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Role of final-state interactions in the inelastic structure function of quantum liquids
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We critically review the current status of models for the final state interaction in the inelastic
structure function of quantum liquids close to asymptotic conditions. We find that the approxima-
tions underlying the Stringari model are too drastic and cause, as a rule, serious discrepancies. We
show that the series of Sears, though formally correct, is not always rapidly convergent.

I. INTRODUCTION

Inclusive scattering is a subject, which in spite of its
long history, continues to attract interest in various
branches of physics. For instance, inclusive scattering of
electrons from atomic nuclei' invokes intriguing ques-
tions regarding the role of subnucleonic degrees of free-
dom, possibly needed in the description of the data. In
condensed-matter physics there is a body of data which
has not yet been analyzed in a satisfactory manner, and
some crucial questions still remain open.

The property of matter measured in inclusive scatter-
ing is the (inelastic) structure function S(q, co), a func-
tion of center-of-mass mornenturn and energy transfer q
and co. Its definition

CT

S(q, co) =

=(q/m )fn(p)5(co+E(p) —E(p+q))dp

=2mJn(p')p dp .
l~l

The structure function is then simply related to the
(lowest-order) scaling function Fo(y) in terms of some
scaling variable y. Here we chose the so-called West
variable, y~ (denoted as y, unless specifically needed),

mco3'=—
2 q

(3)

If valid, Eqs. (1) and (2) permit extraction of the single-
particle momentum distribution n (p) from data.

In the asymptotic limit only the kinematics of the
struck particle matters; its final-state interaction (FSI)

relates it to the inclusive cross section of a weakly in-
teracting (scalar) probe and the elementary diff'erential
cross section. A calculation of S(q, co) requires in gen-
eral a realistic solution of the underlying many-body
problem. However, with increasing momentum transfer
q asymptotic conditions may prevail, in which case [m is
the mass of a particle, E(p) =p /2m; fi=c =kz ——1]

(q/m)S(q, co) ~ Fo(y)

with the medium is negligible. However, in actual situa-
tions one frequently deals with moderate, but non-
negligible FSI s. These are sometimes displayed by writ-
ing

S(q, co) =S'(q, co)+S'(q, co) . (4)

Here S' and S' are parts, respectively, even and odd in
co —co, with ~, the position of the quasielastic peak
(QEP), where S is maximal. ' For the asymptotic form
(2) and the choice of y =y~, Eq. (3), coO =q /2m is the
free-particle recoil energy. A nonvanishing S' is then
taken as proof for the existence of FSI's. A theoretical
study of the role of FSI's is not only needed to reach an
understanding of the data, but also to enable the isola-
tion of Fo(y), which contains the information on the
momentum distribution n(p). Several model and ap-
proximations have been proposed in the past. " The
present paper is devoted to a critical study of two of
them ' '

In Sec. II we study the series of Sears and the model
of Stringari, and confront these with data in Sec. III. In
Sec. IV we remark on consequences of the use of alterna-
tive scaling variables. Conclusions and an outlook are
summarized in Sec. V.

II. APPROACH TO PERFECT SCALING.

In the following we shall continue to use the West
scaling parameter. Assuming interparticle forces
V(r; —rj ) to be nonsingular, the structure function
S(q, co) may be expanded' (see, for instance, Ref. 12),

n

S(q, co)= g — F„(y) . (5)
n=O

F„(y) in (5) are successive scaling functions, of which
Fp(y ) [Eq. (2)] is asymptotically the dominant one.
Below we focus mainly on F, (y), which governs the ap-
proach to perfect scaling, if q is large but not asymptot-
ic. Although formal expressions for S(q, co) may be
given, ' it appears that manageable forms are complicat-
ed, even for the leading correction term F|(y). We start
with an expression for F& which can be derived from
Rosenfelder's general formula for S (q, co) (Ref. 10),
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T

F)(y)= f ds e " ge " g f do V(rk —r( —oq) —sV(rk —r() (6a)

f" ds e "«ff drdr'p' '(r —sq, r';r, r') f do V(r —r' —oq) —sV(r —r')
2 IT (X) 0

(6b)

p' ' (12,1'2') in Eq. (6b) is an element of the two-particle
density matrix. Except for a study of inclusive electron
scattering' on ' C and exact evaluations of F, (y) for a
particle bound in various potentials, ' we do not know of
any other application of Eqs. (6).

We now discuss a review by Sears, ' who greatly ex-
panded and summarized an approach initiated by Plac-
zek' in his paper on neutron scattering on liquids and
solids. Sears writes S as a series in derivatives of Fo(y),

(q/m)S(q, co)= 1+ g ( —1)"A„(q)d»" Fo(y) . (7)
n =3

Except for Fo itself, no other term F„stands out in (7),
nor do we know of systematic expansions of A„(q) in
powers of q ', eventually generating the series (5). In
the expectation that (7) converges rapidly, a few A„, or
some parts of them, have been computed in the past.
Thus (e.g. , Refs. 17 and 12),

I

with identical & & brackets in Eqs. (6a) and (10). After
partial integration, Eq. (10) becomes

n —1 n

m =1

X(p*,k
)" 'Xd i V(

l
r„rl

l ))
— ((()

k 1~k

Notice in particular the presence of derivative operators
in (11). This implies that A„ for n & 5 contains quantum
fluctuations, or diff''erently formulated, requires for its
calculation knowledge of the nondiagonal two-body den-
sity matrix of the system [cf. Eq. (6b)]. Reference 12
summarizes the algorithm linking M„"' to A„and, in
particular (b, ' 'V„:—[d„—(4/r)d„]V(p)),

a, (q) = [&a")v &+5&(a,'v)p, '&
600 q

—,', &a'v&,
T 2

A4(q)= ——'&VV VV& .72

--;«v & & p.'&]+o(q -')

—&a("v&+o(q-') .
600 9'

(12a)

(12b)

Unfortunately, not only As, but all A„(q) of odd order
n contribute to O(q '), e.g., '

~, (q) = —,
' (,.—-,'& a"'v& &p,'&)+o(q-') .

We are not aware of a previous determination of a 54 in
(9) and with a convergence test for F)(y) in Eq. (5) in
mind we need that coeKcient. It is then convenient to
apply the moment method' ' not for the full S(q, co),
but for F)(y). Using the representation (6a) with q=z,
one derives

M„'"=— y "F& y dy

=(i /2m)f dy y."f e'»'&

=i"+' f ds d,"[6(s)]& (10)

Equation (12b) holds if quantum fluctuations are small,
which, when neglected, cause a cancellation of the last
two terms in the square brackets of (12a). As a result,

F, (y)=( —,', &b, ' 'V&+,~&A, ' 'V&d»+ )d»FO(y) .

(13)

n(p)=n( )e0', &K&= 3 2

4 po (14)

which leads by means of Eq. (13) to (z =y /po)

The terms left out in (13) contain higher-order derivative
terms, quantum fiuctuation corrections, or combinations
of the two. Assuming a Gaussian momentum distribu-
tion (&K & is the average kinetic energy), '

g(4) VF)(y)= &6 'V&z (3—2z ) — (15—20z +4z )+ e (15)

F)(y)-=&~"'v&
18pp

(16)

A measure for convergence of the series (15) will be the

Although the various terms in (15) have diff'erent z
dependence, it will be useful for the following to define
&4' '(V) &,(r such that

ratio

15—20z +4z
r) (y) =p)

3 —2z2

&
a(4) v&

2
&

g(2)v&

(17)
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which varies with y, or may be taken for some average
&X'" & = fF(3 b''"4. If

i
ri

i
&1

rz(y, q) =pz(q}z(3 —2z },
m

p2(e)=
9q p O3

(18)

will be a measure for the importance of FSI's. Again
one may consider r2((y ),q) with (y ) as above. Its
value comes close to an estimate for the same given by
Sears. '

Finally, if the series (5) can be terminated after two
terms, one may define a new, V-dependent scaling vari-
able, such that (q/m)S(q, co)-FO(y ). y and the associat-
ed shi ft 5MQEP are13 16

y =y+(m /q )F, (p)/Fo(p),

5coO =F
& (y ) /Fo (y) = ( b, ' ' V ),tr/8m (K ), (19)

S (q, co)~f n(p)5(co +so—(U ) —E(p+q))dp . (20)

with the last relation resulting from Eqs. (2), (14), and
(16}.

We now discuss an approximation which appears to
circumvent altogether the many-body aspects and corn-
plications inherent in F&(y). ' Stringari suggests that a
realistic S(q, co) emerges if in Eq. (2) the energy of the
struck particle, i.e., a function E (p), is replaced by an as-
sumed constant difference of single-particle binding and
average potential energy Eo —(U ) (cf. also Ref. 9). Thus,

Equations (24a) and (24b) are Stringari's expressions for
F, , when ( K ),fr & ( K ) and (K ),s ——( K ), respectively,
while (25) results if the distribution (14) is used in Eq.
(24b). The associated expression for the shift in the
QEP, Eq. (19), is seen to be simply

gs QEP (K ) (19')

(b.' 'V), tr
——8m((K),g) (26}

Such a relation does not appear supported by any
theory.

(3) Both Eqs. (16) and (25) have (z&0) zeros and ex-
trema zM at

ZM =—
1. /2

3+g 1 /2

2

(27)

At the extrema closest to z=O, Stringari's model and
Eq. (16) predict, for p—:

~
F&(y)

~

/Fo(0),

It is of interest to compare Eqs. (15}, (16), and (25),
which, we recall, hold for a Gaussian single-particle
momentum distribution.

(1) For a Gaussian n (p), Eq. (16) and Stringari's ap-
proximation produce exactly the same y(z) variation of
F~(y).

(2) Equations (24b) and (25) depend only on po (or
(K)), whereas (16) contains, in addition, a dynamical
quantity like ( b' 'V),z. Equivalence demands

Next, Stringari imposes on the so-constructed S (q, co)

the sum rule

Z2

p =(m/q)((K), tr/3m)' 'zM(3 —2zM)e (28a)

S q, co codco=q 2m, (21)
—Z2

p =-,'(m /q)( ( 4"'V) dr/p, ')z~(3 —2zM )e (28b)

(q/ )Sm(q, co)=2m f n (p)p dp,
S(

where

(22)

which leads to a determination of Ep —(v ) - (K )
Stringari considers (K ),fr as an adjustable parameter.
For use below we shall continue to do so, although the
sum rule (21) clearly demands ( K ),tr ——(K ) . Equation
(20) then becomes

The two expressions become identical again if Eq. (26)
holds. However, if po=(4m(K)/3)'~~ is kept fixed, p
in Eq. (28a) varies only like (K),'z~, and not much
stronger like ( ( K ),z), as (26) suggests.

In closing this section we remark that without a well-
founded derivation, the underlying assumptions leading
to Eqs. (24a) and (24b) seem to be too simplistic. In par-
ticular, the invoked sum rule is hardly a constraint on
dynamics: the asymptotic limit (2), lacking any FSI's,
also satisfies (21).

y = —q+[2m(co+(K ),fr)]' (23)

F~(y)=2mn(y)ym (K ),s (1—2y /m (,K ),tr)
=2nn(y)(p 04/)z(3 —2z )

=2mn (0)(p 0/4)z(3 —2z )e

(24a)

(24b)

(25)

Equations (22} and (23) permit a series expansion (5), re-
sulting in

III. COMPARISON WITH DATA

We now reach a confrontation with data for which we
chose He at T =1.2 K, q =10 A ' (Ref. 5) and Ne at
T =26.9 K, 9.5) q (A ') )5. 5 (Ref. 6). The former are
in a quantum regime close to T-O, while the latter data
are for a quantum liquid close to its classical limit.
Table I contains experimental information on, and input

TABLE I. Kinematical data on the systems investigated. The last two columns give parameters for
the Lennard-Jones potential (Refs. 23 and 6).

4He

Ne

T (K)

1.2
26.9

po (A -')

1.285
5.17

(K) «)
15.0
48.2

q (A ')

10
7.5

m/q (10')

1.88
1.25

o. (A)

2.556
2.75

c (K)

10.22
35.6
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2
Tea 1 0
T 12 T

e~=(h' 'V) /3m .

1 0
240 T

(29)

Using Eq. (26), the value entered in column 8 results.
Columns 9 and 10 give the ratio of observed and predict-
ed positions of

~
zo j (z&0) and extrema of

( qm/) S( qco) =(m q/)F, (y) .

Finally, the last two columns are the convergence pa-
rameters p&,p2, Eqs. (17),(18), for the series (13) and (7).

We now discuss the results in somewhat greater detail.
Stringari focussed on the He data for fixed q=10

A ', which are shown in Fig. 1. For these (cf. Table I),
qcr &&I, and also from the magnitude of p2 (Table II)

for, these liquids. The second and third columns give
po, ' the parameter in a Gaussian fit (14) to the momen-
tum distribution n (p), ' ' and the corresponding (K ).
[Compare also an accurate theoretical result
(E )'"""=14.77 K, derived without the use of (14). ]

In Table II we assembled calculated results. Columns
2—4 contains values for ( V), (5' 'V), and (b, V). For
He we used the Aziz He-He potential considered to give

the best agreement with data, as well as a pair distribu-
tion function g (r) for the same V, given by Kalos
et a/. For later purposes we also report results for a
Lennard-Jones potential, employing in a not entirely
consistent manner the same g (r). For Ne we used only
a Lennard-Jones potential and results derivable from
Verlet's calculation of g (r) for the conditions:
po =0.75 and T=30.6 K (p is the number density), as
close as possible to the actual ones. Next we assembled
information on (IC ),ff. In column 5 we entered the
equivalent (E),ff, which follows from the correspon-
dence, Eq. (26), if F&(y) were represented by Eq. (16).
Columns 6 and 7 contain the same information, extract-
ed from the shift 5coO, Eq. (19), and the ratio )M, Eqs.
(28). To these sources, one may for Ne add a third
one. ' With T,ff ,'(K) =——32—.1 K and thus close to
T=26.9 K, one may utilize a relation, valid for a quan-
tum fluid close to its classical limit,

one expects FSI's to be small. Consequently S(q, co)
ought to be well represented by the first two terms in Eq.
(5). The parts S" are separated on the basis that the
QEP peak corresponds to co~ =q /2m, as is the case
for the West representation (see, however, Sec. IV).
Stringari correctly emphasizes that the shape of
(q/m)S'=(m/q)F& follows exclusively from a Gaussian
n (p) (see Fig. 1). The quantities which provide the real
test are thus the shift 5co [Eq. (19)] and the ratio p [Eq.
(28a)]. From columns 5 and 6 in Table II one finds, re-
spectively, (K ),ff- 13—16 K, and a range (E ),ff- 16
—36 K, compatible with the scatter of data. The value
( K ) ff 14 K —(K )'" ' leading to the dashed line in
Fig. 1 is indeed compatible with all data and seems to
support the model.

Next we discuss the series for F&(y). The large value
of p& shows that the series (13) is not likely to converge
rapidly, in spite of a relatively small pz.

Taking only the first term in (15), the equivalent
( K ) ff—23. 1 K from Eq. (26) is larger than Stringari's
value —14 K and, consequently, the prediction (dashed-
dotted line in Fig. 1) overshoots the data for S'. Notice
that the latter (E ),ff value lies within the range entered
in column 6: the remark following Eq. (28) explains the
apparent discrepancy. Of course, with a large p2 there is
no way to reach a conclusion, except that ( b,"V) causes
(5' 'V),ff & ( b' 'V) [cf. Eq. (16)].

The Ne data have not been analyzed by Stringari and
we shall do so for those with fixed q=7. 5 A '. All
three sources, (23), (28), and (29), give (K ),ff-25 —27 K,
about half the value (K ) =48.2 K (Table I), and thus in
clear disagreement with Stringari s prediction (Fig. 2).
The relatively small value for p& (due to large po or
(E )) this time enables a calculation of correction terms
in the series (13) for F&(y). These again lead to a reduc-
tion (5' 'V),ff& (b, V) in line with the extracted (I(. ),ff
values. Predictions using Eq. (15) are given as long-
dashed curves in Fig. 2 and are seen to lead to too large
a reduction for S' (see, however, Sec. V below).

IV. ALTERNATIVE SCALING VARIABLES

In the developments above we used the West scaling
variable (3), which is only a natural choice, if a Fermi

TABLE II. For the Aziz (Ref. 24) and Lennard-Jones potentials (Refs. 6 and 23) the columns 1 —4 contain calculated values for
( V), (h'2'V), and (b, '4'V), as well as (K )' from Eq. (26). In the next three columns are entered extracted (K );P" from experi-
mental values of p=

~
F&(y)

~

/Fo(0) [Eqs. (28)], the shift in the QEP peak [Eq. (19)], and T,z/T [Eq. (29)]. The last columns give
positions of zeros and extrema of F& [Eq. (27)] and the convergence measures p&,p2 [Eqs. (17) and (18)].

Potential

Aziz

LJ

(K)

—21.58

—20.48

(KA )

352.3

292.3

(KA )

8447

12 204

(K)

23.1

21.0
16—36

( g )exit

QEP

He

13-16

expt
ZQ

theor
ZQ

0.97

expt
ZM

theor
ZM

1.12

Pl

1.74

pz

0.152

LJ 3081 9697 30.5 25.3
Ne

26.5 27.0 0.93 0.84 0.141 0.138
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2
LO

O

He

yo ———q+[2m (co+so)]' (32)

y;=0, is clearly dependent on the choice of the scaling
variable. This immediately reflects on the decomposition
(4) of S(q, co) as well as on all parameters discussed: the
positions zo and z~, the shift 6co, and the ratio p
[Eqs. (27), (19), and (28)].

We illustrate our remarks for the choice y;=yo, a
scaling variable emerging in an impulse approximation
for S (Eo is an average separation energy),

3
CT

(f)

0
6 +~cPd2

y(~')
-3.0 —I.O 0 1.0 2.0 3.0

I I I I I & I I I I I I

I I I I I I z- 2.0 —I.O 0 IO 20
FIG. 1. Separated S'(q, cu) and S'(q, co) for He at T=1.2 K

and q = 10 A '. Short-dashed curve is the Stringari fit (25)
(K ) ff 14 K. Long-dashed —dotted curve corresponds to
form (16).

-2.0

gas is used as a lowest-order description for fermions in
interaction.

Other scaling variables, y; =y;(q, co), have been used in
the past (see, for instance, Refs. 1 and 11). All satisfy

Its relativistic analog has frequently been used in the
analysis of inclusive electron scattering on nuclei' which
are always in their ground state. This is not the case for
quantum liquids, but we shall assume that for the data
He at T=1.2 K the use of yo makes sense.

Using
~

e
~

=6.96 K (Ref. 22) one shows that
Fo(yo)/Fo(yw) grows for increasing ~y ~, and reaches
-2 for yo-2 A '. Since n (p) is extracted from
(q/m)S'-Fo, components of n (p) with p ~ 1 A ' will

be afFected. Without entering here questions as to a pre-
ferred y; (see Ref. 11), one is at least warned against in-
discriminate use of quantities derived from one selected
scaling variable y.

V. CONCLUSIONS

y; —yw=(~ /q )r, (y, )+0(q ), (30) A. Stringari model

and the asymptotic behavior of S remains given by (2),
irrespective of the choice of y;. ' Using (30), consider
now the series (5),

(q/m)S (q, co) =Fo(yw )+ (m /q)F i (yw )+O(q

=Fo(y;)+(rn/q)FI'(y;)+&(q '),
(31)

F'i(y ) =F i (y )+)';(y;)Fo(y;) .

The position of the quasielastic peak, co~, given by

As shown, the model appears to be in disagreement
with the Ne data and the same has been observed in
studies of F& for exactly solvable potential models. '

The matter is serious, since the expressions (24) and (25)
for F~ are "universal, " without any room for amend-
ments. One then wonders whether the initial success for
He at T=1.2 K is not a numerical coincidence. It

seems that, if at all possible, one ought to establish clear
limits of applicability without which there is no basis for
the use of the Stringari model in general. '

B. The Sears series

Pp

O

0

—IO 5 0 5 IO
(j,I) l5

I I I

1 I I I I- 2.0 —I.O 0 IO 20 z 30
FICx. 2. Same for Ne (T =26.9 K, q=7. 5 A '). Solid lines

correspond to smoothed data (Ref. 6). Long-dashed curve cor-
responds to Eq. (15).

Contrary to the Stringari model the Sears series is for-
mally correct. It is the evaluation in practice which
meets with difhculties.

(i) A calculation of F~(y) requires derivatives of in-

creasing order of V(r) and Fo(y). Even if one trusts the
basic functions, derivatives of ever higher order clearly
incur corresponding greater inaccuracies. A striking ex-
ample is provided by the growing disparities in ( V),
(6' 'V), and (b, ' 'V) for the two He-He interactions
considered, and displayed in Table II. We have ob-
served similar sensitivities if for He a more accurate
n (p) than (14) is used.

(ii) The uncertain size of the quantum corrections,
present in (12), and simply ignored in Eq. (15), may well
be responsible in part for the excessively large p& for
4He.

All diKculties may be traced to the exact expressions
(6) which clearly demand the evaluation of a nondiago-
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nal two-particle density matrix. The latter embodies the
required dynamics and quantum correlations, which the
Stringari model avoids completely, and the low-order
terms of the Sears series, in part. It may well be time to
address Eq. (6) directly.

Rote added in proof. We have recently become aware
of work by H. A. Gersch and co-workers, who —15
years ago —derived Eq. (6b) above [Phys. Rev. A 5, 1547
(1972), Eq. (31)].
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