
PHYSICAL REVIEW B VOLUME 36, NUMBER 10 1 OCTOBER 1987

Integrable narrow-band model with possible relevance to heavy-fermion systems
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A lattice model consisting of a single narrow band is introduced to describe some aspects of
heavy electrons. The model excludes double occupancy of the sites and electrons on nearest-

neighbor sites interact via a charge interaction and spin exchange. The model is integrable in one

dimension for some special values of the coupling constants. These cases are related to the SU(3)
invariance. The Bethe-ansatz equations are obtained and ground-state and thermodynamic prop-
erties are discussed and solved in some limiting cases.

I. INTRODUCTION

Heavy-electron metals�' have received a large
amount of attention in recent years, in particular be-
cause of their unusual low-temperature properties.
Characteristic to heavy fermions is a very large electron-
ic specific heat at low temperatures, C=yT, where y
corresponds to a very high density of states at the Fermi
level, or, equivalently, to an effective electron mass of
10 —10 times that of the free-electron mass. As a
consequence of the large density of states, these systems
typically have a large Pauli susceptibility or order anti-
ferrornagnetically. The temperature dependence of C
and 7 can be explained in terms of narrow resonant lev-
els or a narrow band with a typical width of a few meV
or less. The narrow peak in the density of states has
been attributed to a Kondo resonance ' arising from the
screening of the magnetic moment of the quasilocalized
f electrons by the conduction electrons. Heavy-fermion
behavior occurs in a variety of Ce-, U-, and Yb-based al-
loys and compounds.

The resistivity of stoichiometric heavy-fermion com-
pounds initially increases as one lowers T (which can be
attributed to the Kondo efFect), then goes through a
large maximum and shows a sharp decrease at very low
T. Both features, the existence of a maximum and the
high resistivity at the maximum, are uncommon to nor-
mal metals. The rapid decrease of p(T) at low T is
caused by a transition from incoherent to coherent
scattering of the conduction electrons by the rare-earth
(actinide) ions. '

Compounds may become antiferromagnetic or super-
conducting at low T as a consequence of the coherence
of the low-energy excitation spectrum. Anomalous su-
perconductivity has been discovered in some U com-
pounds with highly unusual properties which may be
due to triplet pairing. ' The parameters of interactions
determining the low-T phase, i.e., superconducting, mag-
netically ordered, or a Pauli paramagnet, are still to be
understood.

The systems are usually described within the frame-
work of the Kondo and Anderson lattices. Numerous
approximate treatments have been applied to these mod-
els, which have been extensively reviewed in Refs. 2, 3,
6, and 7. In particular, the l/N approaches (diagram-
matic ' and functional integral method' '

), variational

methods, ' ' and local Fermi-liquid theories' ' gave
rise to important results and contributed to a prelimi-
nary understanding of heavy-fermion compounds. In a
stoichiometric compound at low T, the Kondo reso-
nances of the difFerent rare-earth (actinide) sites superim-
pose coherently and form a narrow band at the Fermi
level of width Tz. The low-temperature properties of
the system, and in particular the coherence effects, are
governed by the low-energy excitations of this narrow
band.

Exact results, even for a simplified model which does
not have all the features of the Anderson on Kondo lat-
tices, are always useful and provide a testing ground for
approaches intended for the full problem. The condition
of exact diagonalization imposes limitations on the
choice of the Hamiltonian. First, the integrability by
means of a Bethe ansatz, i.e., the existence of an exact
solution, restricts the model to one space dimension.
The integrability requires further that in a scattering
process the momenta of the outgoing particles are the
same as those of the incoming particles. This restricts
the model to have only one bandwidth or Fermi velocity.
Second, since the Kondo resonance in a lattice consists
of a narrow band at the Fermi level and its width is a
fundamental energy scale, we describe the dynamics of
the electrons by a nearest-neighbor tight-binding hop-
ping model. A continuum model with a parabolic or
linear dispersion would not provide a natural bandwidth
parameter. Third, since f electrons are highly correlat-
ed, and, in particular, Ce compounds have only one f
electron per Ce ion, it is reasonable to exclude the multi-
ple occupancy of the sites. Fourth, since the f electrons
are spin compensated at low temperatures, in part by the
conduction electrons but possibly mainly by antiferro-
magnetic correlations among the rare-earth moments
themselves, it is necessary to assume that the scattering
is different if the two electrons involved form a singlet or
a triplet state. The model is then considerably different
from the traditional Hubbard model.

The rest of the paper is organized as follows. In Sec.
II we explicitly introduce the model, derive the two-
particle scattering matrix, obtain the conditions for the
integrability, and state the discrete Bethe-ansatz equa-
tions. In Sec. III we obtain the ground-state integral
equations for the most important case, i.e., when two
electrons in the singlet state are scattered, but they are
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not scattered if in a triplet state. Some ground-state
properties are derived in Sec. IV. The thermodynamics
of the model is obtained in Sec. V. A summary and dis-
cussion follows in Sec. VI.

II. MODEL, SCATTERING MATRIX,
AND CONDITIONS FOR INTKGRABILITY

A. The model

where c; is the annihilation operator for an electron
with- spin o. at the site i and S ~ represents the S=—,

'

spin matrices. The hopping matrix element has been set
equal to —1, such that the bandwidth is 2.

The above model is not integrable for arbitrary values
of J and V. We next derive the two-electron scattering
matrix to obtain the conditions for the integrability of
the model.

We consider electrons with spin —,
' on a one-

dimensional lattice with nearest-neighbor hopping. We
assume a large on-site Coulomb repulsion that excludes
the double-occupancy of every site. In other words each
lattice site is constrained to have either one electron
(with spin up or down) or none. Two types of interac-
tions are considered between electrons on nearest-
neighbor sites: A charge interaction independent of the
spin of strength V and a spin exchange interaction J.
The Hamiltonian is then given by

nl, n2

+a, , (n&, nz)c„c„ iO)] . (2.2)

B. Two-electron scattering matrix

Consider the linear chain described by (2.1) with only
two electrons. Let

~

0) be the empty-lattice state, i.e.,
without electrons, then the two-particle wave function
can be written in the following form:

H = —g (ciaci+ lo +ci+ lacia )

i, cr

+J ~ Cio Soo'Cio' Ci+ lo'Scr'oCi+ lo
i, cr, o. '

+ V ~ CicrCiaCi+ lo Ci+ lo'
I

i, o, o'

(2.1)

If 0.
1
——0.

2 the two terms are identical. The wave func-
tion obeys Schrodinger s equation HO =E%, giv-er la2 0' lcr2

ing rise to the following relations for the coefficients
a (n&, nz):

—a, ,(n~+ 1,nz) —a, (n& —l, nz) —a (n&, nz+1) a(n—&, nz —1)

J J
V ——a (n&, nz)+ —a~,~, (n&, nz) 5„,+~ „Ea, , (——n~, nz) . (2.3)

The solution of this recursion relation is of the form

a, (n&, nz)=C", ' exp(ik&n&+ikznz)

+C' ' exp(ik nz& +ik&n )z

with

E = —2 cosk 1
—2 cosk2,

(2.4)

(2.5)

with x'=( V/2)+ J/8 and x'=( V/2) —3J/8. If the
pair of electrons forms a singlet state, then 4'=0 and
conversely if they are in a triplet state, 4'=0. The ex-
pression (2.7) for the phases 4 is analogous to the one
for the anisotropic spin- —,

' Heisenberg chain, ' where x is
the anisotropy parameter. Taking into account the an-
tisymmetry of a fermion wave function we obtain the
following two-particle scattering matrix

(2.6a)

where 4'k'k is given by
(2.6b)

where kl and k2 are the momenta of the particles. The
coefficients C'" are not all independent but related bya lcr2

S(k, , kz) = ——,'[exp( —2i+k, „,) —exp( —2~4'„„))I
——,

' [exp( 2i %''k, k, ) +e—xp( 2i 'V„,„—, ) ]P,
(2.8)

~ ~ ~ ~

where I is the identity matrix and P permutes the spin
indices.

C. Condition for integrability

cot—'k2 —cot—'k
1t, s t, s 2 2

cot%k k
——x '

(1—x")cot—,'k &
cot —,'kz —(1+x") (2.7)

Let us now consider N electrons in the lattice ar-
ranged such that n 1 & n 2

. « n~. The wave func-
tion can then be written in the form

al a2 . -- &a opl ap2, . . . , apN 1~ 2~ . ' & Ã n loPl 2aP2 nNaPN(n n . . . n )c ct . c IO)
nl (n2 (n3 - « nN P

(2.9)
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where P= (P 1, . . . , PN ) is a permutation of the integers
1, . . . , N. There are Nf such permutations. Other ar-
rangements than n

& & nz « - nz follow from the an-
tisymmetry of the wave function with respect to the per-
mutation of two particles.

In analogy to the two-particle problem, the coefficients
in (2.9) are not all independent, but related by a scatter-
ing matrix. The condition for the applicability of
Bethe's hypothesis is that the scattering matrix can be
factorized into a product of two-particle scattering ma-
trices. The single-valuedness of the wave function is en-
sured by Yang's triangular relation, ' which is
sufficient condition for the integrability of the model,

ditional constant term to the entropy given by the num-
ber of electrons times ln2.

E. Bethe-Ansatz equations

The integrable cases (a) and (b) discussed above can
now be solved by a standard procedure. ' Impos-
ing periodic boundary conditions the problem reduces to
the simultaneous solution of N eigenvalue equations.
For N-M electrons with spin up, and M electrons with
spin down we obtain by means of a second Bethe Ansatz
the following set of coupled algebraic equations (N, is
the number of lattice sites and assumed to be even). For
case (a),

S ' '(k), k2)S ' '(k, k3)S ' '(k k }

0'2' 2
(2.10)

p) +l /2

p) —i /2

M p. —Ap+i /2

p A~ —i /2—
'=1

p )pj —
p
—l

(2.13)

The two-particle scattering matrix, (2.8), however,
does not satisfy the triangular relation but for special
values of the couplings J and V. These special cases are
as follows:

(a) x'=0, x'=+1 or equivalently V=+ —, and J ==+2,
(b) x'=0, x'=+1 or equivalently V=+ —,

' and J=+2,
and

(c}x'=x', i.e., J=O and Vis arbitrary (or J~+ m ).
Below we discuss the scattering matrices for the spe-

cial cases (a) and (b) and by imposing periodic boundary
conditions to the system we obtain the discrete Bethe-
ansatz equations. Case (c) can be mapped onto the XXZ
Heisenberg chain.

D. Two-particle scattering matrix for the integrable cases

In the special case (a), electrons forming a triplet state
are not scattered. On the other hand, if their spins are
in a singlet state the scattering depends on their crystal
momenta k& and k2. The scattering matrix (2.8) reduces
to

p] —p2+g p] —pp+g
(2.11)

pi —p2 +gS(ki, k2) = — I+ P,»+» —'
(2.12)

where + refers to the sign of x' and p= —,
' cot —,'k if

x'=+1 and p = —,
' tan —,'k if x'= —1.

In case (c) when J=0, the scattering is independent of
the spin. The model then basically reduces to the aniso-
tropic S=—,

' (XXZ) Heisenberg chain, ' where the total
number of electrons plays the role of the magnetization
and the chemical potential is the magnetic field. The
spin degree of freedom of the electrons introduces an ad-

where + refers to the sign of x' and p= —,
' cot —,'k if

x'=+1 and p =—,
' tan —,'k if x'= —1.

In the special case (b), on the other hand, electrons in
a triplet state scatter, while they do not scatter if their
spins form a singlet state. The scattering matrix for this
case is

A —p +i/2
, A —pj i /2—

For case (b),
'N

pj +1/2
pj —l /2

A —Ap+i
~ )Q ly ~ ~ ~ pMe

) A —Ap —i

pj —pr+1 ~ pj Ap l /2

, p —pI i p—, pj Ap—+i/2
j=1, . . . , N

(2.14)

A ~
—pJ+i /2

, A —pj i /2—
A —Ap+i a=i, . . . , M .

) A~ —Ap —i

Here A are rapidities related to the spin degrees of free-
dom. The total energy of the system is, in both cases,
given by

N
E= %2N+2 g

I=i PI +4
(2.15)

where the + refers to the sign of x ' or x ', respectively.
Since in a Kondo system the spins are compensated

into a singlet state, case (a), i.e., when electrons paired in
a singlet state are scattered, is the physically more
relevant situation. In the remaining sections we restrict
ourselves to derive the properties of case (a). Note that
the Bethe-ansatz equations for this case, (2.13), are close-
ly related to those of the SU(3)-invariant S=1 Heisen-
berg chain with ferromagnetic and antiferromagnetic
coupling, respectively (see Sec. VI).

III. GROUND-STATE INTEGRAL EQUATIONS

pj ——Ap+i /2 . (3.1a)

In order to obtain the ground-state properties in the
case of singlet scattering only [case (a)] we have to find
the solution to Eqs. (2.13). The sets of rapidities Ip, )

and [A I have real and complex solutions. Complex
solutions for the A corresponds to excited states and
are discussed in Sec. V. The rapidities pj may be real or
complex.

Consider (2.13) for large N, . Ifpj has a positive imag-
inary part, there exists A& such that to order exp( N,)—
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Similarly, if pj has a negative imaginary part, there ex-
ists A~ such that to order exp( —N, )

These equations are solved in Sec. IV for some situa-
tions.

p~'=A~ —i/2 . (3.1b) IV. GROUND-STATE PROPERTIES

X —2M — ME=+2¹2 g +2 Qj=l pj + 4 a=1 Aa+ 1

NS=——M.
2

(3.4)

(3.5)

The sign of the energy refers to x'=+1.
Logarithmizing Eqs. (3.3) and in the thermodynamic

limit (N, ~ac with M/N, and N/N, being fixed) we
obtain the following integral equations

=o I, (A)+o '(A)1 1

~ A+1
+— dA'o' A'1 . . . 1

7T (A —A')'+1

+—f dpp(p)
'

2

1

7T (A —p) + —,
'

(3.6)

1 z2, ——ph (p )+p(p)+ —f d A cr'(A)1

7Tp +' 77 (p —A) + —,
'

(3.7)
where p(p) and o'(A) are the distribution density func-
tions for the p and A rapidities and ph(p) and o I, (A) are
the respective hole distribution functions. The intervals
in which p and cr are nonvanishing depend on the total
number of particles, the total spin and the energy

S, /N. = -,
' f dp p(p ), (3.8)

Since the energy must be real, it follows that the set Ip~ )

consists of real pj values (unpaired charge modes) and
pairs of complex conjugated pj values (spin-paired elec-
trons). Depending on the sign of x' spin-paired elec-
trons are energetically favorable compared to unpaired
particles or vice versa.

The set Ipj } consists of N-2M real rapidities and M
pairs of complex conjugated pj-values related to the real
A by

p
—=A +i/2. (3.2)

Inserting (2.2) into (2.13) we obtain
'N

pj+i /2 ' ~ pj —A13+i /2 j= 1, . . . , N 2M-
pj —i/2 p & pj —A& —~/2

(3.3)
+ j ~ N —2M A p. +&'/2

A~ —i . ) A —p —) /2

A —Ap+iXP . , a=i, . . . , M
) A —Ap —i'

and the energy and the spin are given by

A. Filled-band solution

—(I/2) ( ~
~

G((g) = f der e
2~ — 2 cosh(co/2 )

(4.2)

The solution of this integral equation depends on the
magnetization of the system. In the absence of an exter-
nal magnetic field two solutions are of interest: the non-
magnetic and the ferromagnetic states.

If the state is nonmagnetic p(g) —=0 and the solution of
(3.6) is cr'( A)=G&( A). The energy of the system is
straightforwardly obtained, E/N, = + 2 ln2. For the fer-
romagnetic state, on the other hand, we have 0'(A):—0
and ph ( g ):—0, such that

p(g) =—1 (4.3)

In this case the spins of all the electrons are parallel and
the total energy of the system is zero.

Hence, if x'=+1 the ground state is nonmagnetic,
while if x'= —1 the ground state is the ferromagnetic
state. For x'=+1 the states with lowest energy corre-
spond to large

~

A
~

and
~ p ~

values (long-wavelength
states), such that o'(A) is nonzero only in the intervals

~

A
~

& Q and p(p) in the intervals
~ p ~

&B. o I, (A) and
pl, (p) are complementary functions. For x'= —1 we
have that states with small

~

A
~

and
~ p ~

values have
lowest energy (again long-wavelength states), such that
cr'(A) and p(p) are nonvanishing in the intervals

~

A
~

&Q and
~ p ~

&B. The interval limits are deter-
mined from the total number of particles and the magne-
tization.

B. Magnetic susceptibility (x'=+ 1)

For x'= + 1 the magnetization vanishes in the absence
of an external magnetic field. If we apply an arbitrarily
small magnetic field the integration limit B can be made
much larger than any given Q. By Fourier transforma-
tion of Eqs. (3.6) and (3.7) we obtain the following in-
tegral equation for p:

We assume that there is one electron per lattice site,
i.e., N /N, = 1. Fourier transforming (3.6) and using
(3.9) it follows that the hole-distribution function o.h(A)
vanishes identically. Equation (3.7) then becomes

pp, (g)+p(g) —f dg'p(g')G)(g —g') =Go(g), (4.1)

where

N/N, = f dp p(p)+2 f dAo'(A), (3.9) ph (k)+p(r) — f '+ f "
dC'p(k )G

& (4

E/N, =+2N/N, +2 f dp p(p)
p 2+

1+2 f dAcr'(A)
A+1 (3.10)

(4.4)

Since B »Q it is convenient to define y(g)=P(g+B),
such that
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y], (g)+y(g) —f dg'y(g')G](g —g') =Gp(/+8 )+ f dg'o h (g')Gp((+8 —g')+ f dg'y( f')6 ]($+g'+28 ),
0 —Q 0

(4.5)

where for the last term we have assumed that p(g) is an
even function. This integral equation can be solved by
iteration, by writing y =y&+y2+. . . with y& and y2
satisfying

f dky2(k)=—

ln2B
X

exp( vrB—)

2B

(4.11)

y2$($)+y2(g) f dgy2(g )G](g
0

dg'y](g')G](g+g'+28 ) (4.6b)

Here we used 8 »Q such that for g & 0

f d f'o], (g')Gp(/+8 —g')

=Gp($+8 }f dg'o h (g')exp(m. g')

and

R =1+f dg'oI, (g')exp(mg') . (4.7)—Q

In (4.6), y](g) is the leading contribution to y(g) jf the
field is small. Since G](g) falls off like I/g~ for large g,
y2(g) is the next leading correction. Higher-order con-
tributions can be obtained in a similar way. Both, (4.6a)
and (4.6b), are standard integral equations of the
Wiener-Hopf type; ' the solution fory](j) is

1 e ' "
dy Re

2m.i —~ g+(x) —~ 2m y —x io—
g (y)2 cosh—

2

(4.8)

and the leading contribution to the magnetization is
given by

f d g y] (g) = [2R /(2me )'~ ]exp( ]rB)—
+O(exp( 2mB )) . —(4.9)

Here the magnetic field is proportional to exp( nB)—
and

' i(x/2n. )

g+(x ) =g ( —x) =(2m. )
2&e

1 . xXI ——i
2 2' (4.10)

with o being a positive infinitesimal and 1 the gamma
function.

In order to solve (4.6b) we insert y](g), (4.8), into the
driving term. After some algebra we obtain to leading
order in the field

y]],(g)+y] (g) —f d j'y] (g')G] (g g') =—RGp(/+8 ),
0

(4.6a)

o t](g)+o I]], (g) =G](g)= Re ]II 1+i
2]r

I
2

1—+i
2 2

(4.15}
(4.16)o''](g)+o'']h(g)= f dg'o'p~(g'')G](g' —g') .—Q

Here f is the digamma function. To first order in Q we
obtain

o'(g)= . 1+2Q G](k»
I 0 I & Q

141 &Q

(4.17)

such that the low-field magnetization is given by
2

(2m.e )'~ 4m.B 4~B

(4.12)
Since H is proportional to exp( —m.B) we have that the
susceptibility has logarithmic corrections, in analogy to
the isotropic SU(2) Heisenberg antiferromagnet. ' The
leading-order relation between the field 0 and B will be
given at the end of Sec. V.

C. Charge fluctuations (x '= + 1 )

Since the magnetization vanishes in the absence of an
external magnetic field, the integral equation to be
solved in this case is

~' (g)+ '(g)+ —f77 oo (g —g')'+ 1

(4.13)
1 1

n (2+1
where o'(g) vanishes for 1/1 & Q and o'], (g) is the com-
plementary function. This integral equation has a simple
solution only if the band is almost half-filled or almost
empty.

If the band is almost half-filled Q is small and (4.13} is
more conveniently written as

o '(g)+o I, (g) f —dg'o I, (g')G](g —g') =G](g) .
—Q

(4.14)

This equation can now be solved by iteration by writing
o. '(g}=op(g)+o ](j)+ . , where o p(g) and n'](g)
satisfy
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and the occupation of the band is given by

N/N, =2 f dgcr'(g)=1 —2Q (4.18)

On the other hand, if the band is almost empty Q is
very large and a similar procedure as for the spin suscep-
tibility can be used. Since o'(g) is nonvanishing only for

~ g ~
& Q, we define y(g) =(T'(g+Q ), such that (assuming

that o'(g) is an even function)

y~(k)+y(k)+ —„f, dk'y f
1 1

~ (g+Q)'+I
1 1

d 'y( ')
(g+ g'+ 2Q )'+1 (4.19)

This equation is solved by iteration; we write
y(g)=y, (g)+y2(g)+, wherey, (g) andy2(g) obey

dy e
—0'Q —Ip I

x . g (y)—oo 27T y —x —l 0
(4.21)

and the leading contribution to the occupation number
is given by

2

N/N, =2 f dpi(g)= +— lnQ+ .
0

' n.Q 2 n.Q

ylh(k)+yi 0 +—f0 ( ')~+1
1 1

(4.20a)
~ (g+Q')+1

1 ~, , 1
y2$ (g) +y2(p+ —f0 (g —g')'+1

'y
1

' . 4.20b
o (g+g'+2Q)'+1

Both equations are of the Wiener-Hopf type and can
straightforwardly by solved. We obtain for y, (g)

y)(g)= . f dx e '~g+(x)
27Tl —oo

as for the fermion gas with attractive 5-function poten-
tial, solved by Lai and Takahashi, and for the j=—,

'

Anderson impurity in the U~ oo limit. The rapidities
can be classified according to (i) (N-2M') real charge ra-
pidities, which correspond to unpaired propagating elec-
trons; (ii) 2M complex charge rapidities, which corre-
spond to bound or paired electron states, of the form

p* =A'+i/2, (5.1)

where A' is a real spin rapidity, a= 1, . . . , M', (iii) M„
strings of complex spin rapidities of length n,
n =1, . . . , oo which correspond to bound spin states
and are of the form

(cc= —(n —1), —(n —3), . . . , (n —3), (n —1),
where A „ is a real parameter.

The integers M' and M„satisfy the relation

(5.2)

M'+ g nM„=M .
n=1

The magnetization and the energy are given by
00

S, =——M' —g nM„,
n=1

(5.3)

(5.4)

N —2M
E=+2N+2 g, ,

+2 g
i=1 pi +4 a=1 +a+1

(5.5)

The above rapidities are inserted into Eqs. (2.13) and
the resulting coupled equations for p&, A', and A „are
logarithmized. We de6ne the usual distribution func-
tions for the rapidities as p(p ) for the real p's, o'(A) for
the A' and cr„(A) for the A „. In the thermodynamic
limit we obtain a set of linearly coupled integral equa-
tions for the distribution functions. Introducing the cor-
responding "hole"-distribution functions and Fourier-
transforming the equations, we have, after some algebra,

+i,h(~)++

(4.22) =2 cosh —[o (co)+o 1, (co)], m & 2

Note that the leading contribution of y2(g) is of the or-
der of (I/m. Q) . The relation between Q and the Fermi
energy is obtained at the end of Sec. V. Similarly, it is
possible to obtain the number of particles for the fer-
romagnetic case, i.e., for x'= —1, if the band is nearly
empty or nearly full.

V. THERMODYNAMIC EQUATIONS

o z I (co)+p(co)=2cosh —[o)(co)+o) z(co)],

o i 1, (co)+o ), (co)+1=2cosh—[p(co)+ph(co)],

—(i/2)~CO~p r
( ) g )+ —(1/2)~rO~

~ cu —pc@

(5.6)

Below we derive the thermodynamic Bethe-ansatz
equations for case (a) (x'=+1), i.e., when electrons in a
singlet state are scattered.

A. Excitations

The excitations of the system are given by the solu-
tions of (2.13). The structure of the solutions is similar

=2 cosh —[o '(co)+cr (, (cu)],
2

where the caret denotes a Fourier transform. These
equations diff'er only by the driving terms (independent
terms) from the corresponding ones for the one-
dimensional fermion gas with attractive 5-function in-
teraction ' and the j=—,

' Anderson impurity in the
U~ ~ limit.
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B. Minimization of the free energy

The distribution functions, p, a', and o.„are actually
determined by minimizing the free-energy functional,
F=E—TS, where +TGi +in(1+e ), (5.12)

c, = 12m Go(g)+ TGo+ ln[(1+e )/(1+e ' )],
ql=+2 —A +2m G&(g)+TGoeln(1+e '

)

E/N, =+2 f dp p(p)%4 f" dAo'(A)

f ppp 2 i
oG p 2+

+2 f dAcr'(A)
oo A+1 (5.7)

ip, =TGoeln[(1+e ' )(1+e ' )],
ip„=TGoeln[(1+e " ' )(1+e "+' )], n &2

where Gi is defined by (4.2) and e denotes convolution.
Here A is the chemical potential and A'=A k2 is the
energy from the bottom and top of the band, respective-
ly. The 6eld boundary condition is given by

T is the temperature, and S is the distribution entropy,
which, e.g. , for p(p) is given by

S~ = f dp[(p+p„)ln(p+p„) —p lnp —p~inp~ ] (5 8)

The minimization must be carried out subject to the con-
straints (5.6) and the conservation of electrons and the
total spin, i.e.,

q„(g)
lim =H .

n~OG n
(5.13)

It is convenient to replace +22rGI (g) in (5.12) by
2nx'Gl(g) Diffe. rentiating (5.12) with respect to x', we
obtain from similarity with Eqs. (5.6) that

Bg„
, /(1+e " ),2' ()+

N/N, = f dp p(p)+2 f dAo'(A),

S, /N, =—,
' f dp p(p) —g n f dAa„(A) .

oG —OG

(5.9)

(5.10)

p = /(1+e' ),a~
27T

217 (3Q

(5.14)

The corresponding Lagrange multipliers are the chemi-
cal potential (Fermi-energy) and the magnetic field.

Introducing the following functions

and similarly the complementary functions.
The free energy of the system is given by

F= —%(0)—2A T2 . (5.15)
pi, /p=exp(s/T), o I, /cr'=exp(%'/T),

~n, h /~n =exp(V'
(5.11)

we obtain, if we consider o „ I, , p, and o & as independent
functions,

If, on the other hand, we consider o.„,p, and o' as in-
dependent functions and eliminate all the "hole"-
distribution functions by means of (5.6), we obtain
another set of integral equations, which is equivalent to
(5.12),

= +2+2
g'+-,'

1

———A+T +in(1—+e ~
) —T g — +in(1+e " ),H 1 r qgT

"
1 nl2

2 m' f2+' , ~ g'+(n/2)'
1

4= +4+2 —2A +T +in(1+—e ' )+T sin(1+—e
1 1 2 1 1 —0/T

$2+1
(5.16)

ip„=nH —Tln(l+e " )+T el—(1n+e ' )+T g e „(g)el (1n+e~ g'+(nl2)' m =1

where

e (g)= f e '& coth2~' "
2

X e [l~l/'2) lm —nl —e leal/2)(m+n)

I

in the first two equations of (5.16) for / =1 and 2, respec-
tively, and differentiating with respect to x, we obtain,
after some algebra and making use of (5.14), the original
set of relations (5.6).

An alternative expression for the free energy is

Rewriting

I/2, I /2

g + (I /2)' g'+ (I /2)'

(5.17) F/N, = ——f dg ln(1+e '
)

7T oG f2+ i
4

——f dg ln(1+e )
7T —oG $2+
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The equivalence between (5.15) and (5.18) is straightfor-
wardly shown via the second equation of (5.16).

C. Special limits

In this subsection we discuss the high temperature and
T~O limits of the thermodynamic equations. If the
temperature is much larger than the bandwidth, i.e.,
T »2, we can neglect the independent terms in (5.12).
In the absence of driving terms the potentials c, +, and
y„do not depend on g and (5.23) can be reduced to an
algebraic system of equations, similar to the one dis-
cussed by Takakashi for the fermion gas with attrac-
tive 6-function potential,

e2E/T (1+e+/T)/(1+e+i )

2(%+ A )/T
( 1+ —E/T)(1+e 0/T)

=(1+ '")(1+ '
)

e " =(1+e " ' )(1+e " '
) n)2

The general solution is given by

I'

nH H1+e " = sinh +p /sinh
2T

2

(5.19)

e =e . 1+exp9 K/T H A

2T T
H1+exp 2T T

1/2

and the free energy is the one corresponding to three de-
grees of freedom per site

forming back

e+(g)+ e (g) — f + f dg's (g')G i (g g')—

F/N, = —T ln e" 2 cosh +1
2T

(5.20)
= f dg++(g')Go(g —g')+2~Go(g) ——.—Q 2

(5.22)

Let us now analyze the thermodynamic equations in
the limit T~O. From the last two equations it follows
that g„&0 for n =1, . . . , oo, such that o„:—0 for all n

as T~O. The functions c and %', on the other hand,
change sign as a function of g. As T~O the first two
equations of (5.16) yield

Equation (5.22) is a linear integral equation for E. It is
convenient to separate c.—=c.,—+cb with

E+(g)+e, (g) —f dg'E, (g')Gi(g —g')

d '++ ' G, —'+2+G,

s( g') = +2+ 2x'
$2+ 1

H———A
2

b+(g)+Eb (g) —f d g'eb (g')Gi(g —g') = ——
oo 2

j.

f dg', 4' (g'),
(g—g')2+ '

q/(g) = + 4+2x' —2/I
1

f2 +
——f" dg', , +-(g')

7r —~ (g —g')2+ 1

1

rr —~ (g —g')2+ '

(5.21)

Comparing with (4.4) we have that s+(g)=2vrpb(g) and
E, (g')=27rp(g), as well as ql+(g)=2mob(g). The pro-
cedure to obtain cb is to rewrite the integral equation in
the Wiener-Hopf from and solve it iteratively for large
8, in analogy to Sec. IV B. To leading order in the field
we obtain

—I /CO

Eb (g+B )= —i — f . [g+(co)] ' . (523)+2 —oo 277 CO+ l 0

The condition c,(B)=0 determines B. Using that

where +=4++4 and c.=c.++a with %'+, c+ &0,
and 4, c, & 0. Differentiating with respect to x and
using (5.14) we recover the ground-state equations.

D. Integration limits B (H) and Q( A).

E (B)= lim E (g+B)= —lim ioie. (oi)=0
g —++0 Q7~ oo

we obtain

8 = ——ln H /2m. R
1 21T

7T e
(5.24)

Equations (5.21) can be used to determine the integra-
tion limits B (H) and Q ( A) introduced in Sec. IV A. In
(4.12) we expressed the magnetization for small fields as
a function of B and in (4.22) the number of particles as a
function of Q for x'=+ 1.

We Fourier transform (5.21) and express 4 as a
function of c, and 4+ in the second equation and insert
it into the first equation. We obtain after Fourier trans- =2ire I 4m( A +2)g(co (5.25)

Using (5.24) in (4.12) the susceptibility is straightfor-
wardly obtained.

Similarly, Q(A) can be obtained. In the absence of a
field c. =0, such that

4 +(o~)++ (oi)( I+e '"' )
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Q =(2+2) (5.26)

Hence 3 )—2, i.e., the Fermi level must be above the
bottom of the band, and Q diverges with a square root
singularity as expected for a one-dimensional system.

VI. CONCLUDING REMARKS

We have introduced a narrow-band model which in-
cludes some of the main features of heavy-fermion com-
pounds. We considered a one-dimensional lattice of
spin- —,

' electrons hopping between nearest-neighbor sites.
Double occupancy of every site has been excluded and
nearest-neighbor electrons interact via a charge interac-
tion and a spin exchange. The integrability of the model
imposes restrictions on the dimensionality and the in-
teraction parameters. We obtain the Bethe-ansatz solu-
tion for the integrable cases. Of particular interest is the
case of singlet scattering, since, in heavy-fermion sys-
tems, the f-electron spins are compensated in part by
the conduction electrons and in part by antiferromagnet-

We assume the band is almost empty (Q is very large)
and write 4= 'P I ++2 with

)+(co)+4 I (to)(1+e I ) =2me

42+(to)+qt z (co)(1+e I ) 4m(3+2)g(co)

In comparison with (4.13) we have that 'P& (g) =2~o'(g).
The integral equation for 0'2 is put into the Wiener-Hopf
form and solved iteratively. Q is then obtained from
qt(Q) =0

ic spin fluctuations. We treated this case explicitly, ob-
tained the ground-state and thermodynamic integral
equations, and solved them for several special limits.

Although the model for general parameters seems to
be nonintegrable and approximate methods have to be
employed to solve it, the exact solution of special cases is
of interest and provides an important testing ground for
the approximations used. The model can be generalized
to more internal degrees of freedom of the electrons,
e.g. , N components. These components may arise from
combined spin and orbital degrees of freedom of the
electrons. The model seems to be integrable for arbi-
trary N under similarly restrictive conditions as for
N=2. The I/N expansions applied previously to the
Kondo and Anderson lattices, as well as to the Hubbard
model, are adequate approximation schemes to solve the
model for general parameters.

The integrable cases of our model can be mapped onto
the multicomponent quantum lattice gas introduced by
Sutherland. ' Each lattice site can be in three possible
states, namely empty or occupied with an electron with
spin up or down. The problem can then be rewritten in
terms of spin operators corresponding to S=1. Our four
cases x'=+1 with x'=0 and x'=+1 with x'=0 corre-
spond then to the examples discussed in Ref. 31. The
logarithmic dependences obtained for the magnetization
and the occupation number in Sec. IV are possibly a
consequence of the SU(3) invariance of the model. If the
coupling is weaker, e.g. ,

~

x'
~
(1, we expect an analytic

behavior, while if
~

x'
i ) 1, we expect an exponential ac-

tivation in analogy to the anisotropic Heisenberg chain.
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