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The relation between quantum spin chains and conformal field theories is reexamined. Using a
generalized Hubbard model representation it is argued that the critical theory for generic half-
odd-integer spin antiferromagnets is the Wess-Zumino-Witten model (WZW model) with topologi-
cal coupling, kK =1, whereas generic integer spin antiferromagnets have an energy gap. The
higher-k WZW models (which describe integrable higher spin models) are multicritical points in
the space of all spin Hamiltonians. The k =1 WZW model represents a stable fixed point for
many theories including WZW models of arbitrary odd k with relevant operators added, general-
ized Hubbard or Thirring models with an odd number of colors and the O(3) o model at topologi-

cal angle 6=r.

Quantum spin chains were studied! using non-Abelian
bosonization? in a recent paper. It was suggested that,
at least in some cases, the critical theory for a spin-s an-
tiferromagnet is the Wess-Zumino-Witten nonlinear o
model (WZW model) with topological coupling k =2s.
In general, except in the case k =1, there are relevant
operators in these models respecting all obvious sym-
metries of the spin systems. One might expect that if
these operators were present they would produce a gap.
Given the independent arguments that a gap exists for
integer, but not half-odd integer s, it was speculated that
these operators were generated in the former but not the
latter case. It was difficult to resolve this issue, in part
because of uncertainties in the non-Abelian bosonization
procedure for k > 1. In two later papers, it was shown
that the low-temperature susceptibility’ and specific
heat* are determined by k and the conformal anomaly
parameter ¢ =3k /(2+k), respectively. This allowed for
a demonstration that the integrable Hamiltonians® of ar-
bitrary spin were indeed in the k =2s universality class.

In this paper we wish to reexamine these issues. We
will obtain spin-s antiferromagnets from the infinite
(Hund’s rule) coupling limit of a generalized Hubbard
model with 2s orbitals. An approximate mapping onto
the k =2s WZW model using non-Abelian bosonization
suggests that relevant operators are generally induced
for all kK >1. By adjusting enough parameters in the
spin Hamiltonian, the coefficients of all relevant opera-
tors can presumably be made to vanish. The number of
such relevant operators is the largest integer j such that
j<k/2and j(j+1)<2+k. It thus appears that the in-
tegrable Hamiltonians correspond to such special mul-
ticritical points.

The effect of relevant operators is then considered in
more detail. It is argued that they tend generically to
produce a gap for k even, but to produce crossover to
the k=1 fixed point for k odd. Passing to the large k
limit a semiclassical argument indicates that the relevant

36

operators lead to a low-energy theory which is the O(3)
o model with II, topological term equal to k. This is
in accord with previous arguments® that this is the low-
energy theory for a large-s spin chain, with 6 =27s and
indicates that the critical theory for the O(3) o model at
6= is the k=1 WZW model (not the k=0 WZW
model as the previous discussion' suggested). Indeed the
k=1 WZW model represents a stable fixed point for
many SU(2) invariant systems due to a type of topologi-
cal stability.

In Ref. 3 the spin-wave velocity times zero-
temperature susceptibility of (CH;);NMnCl; (TMMC), a
highly one-dimensional antiferromagnetic, was shown to
be fairly close to the value corresponding to k =5 (=2s).
However, as was also pointed out, the k=5 value hap-
pens to be very close to the classical value for this quan-
tity and, since s =3 is fairly large, one should expect the
classical approximation to be quite good down to low
temperatures where quantum effects dominate. The tem-
perature at which quantum effects become important is
exponentially small for large s: O(e ™). We now be-
lieve that this “quantum temperature” is below the Néel
temperature for TMMC (0.85 K) where three-
dimensional effects become dominant. Extracting one-
dimensional critical exponents from these systems is fur-
ther complicated by the fact that even small anisotropies
produce large effects at low T and large s. Thus we are
rather pessimistic about the prospects for experimental
observation of the one-dimensional critical behavior de-
scribed in this paper, for s > 2. There is perhaps some
chance in a very one-dimensional and very isotropic s =3
antiferromagnet. The numerical results for s =3 may be
useful in this regard.”

We begin with the standard spin-s antiferromagnetic
Heisenberg model:

H=J3S,S, ), Si=s(s+1). (1
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We find it convenient to use a generalized Hubbard
model representation for the spin chain. The relation
between the ordinary Hubbard model and the s =1 anti-
ferromagnet was used, for example, in Ref. 8. The mod-
el actually mimics the way spins are produced from elec-
trons in real crystals. The best higher spin antifer-
romagnets [such as (CH;);NMnCl;] with s=3 have
transition metals as the magnetic ions, with half-filled
outer d shells (such as Mn’*). A strong Hund’s-rule
coupling between the five electrons in the d shell of each
ion makes the spins line up, forming an s =3 spin vari-
able. The weaker exchange forces between electrons of
neighboring ions then produce the antiferromagnetic in-
teraction between the spins. In our model we will intro-
duce 2s identical half-filled orbitals per lattice site to ob-
tain spin s. The Hamiltonian contains a nearest-
neighbor hopping term and a Hund’s rule coupling
which is taken to infinity. We will refer to the orbital in-
dex, i=1,2,...,n. as the color. The numbers of colors
n.=2s. ¥,,, annihilates an electron of color i, spin «
(equal +1) at site n. Repeated spin or color indices are
implicitly summed over. Thus the spin variables are
written as

Sn =2 Sin = %‘/}:iaoad’iﬁn ) (2)
i

where S, is the spin of the color i electron and the o%’s
are Pauli matrices. The Hund’s-rule (HR) coupling is

HHR=—'UES£ .

Using the identity
0% 07 . =28%875—58%87, ,
this can be written

Hyr =(U /8 S[2( Y 0 — 8 V1P, — 891

+ ()Y —n, )]

Here we have dropped constants and terms proportional
to the (conserved) total electron number. It can be seen
that the ground states of Hyy are all states with n, elec-
trons per site in a color singlet state (i.e., antisymmetric
with respect to color). Such states have spin s=n, /2.
The hopping term is

Ho=—vVnJU 3 [Y}YW0n +1+H.c.]

where H.c. stands for Hermitian conjugate. Note that
the full Hamiltonian is invariant under an SU(n,) color
symmetry and that the Hund’s-rule coupling favors local
color singlet states. This is very reminiscent of quantum
chromodynamics where the Hund’s-rule coupling results
effectively from exchange of gluons (however, this leads
to a long-range force, not a local one). The low-energy
states of the Hubbard model correspond to baryons
(color singlets formed antisymmetrically out of quarks)
with residual spin interactions. In the limit U — o, the
Hamiltonian, projected onto the low-energy states, be-
comes simply the Heisenberg Hamiltonian. This can be
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seen by considering perturbation theory in the hopping
term. Only second-order perturbation theory survives as
U— «. The intermediate state has s =(n,%+1)/2 on two
sites and hence excitation energy, AE =U /2. This rep-
resentation can be generalized to any dimension.

We will extract the critical theory for the antiferro-
magnetic chain out of this representation by considering
first the case of small U (U <<J). The motivation is the
same as in the more familiar case of the ordinary Hub-
bard model.® We will search for a possible gapless low-
energy sector of the theory at small U. The remaining
states will have a gap that grows with U [being of order
exp(—const X V'J /U ) at small U]. The gapless sector is
decoupled from the other states. Therefore the effect of
taking U — oo is simply to give these other states infinite
energy.

Thus we begin by ignoring entirely the Hund’s-rule in-
teraction term in the Hamiltonian. The hopping term
gives a dispersion relation

E =(v /a)cosak

where v =2V JU a is the Fermi velocity and a is the lat-
tice spacing. The Fermi ‘“‘surface” is at k =+ /2a, for a
half-filled band. The low-energy states are electrons just
above and holes just below, the Fermi surface. Thus we
are only concerned with Fourier modes of the electron
annihilation operators v¥;,, with k ==xm/2a. We write

a “l/zwian zeimm /2¢Lm(an )+e —iman /2¢R[a(an ) , (3)

where ¢, g are slowly varying on the scale of a lattice
spacing. ¥; annihilates electrons and creates holes with
k== —m/2a. We refer to these as left-moving elec-
trons and holes. ¥ annihilates right-moving electrons
and creates right-moving holes. In a continuum approx-
imation, suitable for studying the low-energy sector, we
linearize the dispersion relation near the Fermi surface.
This leads to the continuum Hamiltonian

H=iv [ dx[¢}'™(d /dxWpia—9E*(d /dx Wria] -

This is the Hamiltonian for massless relativistic Dirac
fermions (with color index, i, and spin or flavor index a).
v plays the role of the velocity of “light.” Henceforth
we shall generally set it equal to one. The corresponding
Lagrangian density is

L=1LD bpia+ VKB, Yria) , @
where we have introduced ‘““light-cone” coordinates
xiz(xoix[)/% aianial(xO:t, X1 =—X =—Xx).

L is invariant under Lorentz transformations

+9 0,2
d+—0+e ",y g —>¥ re .

Note that, by the equations of motion, ¢ ;;, is a func-
tion only of x | _, respectively. We will sometimes con-
sider the light-cone components of the energy-
momentum tensor

TL,R E(j{i?)/zzllﬁzﬁ% ailpL‘Ria ,

where 7 and 7 are the Hamiltonian and momentum
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densities. T, p generate translations along the light
cone. We will be much concerned with the symmetries
and conserved currents of this free fermion theory. All
internal symmetries are chiral; that is to say we can per-
form the symmetry operation on the left or right fer-
mions separately. Operating on the left fermions we
have a U(1) charge symmetry,

¢Lia‘"’ei9¢ua ’
an SU(2) spin symmetry,
1/’Lia—>gaB¢LiB ’

and an SU(n.) color symmetry,

¢Lia—"hij1/’Lja .

Here, g% and h'; are SU(2) and SU(n,) matrices. Like-
wise we may make independent transformations on the
¥gr’s. The charge, spin, and color of the left- and right-
moving fermions are separately conserved. Correspond-
ing to these symmetries we have conserved currents. In-
troducing the generators of SU(n,), (T'4)/
(A=1,2,3...n}—1; tuT*T8=185; summation of re-
peated A indices will be implied) the light-cone com-
ponents of the currents can be written as

_ ti
JLr= YLRYL Riat >
b
I r=Y/% (Do LY rig s
A ytia (74)
JER=VLR(T )Y Rje -

Here the double dots denote normal ordering. The
energy-momentum tensor can be written in a form quad-
ratic in currents:!

T, =(x/2n W Jp +[27 /(. +2)JoI .- T,
+27/(n.+2) W AT (5)
(and similarly for TR). Here we have reinstated the ve-

J

locity of light v.

We now consider the effect of a small Hund’s rule
coupling U <<J. We will focus on its effect on the low-
energy, relativistic sector of the Hilbert Space. Writing
the Hund’s rule couplings in terms of ¢,  we obtain
terms with four powers of ¢; (or four powers of ¢¥z) and
also terms with two ¥, ’s and two ¥g’s. Only four Fermi
terms with no derivatives will be retained. The higher-
derivative terms are irrelevant at the free fermion fixed
point and also at the nontrivial fixed points which we
will encounter later. The completely left-moving (or
completely right-moving) terms can be written quadrati-
cally in the currents and thus simply renormalize the
speed of light in (5). This renormalization is different for
the terms in (5) involving charge, spin, and color
currents:

Svgpin=—(n.+2)U /27 ,
Bvcharge :6Ucolor =0.

A theory with three different velocity of lights could
not, of course, be Lorentz invariant. However, as we
shall see, only the spin part of 7; will be retained in the
low-energy theory so only the spin velocity parameter
will be relevant.

The left-right terms correspond to Lorentz-invariant
interaction terms in the Lagrangian of (4) (the same
terms as in the Hamiltonian, but with a change of sign).
Thus they can be treated using field-theoretic methods.
There are actually six different Lorentz-invariant in-
teractions permitted by the symmetries of the Hubbard
model. We see from the definition of the continuum
Fermi fields, (3), that the single charge spin and color
symmetries of the Hubbard model correspond to the di-
agonal subgroup of the chiral symmetries of the free field
theory, under which left and right fermions transform
the same way. The six interactions permitted by these
diagonal symmetries are

Lig=MJ g + 23 Tg +AJATE + AW AUT )0 P i g R (T4 0, P rys)
+ As[(€aptl U PP) Ppi, Ur0€ )+ Hoc. 1+ Ao WL 120 P Wi R 5 +Hoc.) 6)

Here €,p is the antisymmetric tensor (€,,=1) and the curly brackets indicate symmetrization of the spin indices. Due
to Fermi statistics the fifth term which is antisymmetric in (left and right) spin indices is symmetric in color indices
and conversely for the sixth term. These coupling constants have the values (with v =1)

A= —3aU /4n,,

We will be interested in more general Hamiltonians
than the basic Heisenberg model of (1). In particular we
may wish to allow arbitrary polynomial nearest-neighbor
interactions as well as second (and possibly higher)
nearest-neighbor interactions:

H=[P(S,"S, 1 1)+P(S,"S, 2)+ -~ ].

A=02+41/n.)aU, Ay=—3aU/2, A,=8aU, As=3alU/8,

Ae=—alU /4 . 7

-

The arbitrary functions P,,P, can be assumed without
loss of generality to be polynomials of degree 2s. These
can be incorporated into the Hubbard model formula-
tion by simply making the replacement (2) for the spins
in all terms beyond the basic Heisenberg Hamiltonian.
Taking all these additional interactions to be small we
may treat them perturbatively. They have the effect of
renormalizing the speed(s) of light and the coupling con-
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stants, A; to Aq. Operators of higher order than quartic
in the fermion fields are also generated. However, these
are irrelevant at the (unstable) free fermion fixed point.
We will effectively consider them later after locating the
nontrivial fixed points. For example, a bilinear nearest-
neighbor exchange term

8H=J, 3 (S,'S, 1)*
gives, in the continuum limit,
SH =(J,){[(I, +Tg P — (¥} Prig+H.c.)* ]
+[OL +3p)- (W0 Ppgip+H.c) P}

Wick, contracting two pairs of fermion fields, gives
operators quartic in the fermion fields. (Using the lattice
propagator this calculation is ultraviolet finite.) Thus in
general we should consider the six coupling constants,
A;, to be arbitrary parameters.

We wish to discuss first the case s =4 which is much
simpler than the others. This is so because there are no
color degrees of freedom in this case and consequently
the third, fourth, and sixth terms in (6) vanish. The fifth
term is invariant under chiral SU(2); this implies that it
does not couple to the SU(2) currents but only the U(1)
currents. Thus the renormalization-group equation for
A, decouples from those for A, and As:

dA,/d InL = —(16/m)A%,
d)\,5/d InL = —(4/77)A,1)\.5 N
dAy/d InL = —(1/m)A} .

This decoupling is actually an exact feature of the field
theory (true to all orders in perturbation theory). A nice
way of seeing this is to bosonize. Abelian or non-
Abelian bosonization work equally well in this case, but
we choose the non-Abelian version because it keeps the
SU(2) symmetry manifest and because it is related to the
discussion of higher s, given below. Thus the charge de-
grees of freedom are represented by an ordinary massless
free boson field, ¢, but the spin degrees of freedom by an
SU(2) matrix, g%:

L(@)=10,93"p ,
Swzw(g)=(1/8m) [ d*x trd,g o"g

+(1/127) [ d’x etrg"0,08 70,8 "0 -

The second (Wess-Zumino) term is defined by extending
the two-dimensional space (or space-time) to a three-
dimensional half-space (x3 <0) and g(x,) is an arbitrary
extrapolation of the function defined on the two-
dimensional space (at x3;=0) which approaches 1 at
Xx3— — . The boundary value determines the Wess-
Zumino term up to a term of the form 2zn (or 2win in
Euclidean space) where n is an integer. Thus the path
integral is well defined if the coefficient in front of this
term is an integer. The coefficient of the first term is
then fixed by the condition of chiral symmetry or
equivalently by the fixed point of the renormalization
group. The currents are written as

Jo=(1/Vam)d, @, Jp=—(1/V4r)d_gp,
I =—(i/4mitrd, gg’o, Jp=(i/4mirg’d_go ,
and the left-right fermion product as

¢IG¢RB«g§exp(iV57;¢) .

The fifth interaction term in (6) is independent of g as
expected because it only involves the determinant of g
which is one. Thus the Lagrangian decouples into
separate pieces involving ¢ and g only:

.L((p)z%aﬂzpa“(p(1—k1/47r)+const><k5cos\/§r<p ,
S(g)ZSsz(g)+}\2fd2x JL'JR .

The renormalization-group equations can be derived in
the bosonized version of the theory. Those for ¢ are
very well known. They describe the Kosterlitz-
Thouless® transition. For A, negative, as found in (7),
the couplings flow to large values and a mass gap ap-
pears in the charge sector with

m «exp(—constx VJ/U) .

We also anticipate that the symmetry under translation
of ¢ by the period of the cosine will be spontaneously
broken. On the other hand, provided that A, is initially
positive as found in (7), it renormalizes to zero

AyL)—1/mInL .

Thus we tentatively conclude that the critical theory for
the s =1 chain is the k =1 WZW model. We should
check this conclusion by considering whether there are
any relevant operators at this fixed point which could be
generated. The only relevant operators allowed by the
diagonal SU(2) symmetry are the A, term above and
trg.'%1! However, the latter term is odd under the sym-
metry g — —g. This symmetry arises in the continuum
limit from symmetry under translation by one site in the
spin chain, as can be seen from the continuum represen-
tation of the spin operators:

a8, ~(J, +Jg)+ L —1)(Y)% Lirpg+H.c.) .

Bosonizing the second term and replacing the charge bo-
son by its vacuum expectation value (i.e., integrating it
out, since it is massive) we find

a~'S,=(J, +Jg)+i(—1)"const Xtrgo .

Thus we see that the symmetry under translation by one
site corresponds to changing the sign of g. Therefore, if
the Hamiltonian is invariant under this translation, no
relevant operators are permitted and the effective Hamil-
tonian does flow to the fixed point, at least for
sufficiently small initial couplings. Only terms which
break this symmetry or the SU(2) symmetry, such as al-
ternating or nonisotropic exchange or staggered magnet-
ic field, lead to relevant operators.

We now turn to the higher s case. The renormaliza-
tion group equations now have many more terms since
all six couplings are present. Furthermore, the fourth
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and sixth operators are nonsinglets under all three chiral
groups so that there is no separation of the theory into
sectors in general. Let us first consider the case where
A4 and A4 are zero. (This could presumably be achieved
by adjusting two parameters in the spin chain Hamil-
tonian such as biquadratic and second nearest-neighbor
couplings.) In this case the fifth term couples together
the charge and color degrees of freedom but is a chiral
spin singlet. Thus the renormalization-group equation
for A, separates from that for the other three couplings.
Again A, flows to zero assuming it is initially positive,
whereas the other three couplings flow to large values.
This suggests the existence of a massless decoupled spin
sector as for s =71. But what is the critical theory in this
case?

To answer this question let us review a few features of
the free fermion theory first.! The structure of the
energy-momentum tensor in (5) suggests that the theory
can be separated into charge, spin, and color sectors.
Let us consider the commutation relations obeyed by the
currents. We find' that the SU(2) currents obey the
Kac-Moody algebra with central charge kK =n,.. This is
the algebra obeyed by the currents in the WZW model
with topological coupling constant k multiplying the
second term in Swzw, and hence also the first term, in
order for S to be chirally invariant. Furthermore, this
model has an energy-momentum tensor quadratic in
currents, as in (5). Indeed this WZW model represents
the minimal conformal theory for a given value of k, in
the following sense. Given any conformally invariant
theory with SU(2) currents obeying the Kac-Moody alge-
bra with central charge k, we may define an energy-
momentum tensor quadratic in currents, as in (5). This
is not necessarily the full energy-momentum tensor of
the theory, but it at least correctly generates space-time
translations of the currents themselves (this follows from
the current commutation relations). It thus follows that
the full energy-momentum tensor can be written as the
current part plus an additional part which commutes
with all the currents:

T, =T} +T}, (8)
where T} is the term quadratic in currents and
[T2,T}1=[T%,3.1=0.

Therefore the conformal anomaly parameter, ¢, will be
the sum of that for T} [which is 3k /(2+k)] and that
for T?. Thus the smallest possible value of ¢ (and hence
the fewest massless particles) arises when T7? =0. Gen-
erally speaking we do not expect accidental massless par-
ticles apart from those required by some general princi-
ple, like chiral symmetry, so we would expect that the
generic critical theory for a conformal system with some
specified Kac-Moody algebra would be the correspond-
ing WZW model. Examples of nonminimal models can
easily be constructed by adding additional decoupled
massless fields which are SU(2) invariant. In this case all
operators are simply products of operators in the WZW
theory and operators in the decoupled theory. Less
trivial cases may also exist. One such example is the
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free fermion theory itself. Its energy-momentum tensor
(5) takes the general form of (8). However, it is not pos-
sible to write 1/;2""1/1,{ ;s as a product of local operators in
the SU(2) WZW theory and in a decoupled theory [the
relevant one being a free boson, ¢, and an SU(n.) WZW
field, h}, with k =2]. Whether some sort of non-local
representation, perhaps involving twisted boundary con-
ditions, exists, remains an open question.

Despite the fact that an exact bosonization formula is
not known for w}rf"tﬁRjB, such a formula is known'? for
the fifth interaction term in (6) since it is a chiral SU(2)
singlet. It can be written as

[hY;hi!; expliv/8m/n. @) +H.c.] .

As expected, it only involves the charge and color bo-
sons. We now expect that the three couplings involving
@ and h: A, A3, and A5 will produce a gap for these ex-
citations. It is simplest to consider the case where A; is
initially larger than the other two couplings. It is mar-
ginally relevant (if it is negative as calculated above) and
produces a gap m xexp(—w/n.|A|). We would then
expect that the field 4 would obtain a vacuum expecta-
tion value (h';) « m*8';, where x is the scaling dimen-
sion!® of & [=3/2(2+4n.)]. If we simply replace h by
its vacuum expectation value in the A5 term we obtain a
cos[V/'8m /n @] interaction for @. This is relevant, hav-
ing dimension 2/n. and thus should produce a gap in
the charge sector proportional to exp[ — 37 /4(2+n,)(n,
—1)|A|]. We also expect that exp(iV/ 27 /n @) will get
a vacuum expectation value set by this mass scale.
Upon integrating out these massive fields, we are left
with the k =2s WZW model as the critical theory.

Since we do not have a bosonization formula for

?“oaﬁlﬁmﬁ we cannot deduce the correct representation
of the spin operators with the same degree of rigour as
for s=1. However we would expect that the operator in
the critical theory with the right quantum numbers of
lowest scaling dimension should appear. This is trgo, as
for s =1.

We now turn to the behavior for arbitrary spin Hamil-
tonians and hence arbitrary values of the six Hubbard
model coupling constants. Since the fourth and sixth in-
teractions mix spin with color and charge, we do not ex-
pect the spin sector to be protected in general and all
couplings should tend to flow toward large values. We
are unable to bosonize the fourth and sixth interaction
terms, in general. However in the special case n, =2 we
can bosonize the sixth term. This follows'? because in
this case this operator can be written as

()\.5/2)6,‘1’11}}".[alpPB}’qul{a‘!meﬁ]elm ‘

It is invariant under the chiral SU(2) color symmetry in
this special case of n,=2. Thus it can be bosonized en-
tirely in terms of the spin and charge bosons proportion-
al to [g“",agmmexp(i\/4mp) + H.c.]. If we assume that
As is very small compared to the other couplings then we
may integrate out the color and charge fields. Thus we
replace the exponential above by its vacuum expectation
value. This gives a relevant interaction in the k=2
WZW model. It has dimension, x =1. (This is, in fact,
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the only relevant operator permitted by symmetry for
k=2.)

In the general case of arbitrary s and arbitrary values
of the six coupling constants, we would also expect to
generate relevant operators in the WZW model. In fact,
it was not really justified to keep only four fermion
operators in the continuum limit. We should instead
consider all allowed relevant operators at the WZW
fixed point. Apart from the marginal current-current in-
teraction, there are additional relevant operators'®!!
that respect diagonal SU(2) and the g— —g inversion
symmetry. These are the primary fields of the Kac-
Moody and conformal algebra. They are classified by
their spin quantum numbers under the left and right
SU(2) symmetries. Primary fields exist with equal left
and right spins j, equal to an arbitrary half-integer or in-
teger such that j<k/2; their scaling dimension is
x=2j(j+1)/ (2+k). The restriction on the maximum
value of j can be obtained from the free fermion theory.
We can construct operators out of 2j 1/}2 ’s and 2j ¥g’s
with left and right spin j. But these operators are zero
due to Fermi statistics for 2j >n,. They correspond to
2j-fold products of the elementary field g (which has

=1). Thus only the integer j fields respect the inver-
sion symmetry. Therefore there is a relevant operator
respecting all symmetries of the generalized Hubbard
model for each positive integer j < k /2 whose dimension
2j(j+1)/ 24+ k)<2. For large k the number of
relevant operators, n,, grows like Vk.

Thus we should expect that if we adjust a number of
parameters in the spin chain Hamiltonian equal to the
number of relevant operators, then the critical theory
will be the k =25 WZW model. From this point of view,
we see that the integrable Hamiltonians correspond to
such special multicritical points. Why the integrable
models should happen to be multicritical rather than
generic remains an interesting and unanswered question.
However since the number of possible nearest neighbor
couplings is 2s =k we see that the integrable Hamiltoni-
ans are not the only such multicritical nearest-neighbor
Hamiltonians but should lie in a space of dimension
2s —n,.

One might expect that the theories would develop a
gap for generic Hamiltonians with s> 1. After all, it
was chiral symmetry which was protecting a massless
sector for s =1 and at the multicritical points for general
s. If this symmetry is broken by relevant operators why
should there be any massless sector? The answer to this
question is quite surprising. There appears to be a type
of topological stability which protects a massless sector
for odd n. (half-odd-integer s) whereas for even n. (in-
teger s) there is in general a gap. To understand this, we
consider the case of very large n,. We will imagine that
the relevant chiral symmetry breaking operators are
small so that the system is flowing away from the k =n,
fixed point. At large k, the WZW model becomes essen-
tially a free theory, so a semiclassical analysis becomes
justified. That is, writing g =exp(io-@/2), we may re-
gard the triplet of bosons, ¢, as being essentially free
fields. Let us consider only the most relevant interac-
tion, which can be written as
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Lin=—V=—Atrg)?,

where V is the potential energy density. Let us analyze
classically the effect of this operator. If A <O, then the
minimum of V occurs at g==+1 (¢=0 or |@|=27).
Thus the discrete symmetry g— —g is spontaneously
broken. Correspondingly, the spin chain is in a spon-
taneously dimerized phase with the symmetry of transla-
tion by one site spontaneously broken. Expanding V in
powers of ¢ we obtain

V=~const+ |A|@*+ - -

Thus all three degrees of freedom obtain a mass propor-
tional to V'A. The spontaneously dimerized phase has a
mass gap.

On the other hand, if A >0, then the minimum of V
occurs at |@ | =w, g=io @, where p=¢/|@|. Note
that diagonal SU(2) rotations

gaB_’ UaygysUT5B
transform ¢ by the corresponding SO(3) rotation

¢l _R lj¢)/ B
The minimum of ¥ now occurs at an arbitrary point on
the sphere and breaks the diagonal SU(2) symmetry.
Correspondingly the rotational symmetry of the Hub-
bard model or spin chain is spontaneously broken, in
this approximation. The longitudinal component of ¢
obtains a mass proportional to V'A but the transverse
components (the two angles parametrizing @) are mass-
less Goldstone bosons in this semiclassical approxima-
tion. Let us go beyond the semiclassical approximation
by considering the interactions between these would-be
Goldstone bosons. Thus we integrate out the longitudi-
nal part of @¢. To lowest order we simply replace g by
io-@ in the WZW Lagrangian. The first term in Syzw
gives

L=k /47)3,9 3P .

This is the Lagrangian of the O(3) ¢ model with cou-
pling constant 27/k <<1. The interactions between
these would-be Goldstone bosons as represented by the
O(3) o model, are expected to restore the symmetry and
produce an exponentially small mass gap in (1 + 1) di-
mensions

m <exp(—k) .

Thus we expect that the transverse components will not
be strictly massless for any finite k although they will be
much lighter than the longitudinal component.

However this analysis is not yet complete, because we
have neglected the effect of the Wess-Zumino term. It
also makes a relevant contribution after integrating out
the longitudinal fluctuations of @. In fact freezing the
magnitude of ¢ reduces the II; topological term of the
WZW model to the II, topological term of the O(3) o
model. A simple way of seeing this is to write an extra-
polation of the field g to the three-dimensional half-space
as

g(x,)=exp[if(x3)o-@(x,x;)],
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where f is any smooth function such that f(— «)=0
and f(0)=mn/2. The Wess-Zumino term then becomes

T=4iQ [ dxy(df /dx;)sin’f =imQ ,

where Q is the integer-valued II, topological term,
Q=(1/87) [ d% (3,9 <3Pl .

[The normalization can be checked by the following
argument. A simple solitonlike configuration which has
a Il topological charge of one can be obtained by taking
@ to be an instanton with Q =1, and f(x3), a smooth
function that increases monotonically from O at
xX3=—c to m/2 at x3=0 to m at x3=o. Thus
gx3=—w)=1, g(x3=0)=i&F, and g(x3=o)=—1.
The Wess-Zumino term is normalized to be 2#i times
the half-space integral of the Il; topological charge den-
sity, in order that the ambiguity in " be 27i. But the
half-space contains half the II; topological charge in this
particular case so I'=i# for an instanton with Q=1.]

Thus we see that the topological angle in the effective
O(3) o model is 6=wk. The physics is periodic in 6
since the path integral contains the factor exp(i6Q) and
Q is an integer. Thus 6 is effectively zero for even k and
7 for odd k. The behavior of the O(3) o-model at 6=0
is very well understood and one expects a gap as stated
above.

Very little is known with certainty about the behavior
at O=7 from standard field theory methods. It appears
likely to be some sort of special singular point. In the
large-n CP" model'® [O(3) corresponds to CP'] there is a
first-order phase transition at §=m. This corresponds to
a spontaneous breaking of parity x;— —x;. (This sym-
metry is explicitly broken for all values of 8 except O and
.) Instanton arguments® suggest that in the case of the
O(3) model the mass gap may vanish at the point 6 =.

The most insight into the behavior of this model
comes from the study of quantum spin chains. It was ar-
gued® that the O(3) model is obtained as the low-energy
theory of the Heisenberg spin Hamiltonian in the limit
of large s, or of large ferromagnetic second nearest
neighbor interactions. In fact one obtains this limit for a
range of spin-chain Hamiltonians in which the spin-wave
interactions are small. However this range does not in-
clude the large-s integrable models. In terms of the
Hubbard model representation for s=1, a large fer-
romagnetic second nearest neighbor interaction corre-
sponds to a large positive value of the marginally ir-
relevant coupling A,; one still expects the critical theory
to be the k=1 WZW model. This suggests that the O(3)
model is indeed massless at 6= and that the critical
theory is the k=1 WZW model. Furthermore, generic
half-odd-integer s spin chains should have this as the
critical theory. A rigorous argument'* has been given
that half-odd-integer s chains must have zero mass when
they are in a phase with a unique ground state (no bro-
ken discrete symmetries). So we should expect that
half-odd-integer s chains are generically either in the
k=1 universality class or else in a dimerized phase (or
possibly some other phase with degenerate ground-
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states). On the other hand, for integer s we expect either
a massive phase of unbroken symmetry [corresponding
to the O(3) o model at 6=0 for large s] or else a dimer-
ized phase.

There is support for these arguments from numerical
diagonalizations of finite chains. A gap has been seen'’
for s=1 and critical exponents characteristic of the k=1
WZW model have been measure for generic s =3 Hamil-
tonians (whereas for the integrable Hamiltonian one sees
k=3 exponents).”

Thus we conclude that the critical theory for a large
odd-k WZW model with a negative (trg)? interaction
should be the k=1 WZW model. We should really not
restrict ourselves to a single relevant interaction but in-
clude all relevant operators permitted by symmetry. The
classical potential can in general be written as a periodic
function of | @ | only, due to the diagonal SU(2) symme-
try. It is also symmetric under | @ | —27— | @ | which
corresponds to g — —g. For some range of parameters
we expect this discrete symmetry to be unbroken and the
minimum to lie at | @ | =. In this case the low-energy
theory will be the O(3) 0 model as above. For odd k we
then expect crossover to the k=1 fixed point. For
another range of parameters, this discrete symmetry will
be spontaneously broken and the system will generically
develop a gap. This corresponds to a short-range dimer-
ized phase of the quantum spin chain. It now seems
very likely that crossover to the k=1 fixed point occurs
for any odd k. The only role of large k in the above ar-
guments was to make the transverse components of ¢
much lighter than the longitudinal component. The nu-
merical simulations’ indicate that the above picture is
correct for k=3.

We are thus led to the conclusion that in a large class
of models there is a massless phase described by the
k=1 WZW model. These models include half-odd-
integer spin chains, generalized Hubbard (or, in the con-
tinuum limit) Thirring models with an odd number of
colors, WZW models with odd k and the O(3) o0 model
with 8=7. It is not surprising that this should be the
generic critical theory for SU(2) invariant systems since
it is the only WZW model in which there are no relevant
operators.

We expect the phase diagram for a half-odd-integer s
quantum spin chain to have a massless region in the
k=1 universality class. Outside this region the system is
presumably dimerized (or else goes into a ferromagnetic
phase or possibly some more exotic phase). The mul-
ticritical points are likely to occur on the boundaries of
the kK =1 region. The simplest case is s=3. There is
only one relevant operator (trg)? and the marginal oper-
ator J; -Jz. Thus we can consider a two dimensional pa-
rameter space. The two parameters could be, for exam-
ple, second-nearest-neighbor and biquadratic couplings.
The anticipated phase diagram is shown in Fig. 1. One
boundary of the massless phase is determined by the
vanishing of the marginal coupling. Thus the mass
should grow exponentially slowly upon crossing this
boundary. It contains the flow line from the k=3 to the
k=1 fixed points. The other boundary is determined by
the relevant coupling vanishing. Thus the mass should
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dimerized

massless

FIG. 1. Phase diagram for translation invariant s =% chains
or k=3 WZW models with g — —g symmetry.

have power-law growth upon crossing it. Points along
this boundary are attracted to the k=3 fixed point. The
integrable model presumably lies along such a boundary.

Integer-s chains should have a similar looking phase
diagram except that the massless K =1 region is re-
placed by a massive region with unbroken symmetry.
Outside this region exist dimerized phases (or ferromag-
netic, etc.). The multicritical points presumably lie on
the boundaries of the massive singlet phase. This seems
to be consistent with numerical work on s=1 chains in
the vicinity of the integrable point,'® and variational and
large-N arguments.'’

It seems likely that, for integer or half-odd-integer s,
k =2s is not the only multicritical point that can occur;
other (lower?) values of £ > 1 should also be possible.

Note that an explicit breaking of the discrete symme-
try (staggered interactions in the spin chain) will shift
the minimum of the potential away from |¢@ | = and
thus shift the topological angle away from 7 (or zero).
Repeating the above calculation, we find a topological
angle 6=k(|@| —sin| @ | ). Thus a symmetry-breaking
operator like tr(g) gains a topological significance in the
low-energy theory. We expect shifting 6 to produce a
mass. It should lead to a tr(g) term in the k=1 WZW
model, of dimension I and thus produce a gap
o« |@—m|2?” (up to logarithmic corrections). As we
change the strength of the explicit symmetry breaking
we should expect to pass through several phase transi-
tions at point where @=m (mod2w). For example, a
semiclassical (mean-field) analysis of the potential

V=Mtrg )} +utrg 9)

gives the phase diagram shown in Figs. 2 and 3. Figure
2 shows the regions where |@ | =0 or 27. In these re-
gions the semiclassical spectrum is a massive triplet.
Outside these regions it consists of one massive particle
and two Goldstone bosons. Figure 3 shows the lines on
which 0= for k=1,2,3. As || varies between O and
2w, O varies between O and 2wk, passing through
m(mod2m)2k —1 times. It seems likely that this phase
diagram is qualitatively correct even at the quantum lev-

U
¥ =27
massive Goldstone N
triplet bosons
$=0

FIG. 2. Semiclassical phase diagram for the WZW model of
(9) (ignoring topological and quantum effects).

el for finite k. There should be 2k —1 second-order
transition lines in the vicinity of which the O(3) o-model
at 6= is the correct critical theory. There is also one
first-order line where the explicit symmetry breaking
vanishes, separating equivalent phases (the negative A
axis). Altogether there are 2k phases. These can be

k=3

FIG. 3. Transition lines where 8= (in the semiclassical ap-
proximation) for the WZW model of (9) for k=1,2,3.



thought of as having different degrees of dimerization.
Pairs of phases are mapped into each other by the
discrete symmetry with only the totally undimerized
phase (which exists only for even k or integer s) being
unique. [The semiclassical phase boundaries separating
the “massive triplet” regions from the “Goldstone bo-
sons” region in Fig. 2 are presumably not true phase
boundaries in the quantum theory. However, at large k,
the mass of the transverse modes of ¢ changes from O(1)
to O(exp(—k)) close to these lines.] Precisely such a
phase diagram was found in the large-n limit of quantum
spin chains.!”

The present analysis complements several other ap-
proaches to quantum spin chains. The argument® that
at large-s, the low-energy spectrum of a quantum spin
chain is described by the O(3) o0 model with 0=2mxs is
now seen to be true in a finite region in the space of spin
Hamiltonians. It fails at the multicritical points and in
the dimerized regions. Moving even infinitesimally away
from one of the multicritical points into the undimerized
region, it is again true. The, in many ways unfortunate,
fact that the integrable models are examples of such
multicritical points no longer appears to be a counter ex-
ample to the field-theory arguments. Likewise, the
Abelian bosonization approach to higher-s chains!®
which predicts generic k=1 critical behavior for half-
odd-integer s is also substantiated by this analysis of the
vicinity of the multicritical points.

Furthermore, the conclusion that the critical theory
for the O(3) 0 model at 0= is the k=1 WZW model is
consistent with a recent theorem of Zamalodchikov.!
This theorem states that if a field theory flows between
two conformally invariant fixed points then the value of
the conformal anomaly parameter ¢ must be smaller at
the infrared stable fixed point. In this case the flow is
from the unstable zero-coupling fixed point of the o
model to the k=1 fixed point. The unstable fixed point
is a theory of two free (Goldstone) bosons with ¢ =2; the
stable fixed point has c=1.

Standard field-theory methods: Monte Carlo®® and the
large-n limit,'* have apparently not been very successful
in studying the O(3) o model near 6=7. Obtaining it
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from the odd k — « limit of the WZW model provides a
useful field-theory definition of the model. A lattice reg-
ularization of the WZW models is then provided by spin
chains in the vicinity of the integrable points. Such
models can be studied very successfully by numerical
methods of a different character than those normally
used in field theory. Namely, since the Hilbert space is
finite dimensional for a finite chain, exact diagonaliza-
tion can be used. The work on s=2 provides rather
compelling evidence’ that the O(3) o model is indeed
massless at 6=m. Of course, the limit of large k (i.e.,
large s) presents difficulties. An alternative approach is
to study the s=J chain with a large ferromagnetic
second-nearest-neighbor interaction.

There are not many known mechanisms in field theory
(or in condensed matter physics) that will guarantee the
stability of massless excitations in the presence of in-
teractions. In four dimensions these include gauge in-
variance (which leads to a massless photon), spontaneous
symmetry breaking (which leads to massless Goldstone
bosons) and chiral symmetry (which if unbroken can, in
some cases lead to massless fermions by the t‘Hooft
anomaly conditions). In two dimensions a massless
phase can arise as a result of Abelian or non-Abelian
chiral symmetry. In some field theories this symmetry is
exact. In other cases (including all the condensed matter
systems) it is not an exact symmetry of the microscopic
model but is an effective symmetry of the critical theory,
being broken only by irrelevant operators. The above
arguments suggest that a topological mechanism plays a
role in determining which Hamiltonians are attracted to
the chirally invariant fixed point.
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