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We present a Brillouin-Wigner-type theory for the mixed-valence rare-earth impurities in
Bardeen-Cooper-Schrieffer IBCS) superconductors. The impurity is described by a degenerate An-
derson model with two configurations 4f and 4f ' in the infinite-correlation limit. Two important
quantities characterizing the superconducting state, i.e., the reduced transition temperature T, /T, o

and the reduced specific-heat jump AC/ACo, are calculated as functions of the impurity concen-
tration x and the valence of the 4f ' configuration nf The T, /T, v versus x curves obtained
display exponential shapes which become steeper quickly with larger nf. The AC/ACO versus
T, /T, o curves show upward deviation with respect to the BCS law of corresponding states in con-
trast to the case of magnetic impurities. The theory is also fitted to the data of dilute supercon-
ducting Thi Ce, alloys with a comparison to a previous Hartree-Fock theory.

I. INTRODUCTION

According to Maple's classification, the rare-earth im-
purities in the superconducting alloys can be divided into
three groups: first, those with long-lived local magnetic
moments; second, those with short-lived moments; third,
those with compensative local magnetic moments (i.e., the
Kondo impurities). In addition, a new kind of mixed-
valence state of the rare-earth impurities in a normal-
metal host which is relevant to the above classification has
been identified in recent years, and remarkable progress
has been made in understanding this mixed-valence be-
havior both experimentally and theoretically. Cerium im-
purity systems such as (La, Th) Ce are of special
significance for all of these phenomena.

Generally, systems of metal hosts containing rare-earth
impurities are described by the s-d exchange Hamiltonian
or by a modified version of the Anderson Hamiltonian.
Abrikosov and Gorkov calculated the decrease of T, to
second order in the exchange coupling and predicted a
critical concentration above which the superconductivity
is destroyed. Higher-order perturbations in the exchange
coupling give rise to logarithmic Kondo divergences. The
resulting temperature dependence of the pair-breaking pa-
rameter yields a reentrant normal-superconducting phase
boundary if the transition temperature of the pure su-
perconductor, T,o, is of the order of the Kondo tempera-
ture Tz. If T~ &&T,o, the impurity spin is screened by
the conduction electrons and forms a nonmagnetic com-
plex. The Fermi-liquid description is valid and the Coop-
er pairs are weakened rather than broken in this stron-
coupling Kondo limit. '

Within the Hartree-Fock approximation for the An-
derson model, the alloy behaves essentially as a BCS su-
perconductor with an effective concentration-dependent
BCS coupling parameter. This approximation is valid in
the spin-fluctuation regime i.e., the Coulomb repulsion U
is small compared to the width of the impurity levels) and
has been extended by making use of the renormalization
group. ' However, the dilute superconducting Th& Ce

alloys (x (0.1) are still explained in this approximation
although the Coulomb repulsion U is considered to be
infinite there. The concentration dependence of T, of
these alloys show a modified exponential shape as found
in the Hartree-Fock theory, the renormalization-group
extensions, ' and the strong-coupling Kondo limit of the
s-d exchange model.

More recently, Schlottmann" studied the effects of
mixed-valence impurities on superconductivity. The im-
purities were described by a modified version of the An-
derson model with orbital degeneracy in the U~ ~ limit,
where two accessible configurations, corresponding to 4f
and 4f' (Ce impurities), were present. The properties of
the superconducting alloys were expressed in terms of the
t-matrix for the scattering off the impurities. The
modified exponential concentration dependence of T, was
also discovered which indicated pair weakening rather
than pair breaking, being consistent with the picture that
the mixed-valence problem is driven by charge fluctua-
tions with spin fluctuations playing a secondary role.
However, the direct valence dependence and comparison
with experimental data were not available.

In this paper, we present a calculation of the properties
of dilute superconducting mixed-valence rare-earth alloys
by using 1/cV expansion technique which has become
powerful for the mixed-valence systems' after
Schlottmann's work. In this technique, a great advantage
of the large orbital degeneracy of the 4f' configuration
arises within the Brillouin-Wigner theory, where perturba-
tion expansion is nominally in powers of the hybridization
width I =p(EF) V, and 1/N (N =2J+ 1) is found to be
a rapidly convergent expansion parameter. Even the
lowest-order Brillouin-Wigner theory, i.e., of the order of
(1!N), is a good approximation and only lower-order
corrections such as (1/N)' and (1/N) are meaningful to
account for the properties of the mixed-valence impuri-
ty' ' and to give calculations in agreement with the exact
results of the Bethe ansatz. '

Our model is similar to that used by Schlottmann with
the local 4f orbitals being described by the transfer and
projection operators introduced by Hubbard. ' A brief
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summary of the mathematical generalization of the mixed
Feynm ann-Goldstone diagrammatic technique in
Nambu's representation and the corresponding Brillouin-
Wigner expansions are presented in Sec. II. The lowest-
order Brillouin-Wigner perturbation-theory calculation of
the reduced superconducting transition temperature
T /T o and the reduced specific-heat jump b, C /ACo as
functions of Ef, I, the valence nf, and in addition the im-

purity concentration x is given in Sec. III. As a result, we
find a continuous variation of the valence nf around the
superconducting transition temperature T, . In Sec. IV,
numerical results of the r, /T, o versus x curves at
different values of nf are given. These are of exponential
shape as expected for nonmagnetic impurities and become
steeper quickly with increasing nf. The AC/ACo versus

T, /T, o curves exhibit small upward deviation with
respect to the BCS law of corresponding states in contrast
to the sharp downward deviation predicted by
Abrikosov-Gorkov theory for magnetic impurities as cal-
culated by Skalski et al. ' and by Schlottmann for non-
magnetic rare-earth impurities. " Also presented in Sec.
IV is the initial suppression of T„ i.e., (dT, /dx)„o, as a
function of the valence nf. In particular, we give a nu-
merical fitting to the T, /T, o versus x curve of the
Thi „Ce alloys (x &0.1) within the present theory. The
parameters used are found to be very different from those
used in the Hartree-Fock theory. Concluding remarks are
included in Sec. V. Some results of the present paper
have already been reported in brief form. '

g (Ak Vk F +H. c. ),
kmo

where we use the operators

oXo ) Ak (ak a —k—

(2b)

for the f and conduction electrons, respectively, and the
coeKcient matrices

0 (1/N)Eo

Ek —P

and

pounds, U is the experimental value of 5 to 10 eV so that
configurations other than 4f and 4f ' are too far dis-
placed in energy. In fact, we set U equal to infinity in the
following.

We will leave the mathematical generalization of the
Keiter-Kimball formalism to the case of superconducting
alloys to another publication, ' but will give a brief
description of the major results of the diagrammatic
method in Nambu's representation.

The hybridization interaction in Hamiltonian (1) is
treated as a perturbation, i.e., H =H o+H', and in
Nambu's representation we have

Ho pN —g F~E~Fm +
& g A kt~hko Ak~ (2a)

m ko

and

II. PERTURBATION THEORY
IN NAMBU'S REPRESENTATION

We denote the 4f configuration by
~

0) and the 4f '

configuration by m ), where the N =2J + 1 states
(m =J,J —1, . . . —J) of 4f' are assumed to be degen-
erate. In terms of Hubbard's projection operators
Xoo ——

~

0) (0 ~, X =
~

m ) (m
~

and transfer operators
Xo~ ——

~

0) (m ~, Xmo ——
~

m ) (0 ~, the Hamiltonian for a
single rare-earth impurity in the BCS superconductor can
be written as

H PN= g (E& ——P)Xmm+EoXoo

+ g (ek P)ak ako+ —g(bak, a k, +H. c. )

kO k

+ g (Vk ak Xo +H. c. ) .
1

The first two terms describe the atomic properties of the
rare-earth ion. The second two terms describe the pure
superconducting-band electrons in the BCS fashion with
the mean field 6 being averaged over the whole Hamil-
tonian (1). The last term describes one-electron transi-
tions between the local 4f orbitals of the rare-earth impur-
ity and the conduction-band states, ie. , the hybridization
term. The reason that the other configurations such as
4f and 4f can be neglected rely on the fact that the
Coulomb repulsion U is much larger than the other ener-

gy scales in the system. For cerium and uranium com-

for the f level, the pure BCS superconductor, and the hy-
bridization, respectively.

The process of diagrammatic expansion with respect to
H' parallels that of the Keiter-Kimball representation
with special attention to the cyclic invariance of the trace
of products of both operators and 2&(2 matrices. Wick's
theorem in the version of the Bloch and De Dominicis
theorem can be applied only to the conduction electrons
to give "free" superconducting Green's function
0 (~,r') = —(Tv[A (r) A (~')] )o. The thermodynamic
expectation of the products of 4f transfer operators can be
done directly with the help of the properties of these
operators. The time-ordered integral in the interaction
representation can be transformed into a contour integral.
In this way, a mixed Feynmann-Goldstone diagrammatic
expansion in Nambu's representation for the grand parti-
tion function of the superconducting rare-earth alloys is
obtained with all the topological symmetry properties re-
tained.

The grand partition function of the Hamiltonian (1) can
be written in terms of the statistical quasiparticles as
(P= 1/&)

Pn T (
—gB Pk ) Z g— —I-'i'FM+~ ' (3)—

M

where Z, is the grand partition function for the pure BCS
superconductor; M denotes the states

~

0) and
~

m ) ex-
plicitly. The real statistical quasiparticle energies E~ are
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given by the Brillouin-Wigner equation

E~ I——~ (EM ),
where I M(EM) are the sums of all connected diagrams,
i.e., the proper self-energies. The first three diagrams of
I M(EM ) are shown in Fig. l. In Fig. 1 the double
straight lines on the vertical time axes represent states
( &) and the double wavy lines represent ( o))), thus
each diagram in Nambu s representation includes two dia-
grams with initial states

I
0) and m ), respectively.

Double curves on the right-hand side of the vertical time
axes represent the 2)&2 Nambu's Green's function for the
pure superconductor. The third diagram in Fig. I ap-
pears because of the off-diagonal long-range order of su-
perconducting pairing.

The lowest-order Brillouin-Wigner equations read as

1 u kf(Ek) Vkf ( —Ek )
Eo= g I

Vk.- I' — +-
s k~m E0 —Ef+Ek E0 —Ef —Ek

(5a)

ancl

1 ~ kf( Ek) ~kf(Ek)+-
ko Em +Ef k Em +Ef +Ek

(Sb)

where Ek ——[(Ek —p, ) +b, ]' is the excitation energy of
the pure BCS superconductor and within the energy inter-
val

I
ek —p I

(coD, the superconducting coherence factors
u k and v k are given by

it is seen that the lowest-order Brillouin-Wigner theory is
really of infinite orders in

I
Vk

I

. The lowest-order
Brillouin-Wigner theory to calculate the thermodynamic
properties of mixed-valence rare-earth impurities in a BCS
superconductor will be outlined in Sec. III.

III. LOWEST-ORDER BRILLOUIN-WIGNER THEORY
OF T, /T, p AND hC/ECp

A. General forms of T, /T, p, hC/AC p, and nf

The free energy of superconducting rare-earth alloys
composed of the contributions of the pure BCS supercon-
ductor and the statistical quasiparticle corrections can be
written as

Q(P, 6 ) = —P ' InZ = IIO(P, 6 )

—P ' ln
' g exp[ P(E~ +—EM )]

where IIo(p, b, ')=——p 'lnZ, is the free energy for the
pure BCS superconductor. This applies to the case where
only one rare-earth impurity is present. For the case of
dilute impurity concentration, we adopt the independent-
site approximation for the impurities and write the free
energy as the sum of X; impurities (divided by the num-
ber of all lattice sites X, )

g(p, b. )=go(p, A )

—xP ' ln g exp[ P(E~+EM—)]
M

~k —P
uk —— 1+

Ek

~k —P
2Vk —— 1—

E
where go(P, A )=—Qo(P, b, )/X, and x=X;/Ã, .

The order parameter 6 is determined by minimizing
g(p, b. ) with respect to 6, i.e. ,

and f(Ek)=(1+e ) . Ef E& Eo —p ——is th—e ener-

gy of the f level.
It should be emphasized that the lowest-order

Brillouin-Wigner theory is only nominally of the order of
I

Vk
I

. In fact, once a partial summation of all the
"buckle" diagrams as given in Fig. 1(a) has been accom-
plished in the computation of the grand partition function

ag(p, ~')
BA

For the computation of physical properties near the super-
conducting transition, the right-hand side of Eq. (8) may
be expanded in powers of 4 which is a small quantity.
This yields [where k and p(p) are the BCS coupling con-
stants and the density of states of normal electrons at the
Fermi level p]

8 2 1

y
D tanh(g/2T)g, = —p p

OEM
+x +PM

~2=0

7p(p)g(3)
8(AT)

OEM

aa'
=0

5 (T),

(10)
FIG. 1. First three connected diagrams in the Brillouin-

Wigner theory.
where the renormalized occupation probabilities of the
two configurations are naturally defined as
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—p(EM +EM )

PM ——e
—p(EM+EM )

e
M

Noting the following relations in the BCS theory

1 = ln(2e "cgD /mT, o). ,
Xp p

tanh 2t
ln 2e' mT

0

and defining

~EM
A(x, T)= +PM~(v) M B~' ~2=o

x B

8(AT)' P(P) M Bb,' Bb,' =02

(13)

and inserting Eqs. (10)—(13) into Eq. (9), we get

ln(T, p/T) = A(x, T)+8(x, T)A (T) . (14)

Accordingly, setting b, (T, )=0, the equation for T, reads
as

ln(Tp/T, )= A(x, T, ) .

The initial suppression of T, is

(15)

dX 0

A(x, T,o)—T 0
X x=0

(16)

The reduced specific-heat jump is obtained by using Eq.
(14) again

T, 1+T,BA(x, T, )/BT,

To 1 +B( ,xT)
(17)

where ACO is the specific-heat jump of pure BCS super-
conductor at T p,

1+B(x,T, ) =8(x, T, )
7g(3)

8(n.T, )

For a derivation of Eq. (17), we refer to Skalski et at. ' or
Sakurai. The deviation from the BCS law of correspond-
ing states, i.e.,

Because BEp/BEf and BE /BEf vary continuously from
T, +0+ to T, —0+ as the superconducting order parame-
ter 6( T) is built up gradually, nf does not have a discon-
tinuity at T„ i.e.,

nf(T, —0+)—nf(T, +0+)=0 . (20)

We mention in passing that the chemical valence of a
rare-earth compound is defined as the number of ionized
electrons of the rare-earth atom, e.g. , the chemical valence
of a cerium impurity in the mixed-valence regime is
3+ [1 nf—( T)].

B. Derivatives of the energy shifts Eo and E

E=N( )V f B(
0 y+E yp —E

+N ( )V2 f dg f k +f
yo+0 yo —k

(21a)

The theory outlined above for the thermodynamic prop-
erties of BCS superconductors containing dilute rare-earth
impurities is generally valid to all orders of the Brillouin-
Wigner expansion if Eo and E and their derivatives can
be calculated. As already mentioned in Sec. I, the
lowest-order [(1/N) ] theory has proved to be rather ac-
curate for normal mixed-valence rare-earth alloys. Ac-
cordingly, we try to account for the mixed-valence states
in the case of a superconducting alloys with this lowest-
order theory as a starting point.

Firstly, we simplify Eqs. (5) given for the energy shifts

EO and E in lowest-order perturbation theory forms in
order to calculate the derivatives such as BEM /Bb, ,
B EM/B(b, ), and BEM /BEf, etc.

The summation over the states
~

m )(m =J,J
—1, . . . , —J) of the 4f ' configuration can be replaced by
the prefactor N because the states m ) are assumed to
degenerate and E =E&. The summation over momenta
can be transformed into an integration over gz

——ek —Iu.

This can be done easily if a conventional fiat band is as-
sumed for the conduction electrons with bandwidth 2D
and density of states p(p) = 1/2D distributed symmetrical-

ly around p. Inserting the corresponding value for uk
and Uq in the respective energy regime, Eqs. (Sa) and (5b)
become

AC
ACO

T.
Tcp

and

nf(T) = g (X ) . (18)

has been pointed out explicitly.
As in the normal state, the valence of the rare-earth im-

purity in a BCS superconductor is defined as the occupa-
tion probability of the 4f configuration, i.e. ,

E& ——p(p, ) V f dg
0 y&

—E y&+E

+ ( )VzfD dg f 4}+ f(k
ye+0

(21b)

and according to Eq. (3), we obtain

BE BE
nf(T)= =Po + QP (1+ ) .

where yp =Ep —Ef y & E& +Ef, E= (g +——b. )
'

It is easy to show that Eq. (21a) is reduced to the equa-
tion previously obtained by Proetto and Balseiro using
the Bogoliubov's transformation in the limit T=0 K.
The right-hand side of Eq. (21b) can be obtained by delet-
ing the degeneracy factor N and replacing yp by y ~

on the
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right-hand side of Eq. (21a).
In principle, Eqs. (21) can be inserted into Eq. (10) to

give results for the normal (T(T, ) as well as for the su-

perconducting state (T& T, ). We will leave, however,
this laborious work for a future study and presently deal
only with the situation close the the superconducting tran-
sition point T, .

Taking derivatives with respect to 5 on both sides of
Eq. (21a), the derivative BEo/Bb, is obtained as

aE, Re1t( —,'+zp ) —P( —,
'

)= —,'Np(p) V ,(22)aa' yp[yp+Np(p) V up Imp'( —,'+zp)]

where g( —,'+zp) is the digamma function. BE&/Bb, can
be obtained easily by making the simple substitution men-
tioned above. Thus A (x, T, ) defined by Eq. (12) reads as

A(x, T, ) Re/( —,
' +zp) —1t( —,

' )
Pp

yp[yp+Np(p, ) V up Img'( —,'+zp)]

Re&(-,'+z, ) —g(-,' )

+P)
yl fy1+p(i ) V'u i Imf'( —,

' +zi )I

(23)

p, D
Eo=Np(p) V —ln

277

1 . IEo —Ef I+ Ref —+ip,
2 '

277
(24a)

and

2 ,DE, =p(p) V —In 2'

1 . I Ei+Ef
I+ Re/ —+ip,

2 ' 2' (24b)

Inserting Eqs. (23)—(24) into Eq. (15), the supercon-
ducting transition temperature T, can be calculated nu-
merically.

For the reduced specific heat jump AC/b, Co, we have
to calculate some more derivatives. Using

where u~. =P y~ I

/2m. , zi =iu, , j=0, 1.
Eo and E, in Eq. (23) take the same values as for the

normal host given previously by Ramakrishnan and Sur'
for T= T, (P, = 1/T, ).

~ aa' a~'
~EM

pc+ M

'2
aEM

+pc g M
M BA g& 0

2
8 EM

+ ~PM a(~' '

and

BE() A(x, T, )
2 (x, Tc ) = xf3c ' Eo—+Pc

Tc a c x
BE l g BE

P(P) B~' ~'=o P(P) BP. =02
Pp

BE)
+N E)+Ef+p,

A(x, T, )

p(p) Bb,' ~~ p p(p)

aE,
ap, a~' =02

where the derivatives BEp/B(b, )
I ~~ p

and BEp/Bp, can

be calculated in a way similar to BEp/Bb,
I z& . The de-

tailed expressions are listed in the Appendix.

cal calculations for the corresponding quantities. Now,
since numerically we have (T,p 1.36 K for p——ure thori-
um)

C. Analytic expressions of T, /T, o and hC/ECO
I

u
I

= Iy I
/2vrT, p=-10', (28)

For
I

u
I

= Iy I
/2rrT, »1, the digamma function

lt( —,'+z) can be replaced by a simple but accurate interpo-
lation formula'

the low-temperature limit is almost completely reached at
the superconducting transition temperature T, with

Re1(r( —,
' +z ) —g( —,

'
) = ln( T o/T, ) + ln(4e r

I y I

/~T o ) (29)

Re1(( —,'+z) = —,
' ln(1+4u ) —(1+6u )

and similarly for the polygamma functions

(25) and

u Img'( —,'+z) = —1, u Ref"(-,'+z) =1 . (30)

and

Imp'( —,'+z)= —4[(1+4u ) '+3(1+6u ) ] If Ep (E) +Ef (i.e., in the mixed-valence regime, see
Sec. IV), we have

Ref"(—,'+z) =4[(4u —1)(1+4u )

+3(18u —1)(1+6u ) 3] . (27) and

Pp=(1+Ne ' ' ' )-'=1P(E —E —E )
(31a)

In Sec. IV, these three expressions are used for numeri- ~, =—(e ' ' '+N)-'=0 .
—P(E —E —E )

(31b)
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Accordingly, the A (x, T, ) function in Eq. (15) for T,
simplifies to

NV2 ln(T, o/T, )+ ln(4e~ ~y ~
/AT, o)

A(x, T, )=x
yolyo —Np(V ) V']

(3&)

T, /T, o= exp[ —Ax /(1 Bx—)], (33)

so that a modified exponential law of T, /T, o versus x is
also derived as

Dnf8=
N(1 —nf)

(37)

Finally, the parameters in the modified exponential
concentration dependence of T, /T, o may be expressed as
functions of the valence nf of the impurity, the half band-
width D of the conduction electrons, the degeneracy fac-
tor N of the 4f ' configuration and the transition tempera-
ture of the pure BCS superconductor in the form

which is of the same form as derived in other theories, '

the coeScients A and B are given by

NV 1

y [yo —Np(p) V']

and

4e rN(1 —nf )
A=Bin

STnf Tcp
(38)

and

A =B ln(4e~
~ yo ~

/~T, o) . (35)

where D, T,p, and yp are scaled by the effective hybridiza-
tion width I =p(p) V .

The terms for AC/ACp simplicity as

n/ N——p(p) V—
1

yo Np(p) V—
(36)

Similarly, the expression for the valence of the 4f '

configuration nf simplifies'

and

}cA( xT, )
T, = —Bx

aT.
(39)

B(x,T, ) = —3Bx +1.9(n T, ) ln(T, o/T, ) +
4y, 2Dy.

1 1 B
ln( T,o/T, )

xD yp 4D

IV. NUMERICAL RESULTS

In this section, we present numerical results for T, /T, o
and b, C/b, Co calculated from expressions (15) and (17).
Firstly, however, we want to gain some insight into the
influence of rare-earth impurities in the mixed-valence re-
gime on the BCS superconductor using quantitative argu-
ments in the light of the above Brillouin-signer theory.

In the ground state (T=0 K), the preference of the oc-
cupation of the configurations 4f or 4f ' reversed if one
passes from Ep&E&+Ef to Ep &E]+Ef by lifting the
bare 4f ' energy level Ef (actually, the energy di(ference
between the two configurations E~ Eo —p) throug—h a
critical value —e, as found by Ramakrishnan and Sur, '

e, = 18p(p, ) V if N =6. At the superconducting transition
temperature T„which is much smaller than other energy
scales in the system, the physical picture of valence fluc-
tuations is similar as in the ground state of a normal host.
If Ef & —e„we have Pp((P& since Ep&E&+Ef i.e., the
impurity is in the magnetic multiplets; and if Ef & —e„
the singlet state 4f is occupied with larger weight, in oth-
er words more 4f electrons of the rare-earth impurity are
ionized and located in the conduction band. This latter
case characterizes the mixed-valence regime of the rare-
earth impurity.

Accordingly, it is inferred that the suppression of super-
conductivity by the mixed-valence rare-earth impurities
comes mainly from the change fluctuation between the

two 4f configurations. Fewer electrons are available near
the Fermi surface for superconducting pairing since some
of them are fluctuating from the Fermi level to the 4f ' or-
bitals and vice versa. If E&+Ef &Ep, more fluctuating
charges will stay more time on the local 4f ' orbitals. The
deeper the 4f ' energy level is, the stronger superconduc-
tivity is suppressed. If E&+Ef &Ep, i.e., Ef & —e„a
smaller amount of conduction electrons near the Fermi
surface is lost. Thus the mixed-valence rare-earth impuri-
ties behave like nonmagnetic impurities following the
pair-weakening mechanism.

At the same time, Ep &E]+Ef is also a criterion for
the lowest-order Brillouin-Wigner theory to be a good ap-
proximation. ' Thus the present calculations of the ther-
modynamic properties near the superconducting transition
temperature T, is reliable in the strong mixed-valence re-
gime. The following numerical results prove to support
these interpretations quantitatively.

A. —[d ( T /T p}/dx ] —p versus nf curves

The [d ( T /T o)/dx ] o versus nf curve is given in
Fig. 2. This initial depression of superconductivity in-
creases very rapidly. This behavior is similar to the one
known for the high Tz part of the —[d (T, /T, o)/dx],
versus T~/T, p curve where a peak appears when T& is re-
duced. ' However, the range of validity of the present
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FIG. 2. The initial depression of T, /T, o vs the valence nf
with I =0.02 eV, D=150I, and X =6.

theory applies only up to Ef ———16p(p) V = —e, or for

nf -0.6.

B. T, /T, p versus x curves and T, /T, p

versus nf curves

T, /T, o versus x curves are presented in Fig. 3. The
curves all show a exponential form which become steeper
when the valence nf is increased. Curves with smaller
valence nf are of the nonmagnetic impurity type while
those with larger nf are as steep as the magnetic impurity.
The dependence of T, /T, o on the valence nf is plotted in

Fig. 4 and is consistent with the physical picture
developed earlier. It is seen that only a very small num-
ber of rare-earth impurities (x &0.01) can be dissolved in

a superconductor when nf ~0.6. However, the present
theory should not be continued beyond the valence

nf =0.6 for X =6.
C. 5C /ECp versus T, /T p curve

FIG. 4. T, /T, o vs valence n~ at different impurity concentra-
tions. The parameters have the same as used in Fig. 1.

jump AC/ACO plotted in Fig. 5. To our surprise we find

that our numerically calculated curve shows an upward
deviation with respect to the BCS law of corresponding
states given by the straight line in Fig. 5. The curve ob-
tained by the Abrikosov-Gorkov theory as calculated by
Skalski et ai. ' for magnetic impurity alloys is also shown
in Fig. 5. The experimental data of Th, ,Ce, and
Th& U, alloys are also given for comparison. We sug-
gest that more experimental measurements be carried out
on the superconducting mixed-valence rare-earth alloys to
make sure of this upward deviation.

Another important characteristic of superconducting al-

loys is the T, /T, o dependence of the reduced specific-heat

0.6 0.
&c ~ Tea

0 & 2 3 + ~ 6
X ( /0)

7 8 9 ro

FIG. 3. Reduced transition temperature T, /T, p vs impurity
concentration x with different valence. The parameters have the

same values as used in Fig. 1.

FIG. 5. Reduced specific heat jump AC/ACp vs T. /T p.

BCS, ACs, and BW represent the results of the BCS, Abrikosov-

Gorkov, and the present Brillouin-%'igner theories. The parame-

ters are nf -——0.45, I =0.01 eV, and D=75I . The experimental

points are taken from Ref. 1.
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D. Reinterpretation of T, /T, o versus curves
of Thi „Ce alloys

Since Th
&

Ce alloys are believed to be typical
mixed-valence systems in the normal state, ' it is neces-
sary to interpret the data of superconducting Th& Ce
alloys in terms of the mixed-valence state. For that pur-
pose we use the present lowest-order theory as a first step.
In Fig. 6, we present the data of T, /T, o versus x of super-
conducting Thi, Ce, alloys to which Eqs. (33), (37), and
(38) are fitted. Parameters used together with those used
in the Hartree-Fock theory are listed in Table I for com-
parison. As mentioned in Sec. I, the Coulomb repulsion U
adopted in the Hartree-Fock theory is too small for a
rare-earth impurity such as cerium and uranium. Furth-
ermore, the value 0.75 of the valence nf was obtained
from the chemical valence of about 3.25 estimated from
measurements done at a temperature of about 800 K.
However, due to thermally induced valence transitions,
the high-temperature value of the valence may be consid-
erably reduced. ' On the other hand, all the parameters
in Table I are very different from those found for cerium
impurities in some metal host other than thorium. Ac-
cordingly, further experimental studies on the mixed-
valence state at lower temperatures (e.g. , T & 10 K) are ur-
gently needed. Theoretical work based on a higher-order
Brillouin-signer perturbation theory, and which will ap-
ply to larger valence nf in order to interpret the data of
Th& ~Ce~ alloys, is presently in progress.

V. CONCLUDING REMARKS

We have presented a Brillouin-Wigner type theory for
the thermodynamic properties of BCS superconductors
containing mixed-valence rare-earth impurities relevant to
superconducting Th

&
Ce alloys. The influence of

mixed-valence impurities on superconductivity derives
mainly from the charge fiuctuations between the 4f
configurations 4f and 4f '. The T, /T, o versus x .curves
show exponential form which become steeper rapidly
when the valence nf is increased. An upward deviation
from the BCS law of corresponding states is found in the
AC/b, C0 versus T, /T, o curve.

This lowest-order Brillouin-Wigner theory is considered
suitable under the condition that Eo (E

& +Ef or
Ef ) —e, hold, i.e., in the strong mixed-valence regime
when nf (0.6. For the weakly mixed-valence rare-earth

0.8

~ 0.6f-

a.g

0.2

+ 5 6 7 8 9 $0
x (Ce CONCENTRATION a~ %)

FIG. 6. Reduced transition temperature T, /T, o of Thl „Ce
alloys vs the Ce concentration from Ref. 22. The solid line
shows result of present theory.

alloys (nf & 0.7 or Ff & —e, ), higher-order terms as
shown in Figs. 1(a) and 1(b) should also be used in order
to account for spin fluctuations, especially spin-flip pro-
cesses, and to obtain a Brillouin-Wigner theory of the or-
der of (1/N)'. The limiting case where the valence nf ap-
proaches an integer value (one for cerium systems) can
only be handled by including the sum of all terms of the
order 1/N.

A certain difficulty within the present theory is that the
impurity concentration should be dilute. When the im-
purity concentration is increased, interaction between im-
purities become important. A Ruderman-Kittel-Kasuya-
Yosida —type interaction also of the order of (1/N)' is
found in the dense mixed-valence impurity system in the
normal host. This effect should be considered together
with the Feynmann diagrams depicted in Figs. 1(b) 1(c) in
order to reach a more suitable description of simultaneous
charge and spin fluctuations in superconducting mixed-
valence rare-earth alloys and their influence on supercon-
ductivity.

Eventually, we point out that with respect to a compar-
ison of experiment and theory, some additional effects
have to be considered. For example, one should take into
account that the crystal field will destroy the large orbital
degeneracy of the 4f' configuration which is in fact the
basis of the 1/N expansion. However, in some cases, the
crystal-field splitting of the N states of the 4f '

configuration can be ignored if it is much smaller than the

TABLE I. Parameter values in two theories.

Theory

r =p(v) ~'

=~r (eV) Ef (y) U (eV)

p(p)
states

eV atom

Brillouin-Wigner
Hartree-Fock

0.031
0.013

—1.71
5.85 0.12

0.67
0.92

0.43
0.75
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energy ditference between the configurations 4f and 4f'
Finally, we want to stress that the theory presented here
is only the first step towards an understanding of the
physics of the rare-earth impurities in BCS superconduc-
tors.
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APPENDIX: HIGHER-ORDER PARTIAL DERIVATIVES OF E AND E,

We list here some higher-order partial derivatives of Eo and E] used in Sec. III for calculating AC/ACo and nf. The
second-order derivative of Eo with respect to b, is calculated directly from Eq. (21a) in the form

0 Eo
&(&')' ~'=0

=Np(p) V 1+Np(p, ) V Imp'( —,'+zo)
yo

X
21((3) u o 3 1

[ Ret(( —,'+zo) —P( —,
' )]4 yo 4 yo

aE, 2 Po
3 [ Ret(( —,'+zo) —p —,')+, Imp'( —,'+zo)

p(p) aa' g~=o y03 yo

2 2~Eo uo
, Re/"( —,'+zo)

P(&) ~~ ~'=0 yo

The temperature derivatives are found to be

and

Qo
/3, = Np(p, ) V —1+Np(p) V Imp'( —,'+zo)

C yo
[1+uo Imp'( —,

' +zo)]

BE()

'aP, ga' ~' 0

Np(p) V
2

p, aE,
+ )1+

+ [ Re/( —,'+zo) —g( —,
' )]

yo[yo+Np(P ) V'uo &'( 2+")]
BE()

NPVzyo(uolmg'+uo Re/")+p, (2yo+2NPV uol'ap,
y 0[yo+Np(P ) V'uo 1m&'( 2+")]

mg'+NPV uo Ref")

The partial derivatives

BE,
a(a')', =,

and

aE,
Bb' ~'=0

and

uo Img'( —,
' +zo)

=Np(p) V
y +Np(p)V u Imp'( —,'+z )

OE, ui Imp'( —,'+z, )= —p(p) V'
&Ef y, +p(p, )V u, Img'( —,'+z, )

can be obtained from the above expressions by deleting N
and replacing yo by y&.

The partial derivatives of Eo and E& with respect to Ef
are calculated from Eqs. (24) in the form

The explicit expressions (39), and (40) for AC/bC0
given in Sec. III are obtained by taking the low-
temperature limit (29)—(31) in the corresponding expres-
sions.
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