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Stability of the McCumber curve for long Josephson tunnel junctions
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The stability of the McCumber solution of the perturbed sine-Gordon equation that describes

the dynamics of a long Josephson junction may conveniently be studied within the context of a

Fourier-Galerkin approximation. In the absence of an externally applied magnetic field, this pro-

cedure predicts analytically how the number, locations, and widths of the unstable regions of the

McCumber curve depend on the junction parameters. These instabilities are of physical interest

because they evolve into the fluxon oscillations associated with zero-field steps. In the presence of
a small applied magnetic field, the same procedure provides a technique for studying Fiske steps.

I. INTRODUCTION

The determination of instability regions associated
with the McCumber curve in the current-voltage (I V)-
characteristics of long, narrow (hysteretic) Josephson
tunnel junctions has attracted research interest because
the existence of such instability regions is directly con-
nected with the experimental observation of zero-field
steps (ZFS s) in the I Vcharact-eristics of such junctions.
This connection was first pointed out in 1973 by Fulton
and Dynes, ' on the basis of observations on a mechani-
cal analog of the long Josephson junction. Later, the
problem was studied analytically by Burkov and Lifsic.
More recently, Pagano et al. have considered the prob-
lem in some detail, reporting analytical, nurnerica1, and
experimental results. Briefly, the picture that emerges
from these studies is as follows: To observe ZFS's exper-
imentally, one raises the bias current applied to the junc-
tion from zero up to the critical value, whereupon the
junction switches from the zero-voltage state to the gap
state. The bias current is then reduced to some nonzero
value; during this phase the McCumber curve in the I-V
plane is traced out. Raising the current again then al-
lows tracing out the ZFS's.

This situation may be understood theoretically by per-
forming a stability analysis of the particular solution,
corresponding to the McCurnber curve, of the perturbed
sine-Gordon equation that describes the dynamics of the
junction. The simplest case is that in which there is no
external magnetic field applied to the junction. In this
case it is particularly convenient to perform a mul-
timode, i.e., Fourier-Galerkin, decomposition of the
model equation since the McCumber solution corre-
sponds to excitation of only the zero-order mode. The
stability of this solution is governed by the higher-order
mode equations, which, in the linear approximation,
reduce to a set of uncoupled, damped Lame equations,
for which exact, analytic solutions have been found.
Such Lame equations exhibit parametrically excited un-
stable solutions in some regions of their parameter space;
these instabilities evolve with time into the fluxon oscil-
lations associated with the ZFS's.

The application of an external magnetic field provides
a mixing mechanism between the various mode equa-
tions, thus rendering the analysis less tractable. For a
sufficiently small field, however, we can once again
linearize the higher-order mode equations. In this ap-
proximation, the essential effect of the field is simply to
add an inhomogeneous driving term to the odd-order
mode equations. This term is responsible for the appear-
ance of (odd-order) Fiske steps (FS's) in the I Vcharac--
teristic of the junction.

II. MATHEMATICAL MODEL

The mathematical model of the overlap-geometry
Josephson junction is, in normalized form, the perturbed
sine-Gordon equation

(5„—sing—=a(5, —pp„„,—l',
p, (o, t) =p„(L,r) =il .

(la)

(lb)

Here, P( xt) is the usual Josephson phase variable, x is
distance along the junction normalized to the Josephson
penetration length, and t is time normalized to the in-
verse of the Josephson plasma angular frequency. The
model contains five parameters: a, P, y, L, and il. The
term in 0; represents shunt loss due to quasiparticle tun-
nehng (assumed Ohmic), the term in p represents dissi-
pation due to the surface resistance of the superconduct-
ing films, y is the spatially uniform bias current normal-
ized to the maximum zero-voltage Josephson current, L,

is the normalized junction length, and g is the normal-
ized external magnetic field, applied in the plane of the
junction and perpendicular to its long dimension. In re-
cent years this model has been shown to describe a wide
range of experimentally observed Josephson phenomena,
often to a surprising level of detail.

A number of approaches have been employed in the
literature to solve Eqs. (1). One of these, which has been
found convenient in particular for the study of periodic
limit cycle behavior, is the Fourier-Galerkin approxima-
tion, i.e., projection onto a truncated series of Fourier
spatial modes whose amplitudes are unknown functions

36 5225 1987 The American Physical Society



5226 G. COSTABILE, S. PAGANO, AND R. D. PARMENTIER 36

of time. To illustrate this approach we consider first the
case of homogeneous boundary conditions, i.e., g=0 in

Eq. (lb). We take as a solution ansatz the form

N

P(x, t)= g PJ(t) cos(j 7rx/L),
j=0

(2)

(3b)

m =1,2, . . . , N

where N is some finite number. The choice of this form
stems from considering, at any instant of time, a
reflection of the function P(x, t) in the interval x =0 to L
onto the interval x =0 to —I. in such a way as to con-
struct a periodic, continuous, smooth, even function
with spatial periodicity 2I.. In the limit N ~ ao the rep-
resentation of Eq. (2) is exact; the practical usefulness of
this approach depends upon being able to obtain a
"reasonable" description of the system behavior using a
relatively small value of N.

Inserting Eq. (2) into Eqs. (1), and using the ortho-
gonality properties of the trigonometric functions, we
obtain the following set of ordinary differential equations
for the mode amplitudes PJ(t):

go+ a4)o ——y —(1/L) f sing dx, (3a)
x =0

+(a+pro )p +to
L= —(2/L) f sing cos(m7rx /L)dx,

x =0

where K(k) and E(k) are, respectively, the complete el-
liptic integrals of first and second kinds.

To study the stability of this solution we suppose now
that the P (t), m = 1,2, . . . , N, are all small but nonzero.
Defining

N
e—= g p, (t) cos(jrrx/L), (7)

we expand sing to linear terms as

sing= sin(Po+e) = sinPo+ecosPo . (8)

Inserting Eq. (8) into Eqs. (3), and utilizing once again
the orthogonality of the cosines, we obtain

0o+ a0o = y s'neo

+(a+pro' )p +co' p = —p cospo,

m =1,2, . . . , N .

(9a)

(9b)

The equation for Po, Eq. (9a), is exactly the same as in
the unperturbed case, Eq. (4). Equations (9b) represent a
set of N uncoupled, linear, parametrically excited oscilla-
tors in which the Po term is the parametric driver. Since
these equations are uncoupled, they may be solved in-
dependently, which greatly simplifies the analysis.

Inserting the expression of Eq. (5) for Po into the gen-
eric member of Eqs. (9b), we obtain explicitly, for the
nth mode, the equation

in which co =m77/L, and P is given by Eq. (2), and
overdots denote derivatives with respect to t. p„+( +ap co)p„+ [cia„+1 —2 sn (t /k; k)]$„=0, (10)

III. McCUMBER STABILITY ANALYSIS

A McCumber solution of Eqs. (1) is one without spa-
tial structure; in terms of the elastically coupled
pendulum-chain analog of the sine-Gordon system it has
all of the pendula rotating in synchronism "over the
top. " In terms of Eqs. (3) it is represented by a
configuration having go&0 and P (t) —=0, m

=1,2, . . . , N. In this situation Eq. (3a) becomes

where sn is the Jacobian elliptic sine function of
modulus k. Defining the new time variable, ~=t/k, we
transform Eq. (10) into

p„+k(a+pro„)p„+[k (co„+1)—2k sn (7;k)]$„=0,

where overdots now denote derivatives with respect to ~.
We may eliminate the first derivative term in Eq. (11) by
means of the standard transformation

go+ ago = y sin— (4) P„(7)=y(7) exp[ ——,'k(a+Pro„)7], (12)

and all of Eqs. (3b) become identically zero. In the ab-
sence of loss and bias (a = y =0), the rotating solution of
Eq. (4) is exactly

under which Eq. (11) becomes

y'+ [k [co„+I ——,'(a+Pc@„) ]—2k sn (7;k)]y =0 .

Po(t) =2 am( t /k; k ), (13)

y =4aE (k)/77k,

V—= ( j,) =~/m(k),
(6a)

(6b)

where am is the Jacobian elliptic amplitude function of
modulus k, with 0 (k ( 1. For nonzero a and y we as-
sume that Eq. (5) solves Eq. (4) in the power-balance ap-
proximation, i.e., we equate the average power furnished
by the bias supply, P;„=y ((to), to the average power
dissipated, P,„,=a(Po), where angular brackets denote
a time-averaged value. Carrying out this operation
yields the following expressions for the Mc Cumber
branch of the I-V characteristic of the junction: y+ (7)= [H(7 7o) /B(7) ] exP[+Z—(7o)7],

y (7)= [H (7+7o) lB(7)]exP[ Z(7o)7]

(14a)

(14b)

where H, 0, and Z are, respectively, the eta, theta, and
zeta functions of Jacobi, provided the constant

Equation (13) is Lame's equation. A detailed discussion
of the exact analytic solution of this equation (in some-
what more generalized form) may be found in Whittaker
and Watson (who attribute the original solution to lec-
ture notes of Hermite dating from 1872). Following
their discussion, we find two linearly independent solu-
tions of Eq. (13) to be
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McCumber curve one might switch directly to the zero-
voltage state, skipping over the intervening ZFS's.

A linear stability analysis can provide estimates of the
stability boundaries along the McCumber curve, but it
cannot furnish the time evolution of an unstable solu-
tion. This question was addressed in Ref. 3, where it
was shown by direct numerical integration of Eqs. (3)
how such an unstable solution evolves into the Auxon os-
cillation associated with a ZFS. The existence of such a
dynamic route is also suggested by the following analytic
argument: Suppose in Eqs. (3) that only one spatial
mode, say the nth, is excited, but that its amplitude is
not restricted to be small. In this case Eqs. (3) can be
written explicitly as

jo+aj 0 )' J——o(y„—) sinyo,

P„+(a+Pcs„)P„+co„P„=—2J i (P„)cosko

(19a)

(19b)

V. MAGNETIC FIELD EFFECTS

In the presence of an external magnetic field, q&0 in
Eq. (lb), the solution ansatz of Eq. (2) is no longer ap-
propriate since it does not satisfy the boundary condi-
tions. The expedient normally employed in this situation
is to replace Eq. (2) by an ansatz of the form

N

P(x, t) =f (x)+ g P, (t) cos( jmx /L),
j=0

(20)

where Jo and J] are Bessel functions of the first kind.
With the assumption that $0 cot, wit——h co constant, Eq.
(19b) becomes just the equation derived by Takanaka to
study the I-V profile of ZFS's. In fact, all of Takanaka's
results are reproduced by applying the Krylov-
Bogoliubov approximation procedure to Eqs. (19).
Similarly, a two-mode approximation to Eqs. (3), togeth-
er with the Krylov-Bogoliubov procedure, gives rise to
the results of Chang et al. , ' and an X-mode approxima-
tion to those of Enpuku et al. "

separation of the junction dynamics into independent os-
cillators, as in the discussion leading up to Eqs. (9).
Consequently, in order to make some analytical pro-
gress, we now assume that qL «1, and we assume that
this implies that e in Eq. (7) is small. Expanding sing to
linear terms in small quantities, we may write Eqs. (3) as

00+abo = r »n—(4o+ nL /2»
+(a+13~' )P +(~' + cosgo)P

=(4rIL/m ~ )P cosgo,

(21a)

(21b)

where m =1,2, . . . ,N, and P =(0, 1) for m (even, odd).
With the substitution Po ——Po+ rIL /2, Eq. (21a) be-

comes identical to Eq. (9a). Equations (21b) differ from
Eqs. (9b) only by the presence of the inhomogeneous
driving term (4gL /m m )P cosPo, which is present
only for odd m. Since Eqs. (21b) are, by construction,
once again linear, their total solution is just the sum of
the homogeneous solution, i.e., that found in Sec. III
above, plus a particular integral. The homogeneous
solution shows exponential growth when the dominant
frequency of cosPo is approximately 2' (for any m).
Outside of the instability regions the homogeneous solu-
tion tends asymptotically to zero. The particular in-
tegral, on the other hand, is essentially a resonance hav-
ing a peak response when the dominant frequency of
cosgo is approximately cu (for odd m). Thus, in the
context of the linear approximation, the appearance of
ZFS's may be attributed to a parametrically excited reso-
nance of the multimode equations, whereas the appear-
ance of the odd-order FS's derives from a directly excit-
ed resonance of these equations. A complete analysis of
magnetic field effects, and in particular an analysis of the
even-order FS's, requires going beyond the linear ap-
proximation. This may be effected by perturbation
theory, as in Ref. 3, or else by a direct numerical in-
tegration of Eqs. (3), in either case using the ansatz of
Eq. (20) for P.

where f (x) is some function that satisfies Eq. (lb).
Several different such ansatze have been used by various
authors: Enpuku et al. " use f (x) =gx. Watanabe and
Ishii' use the procedure, due to Olsen and Samuelsen, '

of choosing an f (x) that corresponds to two static virtu-
al Auxons placed outside the two ends of the junction.
Kawamoto' ' uses, respectively, in the two papers cit-
ed, a static Auxon lattice array and a static Auxon-
antifiuxon array for f (x).

The basic mathematical requirement on f (x) is that it
must satisfy Eq. (lb). In addition, a "good" choice for
f (x) presumably should be computationally simple and
should lead to a relatively rapid convergence of the trun-
cated Fourier series in Eq. (20). Since we are not aware
of how to guarantee a priori this second condition, we
shall, in what follows, use the Enpuku et al. " ansatz,
f (x)=gx, because of its simplicity. This choice [with
the substitution of Eq. (20) for P] leaves the form of the
dynamical equations, Eqs. (3), unchanged.

The main effect of the introduction of the magnetic
field is that now there is, in general, always an excitation
of the spatial modes that does not any longer allow a

VI. CONCLUSIONS

The linear stability analysis described above provides a
simple explanation for a number of frequently observed
experimental facts, e.g. , the fact that it is often difficult
to bias on low-order ZFS's in longer junctions. More-
over, it underscores the fact, first suggested by Chang et
al. , ' that both ZFS's and FS's might be described within
the context of a single, unified model. It should be not-
ed, however, that this analysis applies only to the mech-
anism of switching from the McCumber curve. There
presumably exist also other mechanisms for biasing on
steps (both ZFS's and FS's); the study of these will
presumably require other tools.
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