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Magnetization in a quenched random-bond transverse Ising model
with competing interactions
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The ferromagnetic-phase stability limit and magnetization of a quenched bond-mixed spin- —' trans-

verse Ising model in an anisotropic simple square lattice are studied within the framework of an
effective-field theory considering both competing and noncompeting interactions. In the bond-
disordered case, where bonds Jl and J2 occur with probabilities 1 —p and p, respectively, critical
curves are obtained for various cz's (o.=—Jl/J2), and the critical bond concentrations p, at which the
ferromagnetic phase breaks down are determined. As 0.~0, the mixed model reduces to the diluted
Ising model and the results obtained are compared to those available in the literature. The effect of
the transverse field (for diff'erent o. s) in the thermal behavior of the magnetization as a function of the
concentration is also discussed.

I. INTRODUCTION

The Ising model in a transverse field (TIM) is described
by the Hamiltonian:

A= —II gS; —g J;~S 5;,

where S;,S are components of a spin- —,
' operator at site i,

0 represents the transverse field, J~ is the exchange in-
teraction between neighboring sites, and the sums extend
over all sites. This model has been used to describe a
variety of physical systems. It was originally introduced
by de Gennes' as a pseudospin model for hydrogen-
bonded ferroelectrics ' such as KHzPO4. It provides a
good description for some real anisotropic magnetic ma-
terials in a transverse field, and it also applies to systems
showing a cooperative Jahn- Teller transition (namely
DyVO4 and TbVO4). An extensive discussion on the ap-
plications of this model can be found in the article by
Stinchcombe.

The critical behavior of the TIM in one dimension with

J~ =J, has been already established through exact results;
at T)0 there is no phase transition, but at T=0 the sys-
tem remains ordered up to a critical value A, . In higher
dimensions, the critical behavior of the TIM has been es-
tablished through series-expansions results. ' These re-
sults show that there exists a phase boundary in the BT
plane limited by the Ising critical point T =T„0=0and
the point T =0, A=A, . As one would expect from the
similarity of the roles played by the transverse field and
the temperature in the transition phenomena, as 0 in-
creases from zero, T, falls from the Ising critical point
and at 0, it reaches zero. Below this critical frontier, the
S, components are ordered ((S, )&0) while above it the
S, components are disordered ( (S, ) =0) although there is
still a certain degree of order in the system characterized
by (S )~0. Furthermore, an interesting exact re-
sult" ' is that the critical behavior of the TIM in a
given dimension (d), as a function of fl(T =0), is identi-

cal to the critical behavior of the pure Ising model in one
higher dimension (d+ I), as a function of T($1=0).
During the last decade, there has been great interest in the
problem of quenched disorder in the TIM. ' ' For the
bond-diluted TIM at zero temperature, the percolative be-
havior is expected to yield a discontinuous jurnp in the
critical field at the percolation concentration p, . Below p,
there is no long-range order so that 0, =0, whereas at p,
the critical field changes discontinuously to the finite
value needed to destroy the order in the chainlike per-
colating clusters. Although earlier theoretical treatments
such as series expansions (SE), ' coherent-potential-
approximation calculations, and experiments could not
verify this conjecture, recent real-space renormalization-
group (RCs) calculations ' for a two-dimensional bond-
diluted TIM at T =0 have shown the existence of the
critical-field discontinuity as a result of the existence of
two fixed points at the percolation threshold (see also Ref.
26). At finite T this model has been analyzed in more de-
tail in Ref. 27. Recently, the thermodynamical properties
of the diluted TIM has been discussed by an effective-field
treatment ' and also by a variational approach. In
what concerns the diluted TIM in three-dimensional (3D)
systems, ' complete phase diagrams in the (T,p, Q) space
has been presented by Saxena. However, detailed calcu-
lations of the phase diagrams and magnetization are not
available for a quenched mixed TIM when competing in-
teractions are allowed.

In the present work we study a quenched bond-mixed
spin- —,

' Ising model in the presence of a transverse field.
The model is treated on an anisotropic simple square lat-
tice where nearest-neighbor exchange coupling constants
are allowed to take two different values J& or J2 with
probabilities 1 —p and p, respectively. We shall be partic-
ularly interested in systems where o.=—J&/Jz takes nega-
tive values (competing interactions) and when it is zero
(bond-diluted case). Two (mutually nonexclusive) main
sources of crystalline anisotropy may exist, namely, aniso-
tropic coupling constants or anisotropic bond-occupancy
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probabilities; we are herein particularly concerned with
the former. The problem is studied using an eff'ective-field
theory which is based on the introduction of a differential
operator (in the same spirit as that of Honmura and
Kaneyoshi ) into a generalized but approximated Cal-
len relation derived by Sa Barreto et al. for the TIM.
A very recent application of this method was carried out
to discuss the surface magnetism of the TIM with a disor-
dered surface. ' Here we calculate the spontaneous
magnetization as a function of temperature, transverse
field, and bond concentration for some interesting cases.
By imposing the condition of vanishing magnetization,
we obtain the critical curves associated with the
ferromagnetic-phase stability limit.

The outline of this paper is as follows: In Sec. II we

briefly present the formalism; in Sec. III we present the
phase diagrams, together with the longitudinal and trans-
verse magnetization curves; the overall conclusions are
summarized in Sec. IV.

II. MODEL AND FORMALISM

by exp(cD)f (x) =f (x +c)] we may rewrite Eqs. (3) and
(4) as

(o*, ) =(exp

(o*;)=(exp

g J~crj D f (x) x=0

g J;,0.,' D g(x)
~ „

J

(7)

where the functions f (x) and g (x) are given by

f(x)= tanh —[(2Q) +x']'
[(2$I) +x ]' 4

g(x)= 20
tanh —[(2A) +x ]'

[(2II )2+x 2] I /2 4

By using the spin- —,
' identity e '=cosh'. +0.

~
sinhk, Eqs.

(6) and (7) become

In the model Hamiltonian given by Eq. (1) we consider
J;- a random variable governed by the following probabili-
ty distribution law:

4

( cr'; ) = Q [cosh( J;,D) +cr,' sinh( J;,D) ] f (x)
j= 1

P(J;, )=(1—p)&(J;, —J) )+p&(J;, —Jp), (2) (10)

where we assume 0&p &1, and a=J&/J2 &0.
The starting point for the statistics of our spin system is

the relation proposed by Sa Baretto et al. ' in which the
longitudinal and transverse site magnetizations for the
TIM are approximately given by

(cr;) = tanh —H
4

(0-, )= 20, Ptanh —H;
H; 4

(4)

Here ( ) indicates the canonical thermal average,
(cr';) =2(S ), (cr; ) =2(S ), P= 1 /k&T, and

H;= ( n2)' +gJ cr'
J

In the limit A=O, (cr,*)=0, H; =g J, cr', and Eq. (3)
reproduce the Callen's identity for the pure Ising model.
Expanding the right-hand side of Eqs. (3) and (4) as a for-
mal series in the spin variables and neglecting correlations
of H;, the standard molecular-field-approximation (MFA)
results are recovered.

Introducing the differential operator D =c)/c)x, [defined

4
(o'*, ) = Q [cosh(J; D)+o* sich(J,"Di])g (x) (,

j =1

where the subscripts run from 1 to 4 corresponding to the
four nearest neighbors of the site i Note tha. t Eqs. (10)
and (11) yield a set of relations between the longitudinal
magnetization of the ith site and associated multispin
correlation functions once the bond configuration I J~ ] is

completely specified.
The main purpose of the present work is to obtain from

Eqs. (10) and (11) the phase diagrams and the behavior of
the longitudinal as well as the transverse magnetization as
function of the parameters a, T, A, and p. It is clear that
if we try to treat exactly all the spin-spin correlations
which appear in Eqs. (10) and (11), and to perform the
configurational averages properly, which is still to be
done, the problem becomes mathematically untractable.
Therefore, some approximations are needed. Ignoring
multispin correlations, the present framework shares with
MFA the fact that the critical exponents are all Landau
type. In this case the topology of the system is taken into
account, essentially through its coordination number; nev-
ertheless, we verify that its results are quite superior to
the standard MFA. ' ' ' Based on this approxima-
tion, Eqs. (10) and (11) can be rewritten as follows:3

m'= [4m'(sinh(J; D) )J[(cosh(J,"D) )J] +4(m') (cosh(J,"D) )J[(sinh(J~D) )J] ]f (x)

m = [[(cos(JJD))J] +6(m') [(sinh(J&D))J] [(cosh(J&D))J] +(m') [(sinh(JJD))J] ]g(x)
~ „

(12)

(13)
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where m'= ( (a';) )J, m'= ( (a; ) )J, and

(sinh(J~D)) J =(1—p)sinh(J, D)+p sinh(J2D),

(cosh(JiD) )J =(1—p)cosh(J, D)+p cosh(JzD) .

(14a)

(14b)

Equation (12) admits two solutions, namely m'=0 (non-
ferromagnetic phase), and a nontrivial one (associated
with the ferromagnetic phase) given by

1/2
1 —3+

(15)m'=

where the coefficients 3 — are obtained by a straightfor-
ward calculation [which makes use of the property
exp(AD)f (x) ~, o

——f (iL), O'A. ] and are given by

0.6

0.2

0.2 0.6

= (1—p) K—, +4(1—p) pK2

+6(1—p)'p K3 +4(1—p)p'K4+p Kg

(16)

FIG. 1. Concentration dependence of Curie temperature for
both diluted (a=0) and quenched bond-mixed (with a &0) Ising
model.

where

K, = —,
' [f(4aJ3 )+2f (2aJ3 )],

K—, = —,'[ f((3a+ 1)J3)+—,'f((3a —1)Jp)

+ ,'f((a+1)J3)]—,

K3 ———,
' [f((2a+2)Jz)+f (2aJ2 )+f(2J2 )]

K4 ———,'[f((3+a)J2)+ ,' f((3—a)J2)—
+—',f((a+1)J2)],

K—= —,'[f(4J2)+2f (2J~)] .

(17a)

(17b)

(17c)

(17d)

(17e)

The critical curves characterizing the ferromagnetic-
phase stability limit are determined by I'=0, hence by

(18)

III. RESULTS AND DISCUSSION

In this section we shall present and discuss the results
(phase diagrams and magnetizations) using the following
convenient notation: ~—=k& T/J2, I =0/J2, and

q =1—p.

A. Random-bond Ising model

Let us start by presenting the phase diagram associated
with the quenched random-bond Ising model (II=0) for
both competing and noncompeting cases. Equation (18)
defines the critical surface in the (p, T, a) space (see Fig.
1). This zero field behavior has already been reported pre-
viously, and we present it here merely to contrast it with
the corresponding behavior in the presence of the field.

For finite positive values of o, the critical temperature
does not vanish at any possible value of p. Therefore, for
positive values of a at T =0, the probability that the sys-
tem has an infinite cluster of spins aligned in the z direc-
tion is always different from zero. This result, which is
physically expected, arising in the present formalism from

the fact that Eq. (18) is not satisfied at T =0 for any value
of p in the range, 0 &p & 1.

In the bond-diluted case (a =0), the critical line
displays a percolation concentration p, =0.428 (in agree-
ment with Matsudaira ). Note that other results avail-
able in the literature are: p,'"'"=0.5 (Ref. 40), p, = —,

'

(Ref. 30), and p, =0. A positive aspect of the
eft'ective-field approach is that it enables one to capture
the exact asymptotic form of the critical line (a =0)
simultaneously in both limits T~O and p ~1.

The phase diagrams associated with the competing
model (a ~0) show that the critical temperature vanishes
at higher concentrations as o. decreases. Thus for
(x

3
0 = —1, and a = —3 we find the respective

percolation concentrations: p, =0.635, p, = —,', and

p, =0.931. The particular value p, = —,
' associated with

the isotropic model corresponds to an impurity concentra-
tion q, =—1 —p, = —,

' =0.167 which agrees well with the re-

sults from the Monte Carlo method (q, =0. 15—0.20),
the replica method (q, =0. 166) and the Bethe approxi-
mation (q, =0.167), whereas other methods pro-
vide a lower value, i.e., q, =0.1. The present framework
has been successfully applied to the random-bond Ising
model for noncompeting interactions (a) 0). However,
its application to the competing cases (a &0) was con-
sidered not reliable in the limit T~O, for the following
reason.

From Eqs. (16)—(18) it is straightforward to verify
analytically that as T~O all the critical lines concerning
a in the range —

—,
' &a&0 fall on the same percolation

concentration p, =0.600. A similar situation occurs for a
in the ranges —

—,
' ~ a ~ —1 with p, =0.659, —1 & a ~ —3

with p, =0.909 and a & —3 with p, -0.945. The physical
reason why such a large number of critical lines share sin-
gle points at T =0 is still somewhat obscure. For some
values of a this result leads to reentrant phases in the
low-temperature regime. As an example, we have plot-
ted in Fig. 2 the longitudinal magnetization as a function
of temperature for the particular case a = —0. 1 and

p =0.59 to illustrate the existence of a nonmagnetic phase
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FIG. 7. Longitudinal magnetization curves associated with
the quenched bond-mixed Ising model for several values of the
transverse field, with: (i) a = —1.0, p =0.9; (ii) a = —0.05,
p =0.5.

We proceed in order to illustrate the behavior of the
longitudinal magnetization of the competitive model.
Typical results are shown in Fig. 7(i) where we have plot-
ted m, as a function of ~, for a = —1 and for a concentra-
tion of ferromagnetic bonds p =0.9 varying the transverse
field from I =0 to I =0.78. In Fig. 7(ii) we have also
plotted the longitudina1 magnetization m, as a function of
~, for o.= —0.05 and p =0.5 varying the transverse field
from I =0 to I =0.11, to illustrate the persistence of a
reentrant phase even in the presence of the field.

The behavior of the transverse magnetization m as a
function of r is depicted in Fig. (8), with a= —I and

p =0.9, for several values of the transverse field. Note
that from a qualitative point of view, the behavior of the
transverse magnetization shown here is essentially the
same behavior of m for the bond-diluted model, as dis-
cussed previously.
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IV. CONCLUSIONS

We have applied an eft'ective-field treatment to the
quenched bond-mixed spin- —,

' transverse Ising model on a

FIG. 8. Transverse magnetization curves associated with the
quenched bond-mixed Ising model for several values of the
transverse field with a= —1.0 and p =0.9.
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square lattice, considering both competing and noncom-
peting interaction. The effective field approach is based
on a generalization of the Callen relation for the Ising
model in the presence of a transverse field. Phase dia-
grams have been calculated as well as longitudinal and
transverse magnetizations. The results described in the
last section are quite remarkable considering that the ap-
proximation used within this simple effective-field ap-
proach neglects spin-spin correlations. As previous work
on other models have indicated, we find that the results
obtained herein can be given qualitative, and to a certain
extent, quantitative liability.

The discussion presented above still leaves open the

question on the reasons for the peculiar results obtained
here for the competing model in the low-temperature re-
gion. In particular, models with competing ferromagnetic
and antiferromagnetic bonds pose a challenge to theoreti-
cal understanding. Considering that neglecting spin-spin
correlations may lead to inaccurate results but it does not
change the physics in an essential way; one is inclined to
interpret these results as a consequence of the content of
frustration existent in the system. These frustration
effects being relevant only at low temperatures and for
small values of the transverse field when ferromagnetic
and antiferromagnetic interactions are allowed in the lat-
tice.
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