2(x)=x (1 —x )A,
' =x '(4

I
K2

I

)'

so that the result (3.48) reduces to

W'2(l) = 4
I K2

I
(4

I
K2

I
wp)" +

)&sin[a. '(k+3)(4
I
K2

I

wp)' ] .

(3.51)

(3.52)

This agrees completely with the expression for
pU((2k +3): see Eq. (7.25) of Villain and Gordon. 2

Such full agreement is surprising because the calcula-
tions of this section assume axial coordination numbers

q] ——q2 ——2, whereas mean-field theory should correspond
to the limit q;~ao with q;J; fixed. One is thus led to
guess that the results found here for the ANNNI model
remain qualitatively unchanged under variation of q;. It
should, however, be recalled that the Villain-Gordon re-
sults are (so far) known to be valid only for the "inter-
mediate" temperature regime (3.3): at lower tempera-
tures, or for isotropic couplings, one might well antici-
pate qualitative differences between the original
(q, =q2 ——2) ANNNI model and its mean-field limit. In
Sec. III F, however, the present transfer-matrix calcula-
tions are generalized to arbitrary q;, and it is seen explic-
itly that no such differences do, in fact, arise!

D. Three-wall potential in second order

The three-wall interaction W3(l, l), governed by the ei-
genvalues X+ of V[ according to the 4&(4 analog of
(3.21), must assume the general form

W3(1, 1)=2wp" + Re[ 3++k+"+'

+A+ A++'k" I[I+0(wp)],
(3.53)

where, for k ) 1, the error term subsumes the terms of
order Ap+'A, 3 which arise from smaller eigenvalues. [As
in (3.41) for W2(l), taking the real part in (3.53) accounts
for the complex conjugate terms 3 A,

+ ' and
+2,"+'k+. ] Using (3.43) for X+ and adopting the er-

ror notation of (3.47), one can rewrite this as

W3(l, l)=2wp" + [Ap[1+O(x '(p ' )]I +'(3 cos[2(k+1)c2(x)(wp)'~ [1+x( (x, (p)]+()(I+B), (3.54)

where the real amplitudes A & 0 and B, and the phase angle P, are again to be determined. Once more, it is simpler
to bypass the computation involving eigenvectors of V] by expanding as a power series in k and equating the
coefficients with those in (3.22), which one may write as

W (1 1) /2k 4 +2(kp3[+x2(1—«)+k2d (x)~ +O (x 2«(p&o kx2«(p&o k2x 4«(p qo )] (3.55)

Here the leading term in k, arising from an extra in-
chain spin flip as explained in association with (3.10), has
been explicitly displayed: the unknown amplitude d(x)
will be needed. Equating coefficients of k~ for p =0, 1,2
leads to

B = —
—,(Apx " '[I+O(w ' )]—3 cos(t,

P=m. +x( (x, w),
3

A =
2 [d(x)+O(x 'w ' )][1+x@(x,w)) .

4c2(x)

(3.56)

It remains to find d(x). This is readily done, since
only the coefficient of k associated with flipping an ex-
tra spin in the chain is required. As in (3.10), the pres-
ence of this extra flipped spin permits the formation of
two unbound defects as shown in Table III. These de-
fects may be in any of the 2 bands of the chain, provided

d(x)=(1 —x ) (1+2x )/Ap . (3.57)

On substituting this result into (3.56) and thence into
(3.54), one concludes

they do not interact with each other, with the interior 3
band, or with the ends of the chain, since such "edge
effects" would contribute at order k or order k but not
at order k . The two defects may be either on opposite
sides of the interior 3 band, as shown in (a) of Table III,
or on the same side, as in (b) and (c). Clearly the contri-
butions of (b) and (c) will be equal. Allowing for a possi-
ble separation of the chain between any two flipped spins
according to Rule 2, one can refer to Table I (or use the
matrix elements of V( for the 2 bands) to compute the
Boltzmann factor of each chain, as also recorded in
Table III: note that the endmost flipped spins may lie
within either 2 or 3 bands. Summing over those possi-
bilities with signs as given by Rule 1, one finds
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TABLE III. Chains of flipped spins contributing at next-to-leading order to the three-wall interac-

tion 8'z(l, l) of the ANNNI model, when q&
——

q&
——2. The Boltzmann factor of each chain (including

decompositions) is also given: those for (b) and (c) are equal.
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2k+3
W3(l, l)= 4s IAO[1+0(x 'w ' )]) "+ [1+x@(x,w) —(1+2x ')cos[2(k+1)c2(x)(wo)'i2+xg(x, w)]) . (3.58)

(1)
max (3.60)

This form has rather interesting consequences. Ob-
serve first that when k is small enough the cosine may be
replaced by unity, and the lowest-order FS result (3.22)
is then recovered: since W3(l, l) is negative, the
(2"3):(2"+'3) boundary is stable against the appear-
ance of intermediate phases. However, since the ampli-
tude of the cosine in (3.58) exceeds the remaining con-
stant within the braces, W3(l, l) must eventually change
sign as I increases. Moreover, since the argument of the
cosine is essentially twice that of the sine appearing in
W'2(l) in (3.48), W3(l, l) will change sign before 1 has in-
creased to its maximum va1ue I =I,„—1 =2k „+2
given by (3.49). More precisely, W3 (1,1) vanishes at
I'"=2k'"+3 where

k"'( T)= [x'/c2(x)(wo)' ][1+0(x)+B(x,w)]

=(x "/vr)k (3.59)

For larger 1, W3(l, l) remains positive until it changes
sign a second time at I' =2k' '+3 with
k' '(T) = [1/c2(x)(w11 )' ] In. —x'[1+0(x)+ 6(x, w)] I

after which 8'3(l, 1) remains negative while 1 increases to

,„—1. Consequently, as illustrated in Fig. 4, the
mixed phases (2"32"+'3) appear for k"'(T)
(k (k' '(T). Note that although k'"~ao as T~O,
one also has k'"/k, „~O in the same limit, and hence
k' 1/k, „~l. Thus there are (2"32"+'3) phases ap-

pearing arbitrarily close to the zero-temperature multi-

phase point at ~= —,'. These refinements of the FS dia-

gram are quite surprising but their dependence on W3
makes their nature understandablef

It is also instructive to compare the exact result (3.58)
for W3(l, l) to the corresponding expression which fol-
lows from the approximate mean-field approach of Vil-
lain and Gordon. Their e6'ective Hamiltonian for the
ANNNI model contains only pairwise interactions be-
tween domain walls (although the potential between two
walls depends on the number of intermediate walls and
hence is not a true pair potential). For such a model, as
discussed in Sec. III of I, the three-wall potential W3(l, l)
is simply given by the further-neighbor pair interaction
pU2(4k+6). This quantity is readily evaluated from
Eq. (7.22b) of Villain and Gordon, ' as
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W3(l, l)=PUz(4k +6)=—4
~
Kz

~

(4
~
Kz

~
wo) + [ 1 +0 (Pwp)]cosIK '(2k + —,

' )(4
~

Kz
~

wo )' [ 1 +0 (Pwc )] I

(3.61)

By contrast, in the regime (3.3) where the Villain-Gordon approximation is valid, our exact result (3.58) simplifies to

W, (l, l) = 2
~
Kz

~
I4

~
Kz

~
wc[1+0 (u) ' )]I'"+'

X I I+6(x,w) —[3+O(Ki)]cos[2s. '(@+1)(4
~
Kz

~

tUo)' +6'(x, to)]I . (3.62)

Both these expressions for W3(l, l ) are negative for small
k, change sign at some k =k"'(T), and then remain pos-
itive over the interval ( k "', k,„—k "'); but for the
Villain-Gordon result (3.61), one has

k"'(T)=-'~~(4~Kz
~
~, ) '",

whereas the exact result (3.62) yields

k"'(T)= —,'(cos '
—,')a.(4

i Kz
~

wo)

(3.63)

(3.64)

o
2 ~ = —qqJ~/q, J,

FIG. 4. Schematic phase diagram of the ANNNI model in
the plane of competition ratio ~ vs temperature T, as deduced
under the low-temperature condition mo ——exp( —2qoJO/kgT)
«1. Solid lines represent stable, first-order transitions (al-

though under sufficiently anisotropic conditions the phase (4)
and, possibly, others, will appear on the ( ao ):( 3 )
boundary —see text). At fixed T&0, simple periodic phases
(2"3) appear between (3) and (2) only for 1&k &k
where k „-w 0

' ~ oo as T~0: this gives rise to a series of
(2"3):(2"+'3):(2) triple points marked by vertical ticks along
the (2) phase boundary. Mixed phases, (2"32"+'3), are also
present, for k'" & k & k' ', where k"'=(x "/m)k, „and
k' '=k,„—k ". The boundaries of these mixed phases have
been decorated with dots since they may be unstable to the ap-
pearance of higher-order mixed phases. The phase widths,
which decrease exponentially fast as k increases, have been
greatly exaggerated here for clarity. The phase diagram
remains qualitatively unchanged under variation of q& and q2
from 2 to ao (the mean-field limit).

Since —,
'm. =0.785 while —,'(cos '

—,
'

) =0.616, one sees that
the Villain-Gordon approximation remains qualitatI. Uely
correct in implying the existence of an interval of values
[k'"(T), k,„(T)—k'"] over which the intermediate
phases (2"32"+'3) appear, but the quantitative estimate
of k"' is too large by some 28% (thus underestimating
the width of the interval). In fact, however, Villain and
Gordon did not describe any of the mixed phases that
arise from their formalism.

The stability of the (2"3):(2"32"+'3) and
(2"32"+'3):(2"+'3) boundaries (marked by dots in
Fig. 4), which is governed by W4, has not been checked
here. It is clear, however, by analogy with (3.53), that
W„(l&, lz, . . . , I„ i ) will contain a term with the factor

cos[(l i + lz+ +1„&)cz(x)(wo )' +P„],
which oscillates increasingly fast as n increases. This sit-
uation could well lead to a complex variety of higher-
order mixed phases, arbitrarily close to the multiphase
point. The Villain-Gordon approximation may or may
not provide a qualitatively correct reproduction of such
further structure, but we suspect, on the basis of the ex-
plicit results for W2 and 8'3 examined so far, that their
approximation would become increasingly poor for such
higher-order phases.

At this point we may remark that since the ( 3 ):(23 )
boundary is known to be stable at low T against (23")
and all other mixed phases, there is nothing to be gained
by reversing point of view and regarding the 2 bands as
walls separating ( 3 ) -phase domains. The ( 3 ):( 23 )
boundary may become unstable only where the validity
of the present analysis breaks down, i.e., at temperatures
at or above kz T-Jo.. there the numerical mean-field re-
sults of Selke and Duxbury ' indicate that such desta-
bilization does in fact occur.

To complete this discussion of the low-temperature
phase diagram of the ANNNI model, it is appropriate to
reconsider the ( ac ):(3)boundary. In Sec. II A we not-
ed that the first step of the FS free energy expansion
determines this boundary as marking a stable, first-order
transition, except in the anisotropic cases x &mo (i.e.,
Ji )qpjp) or 1 —x =2Ki &wo. Under those conditions,
an explicit calculation of the free energies of ( Oo ),
(3), and (4) through O(wo) (two Ripped spins) shows
that (4) acquires a narrow region of stability between
(ao ) and (3). The obvious next question is whether
(5), (6), etc. also appear when there is suflicient anisot-
ropy. This problem is amenable to the same sort of
analysis that has been applied here to the ( 3 ):( 2 ) pseu-
doboundary. To treat the ( ao ):( 3 ) boundary, one
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would define a "domain" to be simply the usual fer-
romagnetic domain (all layers t or all t), and the "walls"
would then mark the transitions between & and
domains (e.g, t t t

~

t t ( . ). It is then trivially true
that all stable phases can be characterized by domain
walls separating adjacent domains, so the analysis of I
would again apply. At the level of the two-wall interac-
tion Wz(l), that analysis would reveal which simple
periodic phases ( k ) arise between ( ao ) and ( 3 ).

At low temperatures, a transfer-matrix method for
calculating W2 and the other 8'„could be developed
along the lines of this paper. However, if it were desired
to exploit the correspondence between the W„and the
standard structural coefficients a, as done above, a new
set of standard structural variables I p„] would be re-
quired, since the set used so far has assumed that all
phases are composed of 2 and 3 bands only. [Recall the
convention of Sec. II B, leading to (2.17).] By the same
token, one cannot immediately decide the stability of
(I ) for small i )3 just by appealing to the explicit FS
calculations of the free energy through 0 ( w o ) (even
though a chain of three flipped spins can span a 7 band),
since those results also apply only to configurations com-
posed solely of 2 and 3 bands. Therefore, we cannot say
more about the ( ao ):(3) boundary without first setting
up some additional machinery beyond that developed
here; but the problem should be soluble by the present
methods without any intrinsically new difficulties.

right by a state-2 band,
~

ss
~

. Equivalently, states 3 and
4 appear only in the products V&3V32 and V&4V4z. This
suggests that one may avoid all explicit reference to
states 3 and 4 by working with the squar e of the transfer
matrix. More specifically, the results of Secs. IIIC and
III D could equally well have been obtained within the
original 2&&2 matrix formalism [see (3.13)] that referred
only to bands in states 1 and 2, prouided that the entry
(Vo)i2 of the square of the original 2X2 matrix Vo is
changed from its value of 0 in (3.18) to the new value

(V+ ) i2= 2( V&3 V32+ Vi4 V42 ) . (3.66)

Pro

—2kox (1—x )

1 —x~)w

Ao
(3.67)

Here the extra factor of 2 is necessary to allow every 2
band in chain the possibility of being in state 3 or 4:
without it, the matrix iteration (V+)'"+"~ which gives
Wz(1) [in the generalization of (3.17)] would have al-
lowed only every second 2 band of the chain to be in
state 3 or 4.

The matrix elements of (3.26) can be used to evaluate
(3.66). The proposed modification of Vo [putting k =1
in (3.18)] is then the augmented 2X2 matrix

E. Reduced matrix formulation for leading corrections

Because of the second-neighbor range of axial cou-
plings in the ANNNI model, it is not simple to general-
ize the 4X4 transfer matrix V& to arbitrary interlayer
coordination numbers, q] and q2. To illustrate the prob-
lem, consider the matrix element

V/3 —(ss
~

s s) —(ss
j
ss . ss

~

s s ) (3.65)

see Table II. Counting from the left, the first flipped
spin may occupy any of the —,'q& nearest-neighbor posi-
tions relative to the second flipped spin which are also
among the —,'q2 next-nearest-neighbor positions relative
to the third flipped spin. The total number of positions
available to the first flipped spin therefore depends in a
nontrivial way on the lattice structure; moreover, the ad-
ditional states for which the first flipped spin "sees" the
second but not the third, or vice versa, would require
that V& be enlarged to a matrix larger than 4)&4.

This difficulty can be circumvented, however, when
only the leading correction from extra in-chain flipped
spins is really needed in order to resolve the degeneracy
at lowest order. In that situation, the crucial point to
notice is that, as illustrated in (3.10), one need never con-
sider three (or more) adjacent layers containing flipped
spins, because such a "bound pair of defects, "
s

~

s s
~

ss ~, can always realize an entropic gain by un-
binding and separating. The difficulty indicated above
can thus be neglected.

Moreover, it follows from this rule that any band in
state 3, (~ss~), or state 4, (~ss

~

. ~ss~), must be
flanked to its left by a state-1 band,

~

ss ~, and to its

whose eigenvalues,

+=A,O[1+2ix (1—x )(wo/A, o)' ), (3.68)

correctly reproduce the leading terms of the square of
A, + in (3.43). The rest of the calculation of n-wall in-
teractions 8'„ in Secs. III C and III D may now be car-
ried through alternatively in terms of the eigenvectors of
(3.67).

F. Arbitrary coordination numbers and the mean-field limit

The reduced matrix formulation is readily generalized
to arbitrary axial coordination numbers qi, q2) 2. In
this general case, one must simply account for all the ad-
ditional axial bonds between a flipped spin and its
unflipped neighbors. The computation of the matrix ele-
ments VJ is summarized in a convenient format in Table
IV. To illustrate the scheme, recall, from (2.12), that the
Boltzmann factor for the broken bond associated with a
single pair of axial nearest-neighbor spins flipped from
like to unlike orientation is x, while for a pair of axial
next-nearest-neighbor spins flipped from unlike to like
orientation (the commonest occurrence), the factor is
x =x ' '. Reverse transitions are of course associat-
ed with the reciprocal factors. Now, any matrix element
V;, is associated with a particular configuration of
flipped spins according to (3.13) and Table II. Hence,
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/g2TABLE IV. Powers of the elementary Boltzmann factors x and x —corresponding to broken
bonds between axial nearest-neighbor and next-nearest-neighbor spins, respectively —that arise in the
elements V;, of the aUgmented 2)&2 transfer matrix (3.70) for the ANNNI model with arbitrary axial
coordination numbers q1 and q2.

Augmented matrix element Power of x q /q
Power of x

V„=(ss
f

ss)
—(ss

f
ss ss

f
ss)

V(z ——(ss
f
ss)

—(ss fss ss fss)=—0

2q1 —2q1 =01

2q1 —2q1 =01 1

2q1
1

1

2ql

2( —'q
2' —q2

1

2 2q2. 1

2' —q2
1

V2( = (ss
f
$$ )

—(ss
f

ss ss
f
ss)

V2, = (ss
f
ss )

—(ss
f

ss ss
f

ss )

—q1 —2( —q1 —1)1 1

2 2
1 1 1

—,q1 ——,q1- -, q1

—,q1 —-q1 ——01 1

2q1 —2q1 =01 1

2 2q2. 1

2 . 1

2( —'qp —1)

q2. 1

V(3 =(ss
f
K)

—(ss fss ss fK)
2q1 —2q1 =01

1 =01

2( —,'q, —1)+—,'q,
3' 2qp
. 1

V32 ——(s s
f
ss )

—(s s
f

ss ss fss)

2( —'q1 —1)——'q1
2 2

2(-q, —1)—-q,1 1

2 2

2(-,'q, —1)+—,'q,

2q2. 1

V(4=(ss
f
ss . ss

f
ss)

—($$
f
ss . ss

f
ss ss

f

ss )

2ql —2q1 =01 1

2q1 —2q1 ——01 1

2( —,'q, —1)+—,'q,
3 . 1

V4, ——(se fss Wsfas)

+ (ss
f
ss ss

f
ss ss

f

ss )

2. zq1 ——q1
1 1

~. 1 12 2q1.~ 2q1

2( —,'q, —1)+—,'q,

2

the value of VJ is given by the product of these two fac-
tors x and x, raised to powers which are the numbers
of the corresponding broken bonds in the associated
configuration. These powers are totaled in Table IV.
Additionally, each VJ. carries a factor given by the num-
ber of lattice positions available to the newly Hipped spin
or spins (which are underlined in Table IV): thus, for
example, one obtains

0
V(&

———'qz(x x —x x )

—2~'=-,'q2x ' (x —1) . (3.69)

By evaluating the other V;, in (3.13) and (3.66) in a simi-
lar fashion, one arrives at the generalized version of the
augmented 2 X 2 matrix (3.67), namely,

2V+=
(g(q) )2

—q(Aoqx (1—x )
( ) f16

q(x ' x ' (1 —x )wo(Aoq')

( g(q) )2
(3.70)

where
q —2 1 (3.73)

—2a-'
Ao '=-,'q2x ' (x "—1), a'=q, x/q2 . (3.71)

+=(A, ' ') [1+2ic (x)(w )' ], (3.72)

Observe that A.o(
' is identical to Ao as defined in (3.14).

Comparison of this result with (3.67) shows that the
form of the transfer matrix is not significantly altered as
q& and qz are varied. In particular, the eigenvalues of
V+ always remain complex: explicitly one has

[Compare (3.43) and (3.44).] Consequently, the ANNNI
model at fixed low temperature never realizes "devil' s
last step" behavior. An explicit form for the two-wall
interaction, W2(l), is obtained by evaluating the general
transfer-matrix expression using V+ in the basis of
eigenvectors of (3.70), using the generalizations to arbi-
trary q; of the row and column vectors in (3.15) and
(3.16). The result is
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II/, (&)=x ' (1 —x" ) (&' ')"+' 'w" +' 'sin 0+1+ cq(x)(wo )'/

q, (1 —x )(1—x '
)

(3.74)

This shows that the arrangement of (2 3) phases remains, for all q i, qi )2, qualitatively as depicted in Fig. 4.
These remarks are still valid in the mean-field limit in which q;~Do with q;J; (i =0, 1,2) held constant. In that

limit, x ~1 while K and
—2q I K )x =e =x ) (3.75)

remain fixed. [Recall the definitions of Boltzmann factors in (2.3) and (2.12).] Therefore the expressions derived
above assume the limiting forms

o~ Ao =2q2
I
Kz

I

x

cq(x)~c (x}=x. '(Ao)'/

whence

2mx ", ( 1 —x, ) ( A,o" 'w o )
'

(I) x — (1 x+)2(g(m))k+1/2wk+3/2 sin
(1—x))

(3.76)

(3.77)

(3.78)

Contact can again be made with the results of Villain
and Gordon by restricting these general mean-field ex-
pressions to the "intermediate" temperature range (3.3)
in which

qi&i~1, x& =1—2q&E& . (3.79)

In that case, the mean-field two-wall interaction (3.78)
becomes

~2(I)= 2qz
I
&z

I
(2qz

I

I~ 2 I
wo )

Xsin[& '(k+3}(2q21+2
I

wo) ] (3.80)

IV. CONCLUDING REMARKS

which agrees precisely with the corresponding quantity
PU, (2k+3) [compare (3.52)] obtained by Villain and
Gordon from their harmonic approximation to mean-
field theory. (Observe that here, as in all mean-field
treatments of the ANNNI model, the coordination num-
bers q; always appear only within the products q;J;.)

The three-wall interaction, JV3(l, l), can also be calcu-
lated for arbitrary q; from the general transfer-matrix
expression (3.21), along the lines of Sec. III D. One first
needs to construct the matrix C in (3.20) for arbitrary q;,
in order to obtain the generalized version of (3.22), and
then equate the coefFicients of that result with the expan-
sion in powers of k of a form like (3.53). Depending on
the details of the result, it is possible that the interval of
values [k"'(T),k' '(T)], over which the mixed phases
(2 32 +'3) are found to be stable when q, =qi ——2 (re-
call Sec. III D), might be significantly altered or even
destroyed. However, the approximate Villain-Gordon
result (3.61), for the mean-field form of $V3(l, l), suggests
that no such profound changes will occur.

the low-temperature phase diagram of the original model
(with q &

——qz ——2) been elucidated, but its generalization
to arbitrary coordination numbers has also been studied:
this has permitted the extraction of asymptotically exact
expressions for mean-field theory. Thus, we have
demonstrated that there is no qualitative disagreement
between the ANNNI model and its mean-field limit
(contrary to some earlier speculations). Further, we
have shown that the harmonic approximation of Villain
and Gordon provides a surprisingly accurate account of
the mean-field theory. In addition to rederiving previ-
ously established results from a more physical and intui-
tive approach, we have also established the existence of
more complicated mixed phases like (2"32"+'3), with
alternating interwall separations, down to arbitrarily low
temperatures.

Our studies have been carried out with the aid of a
transfer-matrix formulation for the n-wall interactions

The functional form of these 8'„ is largely deter-
mined by the nature of the transfer-matrix eigenvalues
(in particular, whether they be real or complex); that
question, in turn, is strongly influenced by the contribu-
tions of the disconnected configurations of Hipped spins,
which can drive certain transfer matrix entries negative.
This fact leaves us with some reservations concerning
the work of Uimin, who ignored all disconnected
configurations in utilizing an FS type of expansion to
study the ANNNI model in nonzero magnetic field. To
illustrate the danger within the context of the zero geld
calculations performed here, consider the effect of
omitting the negative term due to disconnected
configurations in each transfer-matrix entry V~. In the
simplest case q, =qz ——2 (which Uimin studied), the aug-
mented 2 X 2 matrix in (3.67) would become

The detailed calculations for the ANNNI model de-
scribed above provide a fair sampling of the variety of
low-temperature behavior discussed in I for systems that
exhibit uniaxial arrays of domain walls. Not only has

~2
2]c+ 12x

2x wp
(4.1)

which has real eigenvalues. Such a shift from complex
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to real eigenvalues might also, depending on the sign of
the resulting amplitudes in the spectral representation of
W'2(l), induce a change in the two-wall interaction from
case B ("harmless staircase") to case A ("devil's last
step") behavior. (For the zero-field example just given,
the reader may check that Wz(l) actually remains within
case B, although, of course, it is no longer oscillatory!)
Consequently, it is possible that some or all of the devil' s
staircase behavior reported by Uimin is spurious, arising
from his neglect of disconnected configurations.

That is one of several remaining open questions that
may be answerable within the scope of the transfer-
matrix approach utilized here. Others include, of
course, the nature of the higher-order mixed phases that
may be present in the ANNNI phase diagram: whether
these continue to appear, forming a complete devil' s

staircase, or are eventually cut off beyond some max-
imum order. The question of which additional phases
arise on the ( oo ):(3) pseudoboundary of the ANNNI
model for sufficiently anisotropic couplings also remains
to be answered. (Recall the discussion at the end of Sec.
III D.)
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