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We investigate theoretically the behavior of anisotropic superconductors under uniaxial stress
using the Landau expansion for the free energy. In the cases where the solution of the linearized
gap equation belongs to a degenerate representation, there can be a linear coupling to the applied
stress leading to a splitting of the transition from a normal to a superconducting state into two (or
in some cases even three) second-order transitions. A complete analysis is presented of the result-
ing phase diagrams. The experimental observation of such splitting would give much information
about the symmetry of the superconducting order parameter of the system.

The occurrence of a superconducting phase in the
heavy-fermion metals UBe;;, CeCu,Si;, and UPt; has
raised questions about their symmetry. Some experi-
mental data point to unconventional, i.e., anisotropic
Cooper pairing because of certain analogies to superfluid
3He.!=3 Volovik and Gor’kov,* Ueda and Rice,’ and
Blount® have investigated the possible anisotropic pair-
ing states using a Ginzburg-Landau theory. A clear
identification of the phase has not until now been
achieved, partly because the normal phase of heavy-
fermion systems is not still sufficiently well understood.

This paper proposes a method for tackling this prob-
lem. A qualitative effect will be investigated which de-
pends only on the symmetry properties of the supercon-
ducting state and therefore avoids microscopic con-
siderations. This objective was already pursued in the
paper of Joynt and Rice,” where the spontaneous crystal
symmetry lowering at the phase transition was discussed
as a possibility to help identify the phase. In this paper
we consider the consequences of applying a uniaxial
stress to the crystal and we investigate the qualitative
change of the properties of the superconducting phase.
We examine both the cubic system (UBe,;), which can
be converted to a tetragonal and rhombohedral structure
by a uniaxial stress, and the hexagonal system (UPt;),
converted to an orthorhombic structure.

Section I introduces the unperturbed symmetry (cubic
and hexagonal) and reproduces essentially the standard
theory.*~¢ In Sec. I we show the consequences of a lat-
tice distortion for the Ginzburg-Landau (GL) expansion.
For that purpose Ozaki’s group-theoretical method is
used.® The new effects will be discussed in Sec. III. We
will show that it is possible to observe additional phase
transitions in the superconducting phase, if the super-
conductivity is anisotropic. These possibilities will be
displayed in some phase diagrams with the dependence
on certain parameters of the GL theory. In Sec. IV it
will be shown that in most cases there are second-order
transitions and in some simple examples the size of the
discontinuity in specific heat will be calculated.

A preliminary version of this work has already ap-
peared.’

I. p-WAVE PAIRING IN CUBIC
AND HEXAGONAL SYMMETRY

We start by reviewing the theory for p-wave pairing
assuming strong spin-orbit coupling using the approach
of Ueda and Rice.’> (The case of d-wave pairing is com-
pletely analogous, as we discuss below.) The gap func-
tion A(k) is a 2 X2 matrix, which may be written in vec-
tor notation as

Ax)=i(d(k)-o)o, , §))

where o denotes the three Pauli spin matrices. In a sys-
tem with spin-orbit coupling there are only the following
symmetries: the proper rotation transformation R,
which is the point group of the lattice structure, the time
reversal K, the inversion P, and the U(1) gauge transfor-
mation. d(k) possesses, as a three-dimensional (3D) vec-
tor, the following simple transformation properties:

Rd(k)= 3 [D "(R)],udn(RK) ,

Kd(k)=—d*(—k), (2)
Pd(k)=—d(k) .

D ‘Y(R) is the three-dimensional representation of the
point-group element R. A U(l) gauge transformation
corresponds to the multiplication with a phase factor
e’®. The antisymmetry of the fermion wave function re-
quires d(k)=—d(—k). At the transition point T, it is
allowable to write the gap equation as a homogeneous,
linearized eigenvalue integral equation,

N(0)
2
V(k,k') denotes the attractive pair interaction, N(0) the
density of states, and { - - - ), the average over the Fer-
mi surface. The eigenvalue w is linked with the transi-
tion temperature by the equation

T.=1.14g.e 1@ | 4)

where ¢, is the cutoff energy. Because of the considera-
tion of the spin-orbit coupling, d(k) belongs to the prod-
uct of the three-dimensional representations, which have

wd(k)= (V(k,k)d(k'))p . 3)
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(ky,k,,k;) and {X,¥,Z}, respectively, as their basis,
dk)=£(k) ¥ d}, Ik, , )

m,l

T denotes a unit vector in the ! direction, d,, are the
Clebsch-Gordan coefficients, and f(k) is an invariant
function under all the operations of the point group.
For the cubic symmetry group O, d belongs to ', ® Ty,
and for the hexagonal group D¢ to (I T5)e (e ).

We write down two possible choices for the basis func-
tions for d in cubic symmetry and also one choice in
hexagonal symmetry (Table I). We distinguish bases I
and II for the cubic structure, because I will be con-
venient for the tetragonal symmetry change; on the oth-
er hand, II will be better for the rhombohedral one. Be-
cause for all three cases the system of these basis func-
tions is complete, we can write in every p-wave state the
vector d as a linear combination,

TABLE I. The basis functions for the different irreducible representations. (a) Cubic basis func-

tions I; (b) cubic basis functions II; (c) hexagonal basis functions.

(a) F4® F4= F16> rg@ F4@ Fs

1 o) iop un
F11 d(F1)= 7—5‘(ka +yk}, +Zkz)
1 A ~
L d(T;,u )=T/:6_(2/ikz—ka—yky)
1 Py A
d(I‘;,v): 7_5(ka—ka)
Lo dCyx)= =Tk —2k))
I A A
d(Tyy)= ‘/15 (2k, —Rk,)
d(Ty2)= =Rk, —Fks)
1 A A
FSZ d(F5,§)= \/_—Z(ykz +Zky)
1 A A
d(I's,m)= \1_2 (Zk, +Rk,)
A5, == (Rk, + k)
)
1 A ~ A
rl! d(F1)= 7_3‘1(ka+yky —+—Zkz)
Is: d(Fg,a)=7§(ik,+w’ikx +w2’)"ky)
l A A A
d(I'3,B)= V_E(Zkz + Rk, +w¥k,)
1. R R
| R d(I‘4,1)=76[x(ky—kz)+y(k,~kx)+z(kx_ky)]
dm,z):%[i(wky_aﬂk,)w(k,_wkx)+i<m2k,_k,)]
d(l‘4,3)=—‘—/l—_g[’i(wzky——wk,)+’i(k,—a;2kx)+i(mkx—ky)]
T Ay D= (R0 + )+ 906 ) + 20 1k, )]
d(r5’2)=%6[ﬁ(“’ky+w2kz)+’y\(kz+wkx)+'i(w2k,+ky)]
d(I‘5,3)=T/176[’i(a)2ky+wk,)+?(k,+w2kx)+’i(wkx+k,,)]
(c) (M@elye(Mel)=TieM e elelel
ri: d(T},a)=2k,
’ ’ 1 ~ ~
F]t d(Fl,b)=7.§(xkx +yky)
’ ’ 1 Py ~
Fz: d(Fl)_—.—ﬁ(xk},——ykx)
s d(Isu)=%k,
d(T%v) =9k,
rs: d(I51) =2k,
d(T%,2)=2k,
! ’ 1 Py
F6Z d(F6,1)= 7_2—(ka —9’(],)

d(l"é,2)=71-;(ik, +9k)
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TABLE II. Invariant terms of fourth order. These terms are composed of all linear independent,
invariant terms of fourth order in A. The coefficients 7, of the individual invariant terms are not fixed
in a strong-coupling theory. The terms of the two cubic bases I and II are linked by the same trans-
formation as the corresponding basis functions. (i,j,k)=(x,y,z), (§,7,8) and
(I,m)=(u,v), (a,B), (§,7).
r F(A*)
Cubic I
T, mlAlt
Iy MO A |2+ [ A | )+ 1A A, — A, AP
'y, Ts MOAEP 402 | A2 2msCl A |2 A 124 [ 2 A | 2+ [ 12 A D)
Cubic II
I mlrl*
T3 M Aa |2+ [Ag |21 | Aa | 2= [ A5 ]2
I4Ts MO A2 47, | AT +205A5 | 24 ‘7;—3( [ AT —2AaAs | 24+ | A3 =D A4 | 2y [ A —AiAy D)
Hexagonal
I, mlAlt
5% MU A 2+ [ A [ 2P 4R A — AR )P
II. CHANGE OF SYMMETRY
k)= MIL,m)d(I,m;k) , 6
dik)= 3 MIL,m)d(L,m;k) © BY UNIAXIAL STRESS

,m

where I' means the irreducible representation and m the
basis function. Further, following Monien et al.,'° the
pair interaction in Eq. (3) may be expanded in the spec-
tral form

V(k,k')=— 3 V() S d(T,m;kd(T,m;k'),  (7)
r m

and we assume that one V(I') is essentially larger than
all the others [V(I")>0]. It follows that only one repre-
sentation I' is predominant and, as pointed out by
Monien et al.,'® small admixtures of other representa-
tions can appear for certain states. This latter property
does not affect our results. So we restrict the GL expan-
sion to the predominant representation I'. We regard
the A’s in Eq. (6) as order parameters and we can there-
fore write the GL expansion,

F=F,—Fy=2N() [A(T)3 |MDT,m)|2+f(A% ],

(8)

where A(T)=In(T/T,) and f(A*) denotes the terms of
fourth order in the order parameters. These are listed in
Table II for all possible irreducible representations in
these two symmetries. The coefficients 7; of the invari-
ant terms have to be regarded as undetermined, indepen-
dent parameters. The isotropy in the second-order term
is due to the degeneracy of the basis functions of the
same representation, i.e., their transition temperature is
equal. This is also obvious from Eq. (7). The fourth-
order terms describe the anisotropic features of the
phase transition.

Detailed investigations about the possible stable super-
conductivity states for different choices of the 7; param-
eters can be found in the papers of Volovik and
Gor’kov,* Ueda and Rice,’ Blount,® and Monien et al.'®

Uniaxial stress applied on a crystal destroys the origi-
nal symmetry and leads to a new lower symmetry. In
this way, a cubic system, which is stressed uniaxially in
the (0,0,1) and (1,1,1) directions, respectively, is changed
to a tetragonal and rhombohedral structure, respectively.
A hexagonal system with stress in the (1,0,0) direction
becomes orthorhombic. Here will investigate these three
examples of a change of structure.

We can include the lattice distortion in Eq. (3) by
averaging over a corresponding deformed Fermi surface
(e.g., an ellipsoid). The results of this perturbation are
changes in the transition temperatures and new eigen-
functions d’, which now belong to the new symmetry.
We avoid here an explicit calculation with Eq. (3) and
instead show the outcome qualitatively using group-
theoretical methods. For example, a tetragonal change
of the symmetry splits the 2D cubic representation T,
into two different 1D representations of the tetragonal
symmetry with their corresponding basis function. (In
Appendix A the irreducible representations are catalo-
gued for all needed symmetries.) Similarly, 'y and T
each change over into one 1D and one 2D irreducible
representation. The new eigenfunctions d’(k) are basis
functions of the new representations and are combina-
tions of the original functions. Such a combination can
only take place between original basis functions, which
change into the same new representation [e.g., between
d(I'}) and d(T';,u) for a tetragonal change of symme-
try]. We would like to point out that the mixing be-
tween different basis functions of the cubic representa-
tions, which takes place through the existence of certain
fourth-order terms as discussed by Monien et al.,'® is im-
plicitly induced in our new basis functions, since this
mixing can also only take place between basis functions
belonging to the same new representation. The represen-
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tations and their new basis function are listed in Table
III for all three considered cases of uniaxial stress. It
must be remarked that in the rhombohedral case the
eigenfunctions of [, and f; remain degenerate because
of time-reversal invariance. In all the other cases a split-
ting of the high-dimensional representation is followed
by a splitting of the eigenvalues in Eq. (3) and therefore
of the transition temperatures too.

Regarding group-theoretical formulation of the new
GL free energy, we present the following. Ozaki®
developed a very simple and straightforward method for
the treatment of a change of symmetry in the GL expan-
sion. The free energy for a certain representation I' has
the following form in the presence of external stress and
a resulting strain €,

F(g,A)=F(0,A)+ 3 C(y) I V(y, ) ely,m)
1% m

+ 3 B(y)Sely,m)P?+ 3 ply,mer,m) .
y m

Y,.m

9

F(0,A) is the original free energy in Eq. (8). e&(y,m) is
the strain parameter with the symmetry of the corre-
sponding basis function m in the representation y, where
v denotes an irreducible component of the tensor prod-
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uct I'®T" of the relevant representation I'. p(y,m) is
the stress parameter with the same properties as e(y,m)
(Appendix B). V(y,A),, is an irreducible bilinear form
of A* and A of the relevant representation I' in the prod-
uct I'eI'". But only real ¥(y,A),, may be included in or-
der to preserve the time-reversal invariance of F(g,A).
C(y) and B(y) are real numbers. The third term de-
scribes Hooke’s law of an elastic lattice. F(0,A) has the
complete original symmetry (e.g., cubic or hexagonal),
whereas F(e50, A) has a lower symmetry (e.g., tetrago-
nal, rhombohedral, or orthorhombic) in the presence of
an anisotropic strain. In Appendix B the strain parame-
ter (y,m ) are tabulated for the different distortions.

In the case of a 1D representation the strain simply
shifts T,. We analyze the more interesting representa-
tions with anisotropic character, ie., dim>1
('3, Ty, 5,5, Tg). The correction of F is restricted to
the terms second order in A according to the ansatz (9)
and in many cases it will destroy the above-mentioned
isotropy. We let the terms of fourth order be un-
changed.

In Appendix B we show that the tetragonal deforma-
tion requires £(I"{)540 and &(I"3,u )40, whereas all other
e(I',m) are zero. So we obtain the following second-
order terms and “transition temperatures” in the
different cubic representations: For T3,

TABLE III. Splitting of the irreducible representation by uniaxial stress and their new basis functions. (a) Cubic system with
tetragonal distortion, (b) cubic system with rhombohedral distortion, and (c) hexagonal system with orthorhombic distortion. a, b,
c,d, e, f, g h, and j are some complex functions of the strain ¢, different in every listed case.

(@) Tcupic— Itetragonal d'(I',m) Basis functions
O T
f‘_’; d’(r;;,U) ikx ——?ky
F4~—’ f‘z d/(r4,2) iky —?kx
T d'(T4,x),d'(T4,y) cy, —dzk,
s— rs d'(I's,&),d'(Ts,m) dzk, —cxk,
r, d'(Ts,6) Rk, +§k,
(b) rcubic"’rrhombohedral d'(I',m) Basis functions
r— 1, d'(I'y) R(ak, + bk, +ck,)+(ak, + bk, +ck, ) +2(ak, + bk, +ck;)
I';— L, d'(I3,a) Ro(dk, +ek, +fk:)+Yoldk, +ek, + fk,)+2(dk, +ek, + fk,)
I, d'(I';,B) Ro(dk, +e*k, +f*k,)+Fo (dk, +e*k, +f*k,)+2(dk, +e*k, +f*k,)
ry— I, d'(Ty, 1) Rky —k,)+§(k, —k)+2(k, —k,)
r, d'(Ty,2)
I d'(Ty,3)
s— I, d(Ts,1) see above
I d'(I's,2)
r; d’(Ts,3)
(c) I~hexagonaﬂ_’Fonhorhombic d'( F,m) Basis functions
Ir*':_. Ir‘i 352?3 aRk, +b§k, +c2k,
r,— ry d’(T3) dxk, +e¥k,
rs— ry d'(T5,u) fRk, +g2k,
ry d'(Ts,v) hyk, + jZk,
rs— ry d'(T5,a)
ry d'(T's,B8) see above
e— TIY d'(T',£)
ry d'(Ts,7m)
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[A(T)+C(Te(l) +c(T3)e(Ts,u)] | A, |2

+[A(T)+C(Te(T)—C(Ty)e(T3,u)] | A, | 2= A, (T) | Ay, |24+ 4,(T) | A, | 2,

with
A(T)=In(T/T;)
and
T,=T.(1-C(T'e(l'))—C(I'3)e(T5,u)),
T,~T.(1—-C(T)e(l)+C(I3)e(T5,u));
for 'y,
[A(T)4+C(TDe(T)+2C(T3)e(Ta,u)] | A, | 2

+[A(T)+C(Te(T)—C(Te(Ty,u) 10| Ay |24 |4y | )= A, (T)| A, | 2+ A (T | Ay |2+ [ Ay |7

with
T,~T,(1—C(T)e(T')—2C(Ty)e(Tyu))
Tx=TyzTc(l—C(F])e(F1)+c(F3)E(F3,u ) 5

The case for I's is analogous to T'y.

A rhombohedral deformation requires £(I";)+40 and &(T's5,§)=¢(I's5,m)=¢(Ts,£)5£0, whereas all other &(I"',m ) are
zero. Here we use basis II (Table I) in order to obtain a diagonal bilinear form for the second-order term in A. For
I'; the second-order part remains isotropic because here F(g,A) contains no expressions with &(I's,m ). This confirms
our earlier statement about the degeneracy of d(T';,a) and d(I'3,8). For I'y,

[ A(T)+C(T))e(T))+2C(Ts)e(Ts, )] | Ay | 2+ [ A(T)+C(Te(Ty)
—C(Ls)e(Ts, )1 | Ay |24 | A3 | )=A(T) | Ay |2+ A(T)( | A2 |2+ | 251 D),

with
T,=T,(1-C(I')e(T"})—2C(T5)e(Ts,E)) ,
T,=T3=T.(1—C(I'e(T")+C(I's)(Ts,£)) ;

the case for I's is analogous to T',.

Also, the degeneracy of d'(I'y,2) and d'(I'4,3) and d'(I's,2) and d'(T's,3), respectively, becomes obvious.
Turning to the hexagonal case, £(I'])540 and &(I',£)40 describe the orthorhomic deformation. This case for |
and Ty is completely analogous to the case of the cubic representation, I's; for I's and T,

[A(T)+C(T)e(T})+C(TE)e(ThE)] | Ay | 24+[ A(T)+C(T)e(TH)

with
T,~T.(1-C(I'e(I})—C(Tge(Tg,&))
T,=T.(1—-C(I')e(l)+C(Tg)e(Tg,E)) .

The occurrence of the anisotropy is an effect of the sym-
metry lowering.

III. DISCUSSION OF THE PHASE TRANSITIONS

The idea is now to discuss the GL free energy with
this new symmetry in the second-order term and with its
original fourth-order terms.

A. Tetragonal deformation of the cubic system

We begin with an explicit discussion of the case I'; to
illustrate the qualitatively new features. First we write

_C(F’G)E(F’Gré‘)nkv |2=AM(T),A’H |2+AU(T”}"U |2 ’

[

for the order parameters A;= |A;|e® (j=u,v). The
GL expansion takes the form [2N(0)=1]

F=4,T) l }‘u | 2+AU(T) I A’u | 2+7’1( , }‘u | 2+ | }"v ' 2)2
—4n, | Ay | 2| A, | 2sin®(Ag) . (10)
It is obvious that 77, > 0 leads to sin(A¢)==*1 and 7, <0
to (A¢)=0 (Adp=¢,—¢,). If we assume that T, >T,,
then F is minimized directly below 7', by the solution

A,(T)

i)\’ulzz_ ’
2m

|4, | =0. (11)

The stability of this solution requires a positive-definite
Jacobi matrix (3°F /3 | A, | 3| A; | ),
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Bu“=5%=2A,,(T)+12nl|x,, |2
+4[n;—2n,sin*(Ad)] | A, |2>0,
Bw=ﬂ—=2AU(T)+4[77,—2n2sin2(A¢)]|A,, |2
3lA,|?
+12m, |2, |*>0,
’F

Buu___W:S[nl—ansinz(A(ﬁ)] l }"u I |}\'U ‘ 4

and

BuuBuv _Buzv >0.
B,, >0 is satisfied by the solution (11) in the range
O0<T<T,. For B,, we get, with 77, <0,

B, =2[A4,(T)—A4,(T)]>0 for0<T<T,, (12)

and B,, =0. In this case the solution (11) remains stable
below T,. On the other hand, if 7, >0 (9, —7,>0),
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—2
B, =2 AU(T)——"‘—W—"—ZA,‘
1

()| . (13)

There exists a temperature T, with B, (T)<0 for
T <Ty. Below T another solution is stable:

inl( Av - Au )_2772Au,u
812(n1—12)

| Ay, | 2= , (14)

where the + (—) sign belongs to u (v). There is a
second-order transition for the A’s at T,. T, is calculat-
ed by the equation B,,(T)=0, leading to

T, |°

To=T, |7 | <Tu, (15)
u

with G=7,/27,>0. In the next section we discuss the
corresponding jumps in the specific heat. In Table IV
the possible states are listed with the corresponding rep-
resentations and degeneracies. The case T, > T, is quite
analogous.

The analysis of the 3D representations I'y and T is
somewhat more complicated, because there are two an-
isotropic fourth-order terms;

F=A(T)(| A |2+ [ Ay | D)+ AT [ Ay | 2424 Ay | 2+ [ Ay |24 A, |22

Al A [P TAy [*4+ A [* 42| A 2[4, | 2cos(, —4,)
+2’}\'x ,2|KZIZCOS(¢Z—¢X)+2,A), |2,A,Z|ZCOS(¢),-——¢Z)]

A A 2 A 124 1A 122 124 [ Ay 22 |D) (16)
T

. . . —A4,(T)
is the GL free energy using A;= | A; | exp(i¢;/2). The | Ay | 2= | Ay | 2=~ Z " A,=0,
73 term determines the anisotropy in the magnitude of 4n+m; (18)
the order parameter, whereas the 7, term determines b —b, = .
their phase factors. The degeneracy of d'(I'y,x) and x o
d’'(T,,y) gives rise to two distinct cases, T, =T, 2T,. .

Assuming T, > T, and minimizing F, we can obtain A further transition appears in the range 1;<0. For
first 1, <0 the first solution (19) becomes unstable at T':

— A,(T)
lel2=?(';_)’ A, =A,=0 17 2= |2, 2= — A4,(T) A =0
T T Ayt

for 41, <m;, 13>0. The Jacobi matrix B;; is positive
definite in 0 < T < T; thus solution (17) is stable. In the
case 47, > 173> 0 the solution has the following form and
also remains stable until 7=0,

b =¢y(mod2¢r)=¢z(mod2ﬂ-) .

Below T, use of Cramer’s rule leads to a stable solution,

TABLE IV. Phase table for the 2D representation I'; with T, > T,. For 7, > 0 two different phases exist, while for 7, <0 there
is only one. In the former case the second transition takes place at the temperature To=T,(T,/T,)° with G =17,/27,. The first
phase belongs to an irreducible representation of tetragonal symmetry.

72 T A d(k) Degeneracy Representation
7,<0 0<T<T, (Ay,0) azk, +b(Xk, +3k,) 1 r,
7:>0 To<T<T, (Ay,0) aZk, +b(Xk. +§k,) 1 r, _
0<T<Ty (A |,i [ Ay ) s(T)Zk, +r(T)Rk, +r*(T)§k, 2 erl,
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2 , 2+ A,—A,)—n34,
l}"x ' = lky | =
73(3(71+712)+73)
4+ A, — A, )+n3(A4,—24
')‘z|2: 1 2 z x 3 z x) i 20)
273(3(ny+m2)+13)
¢ =¢,(mod27)=¢,(mod27) .
Ty can be calculated using the fact B,,(T;)=0,
i

l)‘x|2=|}‘y!2=
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G
<Ty, (21)

X

Ty=T, T
z

with G=[4(7]1+772)+7]3]/1]3.

The first solution for 7, >0 has the same form as Eq.
(18). In the second superconducting phase we obtain or-
der parameters with temperature-dependent phase fac-
tors,

2n( A, — A, )+27m,( A, cosp — A, )+134,

l 2

2[47,m2(1— cosd)> —n3(3m; —n,(1—4 cosd)+n3)]
_ 4n( A, — A,)+4n,cosdp( A, — A, cosd)+n3(24, — A4,)

| Az

|12

2[41175(1 — cosd)* —n3(31; — (1 —4 cosd) +m3) ]
_ 4771( Az— Ax )'+'773( Az _ZAX)

(22)

cos¢p=— =
| Aw |24 12y |2

where we use ¢ =¢, = —¢, by fixing the U(1) gauge as
$,=0. T, is obtained from Eq. (21) using
G =(47m,+73)/n3. The spontaneous symmetry lowering
at the first transition leads to an orthorhombic symmetry
in every case and, at the second, to a monoclinic symme-
try, if time reversal is dropped.

The case T,>T, has a similar analysis. The first
phase is always described by the nondegenerate state
d'(T4,2),

—A,(T)

A | =,
|2 2(my+72)

Ay=A,=0, (23)
which has the full tetragonal symmetry. This state
remains only stable until T7=0 in the range
47, <73, m3>0. Otherwise we observe further transi-
tions. The second state in 7, <0,7;<0 has the form
(20). For 47,> 13> 0 we obtain

D ang "

FIG. 1. Phase diagram for tetragonal deformation. T, > T;:
A, B —two phase transitions (both of second order); C,D —one
phase transition (second order). T,>T,: A —three phase
transitions (all of second order); B,C —two phase transitions
(both of second order); D —one phase transition (second or-
der). The phase diagram shows the behavior with different
values of the 7, and 7; parameters in the GL expansion.

4n,(A4,— A,)+21m34,

2_]’

A, 2= A, (n—m)— A (n+7,)

, A,=0,
4n1m,—7n3(n—n,)

y

A0 =)+ 13) — 4,207, +712)
2[4nm,—n3(n—n2)]

, (24

¢z_¢x:77 ’

with an orthorhombic symmetry. In the range
17,>0, 73<0 we find even three transitions. The third
one is due to the complex nature of the order parame-
ters, which begin to rotate in the complex plane after be-
ing fixed in the first two phases. This fact can be seen in
solution (22), where in the second (orthorhombic) phase
¢ is constant (¢ =), because the equation

cosd=— | A, |2/(| A |24 | A, | D)< —1

has no solution. The third (monoclinic) phase has its on-
set when |A,|2/2| A, |?=1. In the phase diagram in
Fig. 1 we show the ranges where further phase transi-
tions take place as function of 7, and 7;. Note that fur-
ther transitions appear in the cases where the solution in
the undeformed materials is not a single basis function.
An important fact is that the phase transition from the
normal to the superconducting state always leads to a
gap function which belongs to only one irreducible
tetragonal representation. In further transitions the
states break out of a single irreducible representation
and form combinations of more than one representation
(e.g., I,®T5). Further, all transitions in the tetragonal
deformed crystal are second-order transitions. Table V
gives information about the symmetry properties of the
states in every phase.
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TABLE V. Phase table for the 3D representation I', under tetragonal deformation. (a) Tx > T, and (b) T, > T,. The symbols 4,
B, C and D are defined in the phase diagram (Fig. 1). Note that in region A the phase factors ¢(T") and ¢'(T") depend on tempera-
ture in the lowest phase; this fact produces in (b) the threefold splitting of the phase transition. r, s, r',s',t,q,t',q',m,n,p,and u

are functions of the temperature.

(a)
T d(k) Degeneracy Representation To=T (T, /T,)°
_ - 4n,+1;
A T0<T<TX ei(ﬂ/4)dl(r4,x)_+_e—l(ﬂ'/4)dt(r4’y) 4 FS GZ——_—',”
0<T<T, T (Tayz)+s(T)[eTd'(Ty,x)+e 7' (Ty,y)] 8 el
- 4(7]1+7]2)
B To<T < Ty d'(T,,x)+d'(T4y) 2 I's G=——17;—
0<T <To P(T)d(Tayz)+5 (D[ (Tgyx)+d'(Ty,p)] 4 el
C 0<T<Tx d'(Ty,x )=c¥k, —dzk, 2 5
D 0<T<T, d'(Tyyx)+id"(Ty,y) 4 Ts

(b)
T d(k) Degeneracy Representation To=T,(T,/Tx)°
o1 o G— 2(n1+72)

A To<T<T, d'(T4,2)~Xk, —Fk, 1 _—ﬂ;—‘tﬂz .
To<T<To, t(T)d(Ty,z)+g(T)[e"?>d'(Lyyx)+e " 92d'(Dy,p)] 4 Ty=T} " V/Tk~
0<T<T £(T)d(Tayz)+q"(T)e” Td'(Tyyx)+e ¥ Td(Typ)] 8 c=—4n/7

2(n1+m2)

B To<T<T, d'(Ty4,z) ~Rky — Yk, 1 GZT
0<T <Ty m(T)d' (T4,z)+n(T)d'(T4x)+d (Tyyp)] 4

C 0<T<T, d'(T4z) ~ &k, — K, 1

(T ~&ky—3 G 2mtm)

D To<T<T, d'(Ty,z)~%k, — Yk, 1 = 7s— 72

0<T < Ty p(T)A'(Tyz)+iu(T)d'(Fy,x) 4

B. Rhombohedral deformation of the cubic system
In a rhombohedral deformation only the two 3D rep-
resentations must be considered, because, as mentioned

above, I'; splits into [*, and f3, but these new basis

states (II) remain degenerate. Therefore in the case of
I'; no splitting appears in the phase transition under
rhombohedral deformation.

On the other hand, T'y and T's have anisotropic
second-order terms,

F=A(T)| A |24+ A5 (T)C A |24+ | A [ D)+ miC Ay | 24 | Ay [ 24 [ A5 2D

| A4 20y | 2 2 23— Ahs | 2 | B |24+ [ M=y ).

In this case the fourth-order terms do not distinguish—
in a simple way —between the anisotropy of the magni-
tude of the order parameters and their phase factors.
They contain some linear components of single order pa-
rameters [e.g., in expressions like (Af)%,AA34c.c.]. In
some cases such terms suppress the solution which is
favored by the anisotropic second-order terms, and cause
all order parameters to be finite immediately below the
normal transition.!® Another important possibility is a
first-order transition produced by such terms linked with
“quasi-third-order” components like AfA3A%+c.c., if A,
and A; are approximately equal. But it must be
remarked that such a first-order transition cannot take
place at the onset of the superconducting phase.

(25)

Unfortunately, the minimization of the GL free energy
F leads to analytically complicated equations when we
assume A ;0 for all j, and this makes numerical calcula-
tions necessary.

First, we investigate the case T|>T,=T;. In this
case we have only one transition in the range B [Fig.
2(a)],

—A(T)
2(n+m2+13/3)

| Ay | 2= Ay=A3=0. (26)

Indeed, this solution describes the first superconducting
phase in the whole phase diagram, when T, >T,=Tj3.
One further second-order transition is found in 4 and D.
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C\l _12m.-
S RGE
] b
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FIG. 2. Phase diagrams for rhombohedral deformation. (a)
T,>T,: C’'—three phase transitions (the first two of second
order, the third of first order); 4,D —two phase transitions
(both of second order); C—two phase transitions (the first of
second order, the second of first order); B—one phase transi-
tion (second order). (b) T,>T,: D—two phase transitions
(both of second order); B',C'—two phase transitions (the first
of second order, the second of first order); 4,B,C —one phase

It is possible to calculate the transition point T, analyti-
cally using again the criterion for the stability of the
solution (26) leading to

G

T
2, 27)

1

T():Tl

with G =(n;+n,+73/3)/21m,. As To—T increases, the
order parameters A tends towards the value ~ (1,1, —34)
in area A and towards ~(l,a,—b) in area D
[a=(V'3—1)/2, b=(V'3+1)/2], which are both sixfold
degenerate. Note in a single domain of either of these
solutions the lattice symmetry is monoclinic. In region
C there is a variable boundary depending on 7, deter-
mined by the condition f(%,)n,=17;, where the limiting
values of f(7,) obtained by numerical calculation are
S(n;=0)=5 and f(9,— o )=5L. In this range we find
an additional first-order transition. The small area C’
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has even three transitions. The first two are continuous,
while the third is a first-order transition with the re-
markable property that it lowers the degree of the de-
generacy from sixfold to threefold (both monoclinic).
The second transition has its onset at T, from Eq. (27).
In both C and C’ the lowest phase behaves as
A—~(1,1,1) for T—O0.

Turning to the case T,=T;>T,, the degeneracy of
the fz and f3 states leads to a boundary (127,=7%;) in
the phase diagram [Fig. 2(b)], which separates two types
of solutions. For one type (121, > ;) the first supercon-
ducting phase belongs to I', and T';; for the other type
(127, < 73) it belongs to 8 1, (1)),

In areas B and C (127,<7;) we observe only one
(second-order) transition caused by the above-mentioned
linear terms (i.e., linear in A). As T—0, then
A— ~(—4,1,1) in region B and A— ~(1,1,1) in region
C. In the other half-plane of the phase diagram we ob-
tain, as a first solution,

— A(T)

Ay t=— 2
122 2(ny+13/3)

, A=A3=0, (28)

with rhombohedral symmetry or the time-reversal de-
generate solution with A;540, A;=A,=0. The single ad-
ditional transition in B’ and C’ is a first-order transition,
whereas in D it is a second-order one with a transition
temperature

G
, (29)

T,

Ty)=T, 7
2

with
G =(121,—n3)(n,+13/3)/2m,m3 .

The range A has only the single superconducting phase
(28). The low-temperature limits in regions 4 and D are
A— ~(0,1,0) and A— ~(1,a, —b), respectively.

The first-order transition points can be calculated only
numerically by comparing different local minima of F.
In Table VI the different states for I', are listed. Note
that I's is quite similar.

C. Orthorhombic deformation in the hexagonal system

The internal degeneracy of the 2D representations I’ 5
and I'g of the hexagonal symmetry is lifted under ortho-
rhombic deformation. Since the fourth-order terms for
this representations and the cubic I'; are quite the same,
their new GL expansion has also the form (10). So the
discussion is similar to that in Sec. III. A. In Table VII
we catalog the different phase transitions for I';. Note
that I'q behaves analogously.

IV. DISCUSSION OF THE PHASE TRANSITIONS

The entropy is related to the free energy by

__OF _, 1 2 30
S(T=—2r= TN(O)Tglk,I X (30)
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TABLE VI. Phase table for the 3D representation I'y under rhombohedral deformation. (a) T, > T, and (b) T »>T,. A, B, C,
C’, and D give the ranges in the phase diagram (Fig. 2). The stable states are combined from the perturbed basis states II. T is al-
ways a second-order transition, whereas T, denotes a first-order transition. The need to resort to numerical analysis for the first-
order transition prevents from obtaining an analytical term for T. a, b, ¢, d, a’, b’, e, [, and g are functions of the temperature.

(a)
T d'(k) Degeneracy Representation To=T(T,/T,)°
“ 3
A To<T<T, d&(Tyl) 1 Y, Gzﬂlﬁ_”zﬂ
A A o~ 2
0<T<Ty  a(T)d(C41)+b(T)d'(T4,2)—c(T)d'(T4,3) 6 Telel,
B 0<T<T, d'(Ty,1) 1 T,
C  To<T d'(Ty,1) 1 R X
0<T<To  a(T)d(Ty1)+b"(T)A'(T4,2)+b" *(T)d'(Ty,3) 3 Fel,ol,
~ /3
C' To<T<T, d&(Tyl) 1 Y, G=L’722:"—3
A A A 2
To<T<To d(T)d(T4,1)+e(T)d'(Fy,2)—f(T)d'(Ts,3) 6 INCIVTI
0<T<To a'(T)d (T4, 1) +b"(T)d'(T4,2)+b" *(T)d(Ts,3) 3 elel,
D To<T<T, d(T4l) 1 R
0<T<T, d(T)d' (T4, 1) +e(T)d'(Ty,2)— f(T)d'(Ts,3) 6 Felel,
(b)
T d(k) Degeneracy Representation To=Ty(T,/T)°
A4 0<T<T, d'(T',2) 2 T, (Ty)
B  0<T<T, a(T)d(C41)—b(T)d'(T4,2)—b*(T)d(Ty,3) 3 felfel,
B To<T<T, d(Iy,2) 2 B, (1)
0<T<Ty  a(T)d(T41)—b(T)d'(T4,2)—b*(T)d'(Ty,3) 3 Telel,
C 0<T<T, o(T)d(Ty)+d(T)d(T4,2)+d*(T)d'(Ty3) 3 Lelel,
C' To<T<T, d(Iy2) 2 Ryt )
0<T<To (T)d (T 1)+d(T)A (T, 2) +d *(T)d' (T4, 3) 3 Felel,
" (93— 129)(m,+713/3)
D To<T<T, d(Is2) 2 I, (3) G= s Z:’l 717]1 -
. 273
0<T<T, e(T)d" (D, 1)+ f(T)d'(T4,2)—g(T)d"(T4,3) 6 Felel,

When the A; are continuous at the transition point, we
obtain a phase transition of second order. This is always
true at the first transition from the normal to the super-
conducting state, but also for all further transitions
which are purely tetragonal and orthorhombic deforma-
tions, as we discussed above. The specific heat then has
a discontinuity at this point,

S(T) for T <To,
with S(T)= Syu(T) for T>T, .

Further, we find that the sum of all discontinuities AC;
satisfies the following relation:

AC=1im 3 AC; , (32)

e—0 "

where AC is the jump in specific heat without deforma-
ACy= —a—(TSI)_—a—(TS") ] , (31) tion. We give here only the explicit results for the case
oT oT To of tetragonal deformation of I';:
J
N(0) N(0)
=—"—=—_—"—[14C(T C(T3)e(T5, ,
u 6mT, 6771Tc[ + C(Te(T))+C(I3)e(T3,u)]
N(0) N(0) m

AC)y=———"""—7"—AC (Ty)=———"— |14+C(I"e(T"))— |1 —— |C(T3)e(T3,u) | —AC,(T,) , (33)

T 6t Ty O T gy, | U T oo

and

AC= N (0)

6(n;—n,)T,
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TABLE VII. Phase table for the 2D representation I's for T, > T,. The behavior is completely
analogous to the case of I'; in Table I, because the anisotropic terms of fourth order are the same.

72 T d'(k) Degeneracy Representation
7,>0 To<T<T, d'(T5,u)=fRk, +8Zk, 1 II‘Q’ )
0<T<T, r(T)d'(Ts,u)+is(T)d'(Ts,v) 2 'yely
7,<0 0<T<T, d'(I's,u)=fxk, +gZk, 1 ry

The 7; parameters come in a simple form in Egs. (20).
Similar expressions can be easily calculated for the other
representations.

Lastly, we note that in the case of extremely strong
coupling of the order parameter to the lattice, or cou-
pling to a very soft distortion, there is the possibility of a
first-order transition. This would involve a discontinu-
ous change in the A;, and latent heat. This phenomenon
is well known in the context of magnetic systems, and
details may be found in Ref. 11. The criterion for its oc-
currence in our case is (for the cubic system with 7, <0)
C*y)>4B(y)n,, and V(y) is the largest of the V’s.

V. CONCLUSION

The stress-produced symmetry lowering leads to an-
isotropic second-order terms in a Ginzburg-Landau

theory for p- or d-wave superconductivity (as treated in
Appendix B) in higher-dimensional irreducible represen-
tations. This fact leads to possible splittings of the phase
transitions, which depend on the relation between the
different fourth-order terms. A key for the possible be-
haviors of a cubic system is given in Table VIII. Possi-
bly, one is able to identify the phase definitively and also
to give an estimate for 7; with help of the jumps of the
specific heat. But note that this measurement is not suit-
able to distinguish even versus odd parity (or,
equivalently, p-wave versus d-wave) superconductivity
since there is a close parallel between the group-
theoretical classification of both systems. It is clear that
such effects do not occur in s-wave superconductivity,
since it possesses only a one-dimensional representation.
Therefore we believe that this effect can be a good

TABLE VIII. Key showing the different behaviors of superconductivity in cubic materials under
uniaxial stress. The first two columns give the number of transitions with their order for tetragonal
and rhombohedral deformation. The other columns show the corresponding possible cases. Symbols:
=, second and third phase transition of second order; ~, second phase transition of second order,

’

third phase transition of first order; —, second phase transition of second order; ~, second phase

transition of first order.

Tetragonal Rhombohedral T,>T, T, <T, T,>T, T,<T; 72,13 r
3(=) 2(=) * * 7:>0,73<0 [y, Ts
3 (=) 1 * * 172>0,73<0 | QP
2 (=) 2(—) * * 7:>0,173<0 Iy, Ts

L 3 ¥ 41’]2>T]3>0 F4,F5

* * 41,>1;>0 | VS O

2 (=) 2(~) * * 0> 127> 73 [y, Ts
2 (=) 1 * * 72>0,73<0 Iy,Ts
* * 7,<0,73<0 4,Ts

* % 17,<0,7:<0 Iy,Ts

* * 0>m3> 121, Iy, Ts

* * O>’T[3> 12772 F4,F5

T,>T,, T,<T, 72>0 r;

1 3 ~ * * 4n, <3< f(g)n, 4, Ts
* * dny <y < f(n)m [y, s

1 2 (—) * * 47,>173:>0 4T
* * 417,>13>0 s, Cs

1 2 (=) * * fni)ma<ns, 13>0 I'y,Ts
* * S <, 3>0 Ly Ts

% * 129, > 13> 47, 4,

* * 129, > 13> 4, Is,Ts

1 1 * * 129, <73, 13>0 I's,Ts
* * 12, <3, 3>0 'y,

T.>T,, T,<T,

172<0 I
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method for proving anisotropic superconductivity. A
rough estimate of the temperature splitting leads to
| AT, | =0.05 K per 1 kbar uniaxial stress in UBe3
(AT, =T;—T;, i,j=u,v or x,z, .. ). If no splitting is
observed, three reasons can be responsible: (1) The cou-
pling [C(y)] to the strain is too small. (2) The relevant
representation is one dimensional. (3) The n; parameters
lie in one of the small regions of the phase diagram
where no splitting takes place for any uniaxial stress
direction. Not much can be concluded in this case.
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APPENDIX A: REPRESENTATIONS
OF THE PROPER POINT GROUPS

For cubic O:
r E 8C, 3C, 6C) 6C,
r, 1 1 1 1 1
r, 1 1 —1 —1
r; 2 —1 2 0 0
| 3 0 -1 1 —1
| 3 0 -1 —1 1
For hexagonal D¢
r E C, 2C, 2C 3C, 3C5
] 1 1 1 1 1 1
| 1 1 1 1 —1 —1
r; 1 1 1 -1 1 —1
| A 1 -1 1 —1 —1 1
| g 2 -2 —1 1 0 0
| A 2 2 —1 -1 0 0
For tetragonal D,:
r E 2C, C, C) 2CY
r, 1 1 1 1 1
r, 1 1 1 -1 -1
r, 1 —1 1 1 —1
r, 1 —1 1 —1 1
| g 2 0 -2 0 0
For rhombohedral C; (0 > e’ ?™/);
r E C, C}
T, 1 1 1
ﬁz 1 w (1)2
f:; 1 0)2
r E C, C; Ccy
ry 1 1 1
ry 1 —1 1
ry 1 1 —1 —
ry 1 —1 —1

APPENDIX B: SYMMETRY-BREAKING TERMS

1. Pressure and strain parameters

The elastic free energy in the presence of a stress
p(y,m) can be written as

Fulp,e)=3B(y) T ely,m)P?+ 3 ply,mely,m) .
Y m Y.m

Minimizing Fy, we get e(y,m)=—p(y,m)/2B(y).

Because Fjy is invariant under all cubic- and
hexagonal-symmetry  transformations, respectively,
p(y,m) and €(y,m) must possess the transformation
properties of the corresponding basis functions of the ir-
reducible representations y. p(y,m) and e&(y,m) may
be expressed by the pressure and strain tensor, respec-
tively, in an analogous way. For cubic-symmetry trans-
formations, we have

1
p(rl):‘/_s(pxx +Dyy +pz),

1
p(L3u )Z—‘/_‘g(zpzz —Pxx —‘pyy) ’

1
P(Ffﬁv):‘/_i(pxx ‘"Py,v) ’

p(Ts,)=V2p,, ,
p(Ts,m)=V2p,,
p(Ls,6)=V2p,, .

For hexagonal-symmetry transformations,
p(T)=a(pxx +pyy)+bps
p(Tsu)=V2p,, ,
p(F’S,u)z\/Epyz ,

, 1
p(Ig, &)= _\/—E(p"x —Dy)

p(Cem)=V2p,, .

The remaining irreducible representations do not appear
because of the symmetry of the tensor p;;. The strain
parameters €(y,m) have an analogous relationship to
the strain tensor ¢;;. The application of stress on a cubic
system in a (0,0,1) direction (p,,#0) leads to &(I';)£0
and e(I";,u )40, with all other components zero. For a
(1,1,1) direction (py, =px, =p,; %0, Pxx =Py, =D, #0)
only €(I'1)40 and &(T's5,§)=¢(I's,7)=¢(I5,§)5£0. The
hexagonal system with stress in the (1,0,0) direction has
only €(I'})5£0 and &(I,£)=40.

2. The bilinear forms V(y,A),,

The coefficients V(y,A),, are bilinear in A* and A and
are basis functions of the irreducible representations in
the product I'®I' of the cubic or hexagonal representa-
tion I’ under consideration. The invariance of F under
time reversal requires ¥ to be real. For I''®T';=I,
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V()= |A|2.
For I';@ ;=T eeT;,
V(D)= |A, |24 | A, |2,
V(Cyu)= A, [*= |2, |,
V(L3,0)=A%A, + A AY .
For',ely=Telelels,
V([y)=|A|?,
V(Cau)=2|A; | = | Ae | 2= |2, | %,
V([3,0)=V3( | A, [2— |2, |D),
V([s,E)=AsA, +A A5,
V(Cs,m)=AA, +A,A%,
V(Ds,§)=A%A, +A AL .

The case for I's@I's=T'@I';@T'y® s is analogous to

that for I'y. V(I';) and V(I'y,m) are imaginary and
therefore will not be taken into account. For
rNeri=ry,

V()= |A| 2,
For I'ye I'y=T,

V(L= |A|2.

For I's@Ts=T@o e,
V(D= | Ay |2+ |2 |2,
V(Ce€)= A, | 2= | A, %,
V(Lm)=A%A, + A, AX .

The case for T(@y=T1@ @y is analogous to that
for I'y. Note that V(I') is imaginary.
3. d-wave superconductivity
d-wave pairing is spin-singlet pairing and such a state
may essentially be described by a scalar ¥(k)*:

Ak)=i6,¥(k) .
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In the case of cubic symmetry the basis of the d-wave
states contains both irreducible representations I'; and
F5 (F3@ F5): For F;,

YTsu)= (22 k=K,
1
¢(r3,u)=—ﬁ(k,§—k§);
for s,

W5, E)=V2k,k, ,
lp(rS’n)z‘/Ekzkx ’
W5, 5)=V2kk, .
The hexagonal symmetry has the following distribution:
ey for 'Y,
. 1 2 L2 g2
)=—=(2k; —k:—k;) ;
U= = 2k} =k} —k])
for T's,

W(su)=V2k, k, ,
WT5v)=V2kk, ;
for T,

' gy
UTeH)= 7

W, ) =2k k, .

(k2 —k2)

Both systems of basis functions are complete. Every d-
wave state (k) can be written as a linear combination:

$k)= 3 ML, m)@(T,m) .
I',m

From this point on, all considerations go completely
analogously to the p-wave case. The Ginzburg-Landau
expansions for the different representations are exactly
the same as before as is their behavior under the change
of symmetry.
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