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Variational many-body theory is employed to study ground-state properties of hypothetical
positron-electron plasmas. We make use of the multicomponent Fermi hypernetted-chain method
to calculate the energy and pair-correlation functions of this system. Optimization of the trial
wave function is performed through solving a set of approximate Euler-Lagrange equations for the
pair distribution functions. Electron densities are chosen to be in the metallic range, and several
concentrations of positrons are considered. At fifty-fifty concentration this system represents an
idealized model of the electron-hole liquid and at the limit of zero concentration we have a single
positron impurity in an electron gas. Results of this work support earlier theoretical predictions
for the model electron-hole liquid and are in good agreement with available experimental evidence
for both the electron-hole liquid and the single positron impurity.

I. INTRODUCTION

Ground-state properties of a variety of quantum fluids
have been studied by means of variational many-body
theory. Systems of interest range from the electron gas'
to high-density helium liquids and nuclear matter. ' Bo-
son and fermion fluids including binary mixtures,
mostly homogeneous infinite matter, but recently inho-
mogeneous surfaces ' have also been investigated. A
common factor in many of these systems is a strong
two-body interaction which requires special treatment if
perturbation theory is applied. Selected graphical con-
tributions have to be summed to infinite order. Much of
the success of the variational method is based on the fact
that it is capable of handling simultaneously both strong
short-range and long-range correlations between two
particles in the medium. In terms of perturbation
theory, this means that both ladder- and ring-diagram
contributions are incorporated in the variational wave
function, at least in some sensible approximation. This
is achieved by employing hypernet ted-chain integral-
equation techniques and Euler-Lagrange equations to op-
tirnize the trial wave function and to calculate the ener-

gy and correlation functions of the system under con-
sideration.

In this work we present the Fermi hypernetted-chain
(FHNC) method for multicomponent fluids and derive a
set of approximate Euler-Lagrange (EL) equations for
the partial pair distribution (pair-correlation) functions
of such systems. Then we apply these techniques to
compute ground-state quantities for a hypothetical
electron-positron mixture. We consider the metallic
range of electron densities and several concentrations of
positrons. At 50% concentration this two-component
plasma represents an idealized model' for the electron-
hole liquid found in some semiconductors. At other
concentrations of positrons, the energies and pair-
correlation functions of this system may be used to fabri-

cate the energy functional for two-component density-
functional theory. " Finally, in the limit of zero concen-
tration we calculate the energy and the annihilation rate
of a positron impurity in the electron gas.

The plan of the paper is following. In Sec. II we
present the multicomponent FHNC equations in the
form suitable for later use in Sec. III, where EL equa-
tions for partial pair-correlation functions are derived.
The special case of an impurity particle in the electron
fluid is treated in Sec. IV and, finally, Sec. V is devoted
to results and discussion.

II. MULTICOMPONKNT FERMI
HYPERNETTED-CHAIN EQUATIONS

In this section we present the FHNC equations for
homogeneous many-component liquids and use them to
obtain a simple expression for the variational ground-
state energy. We consider a model of n interpenetrating
fluids, each of which consists of N (a=1,2, . . . , n)
particles in a common volume V, at zero temperature,
such that all the partial densities p =X /V remain con-
stant as N and V go to infinity. The ground-state wave
function for such a multicomponent system is approxi-
mated by a variational trial function of standard form

a, P=1
a&P

a=1

where i =1, . . . , N, j=1, . . . , Np for a&P and

Here each P is the many-body wave function of N
noninteracting particles of species a, i.e., a Slater deter-
minant of single-particle states for fermions and a con-
stant for bosons. Pairwise correlations are built into the
many-body wave function through

+ap = g fap (ral' rpj' )
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I"
p ——N'p+X'p . (4)

A nodal diagram is such that it can be cut into two
disconnected pieces by removing one internal point
(node). Hence they may be summed by solving convolu-
tion integral equations. In homogeneous systems these
convolutions can be conveniently expressed as products
in momentum space. Therefore we introduce the dimen-
sionless Fourier transform defined as

X p(k)=(p~p)' J dre'"'X p(r) . (5)

Now, a simple rule is followed in writing down the con-
volution equations. Namely, each N p is calculated as a
sum of all possible products of I p and X p which are
allowed by the graphical rules of the FHNC expansion.
These rules say, for example, that exchange loops in dia-
grarns cannot connect different types of particles and
further that those loops must not overlap. This implies
that a convolution term like I "&X&p contributes to N"p,
but I "zX&& is not allowed. In the many-component case
it is obviously most economical to make use of matrix
notation in writing down all these integral equations for
every N'p. Hence, in what follows, we use N' without
subscripts to denote the matrix whose matrix elements
are N'p, and similarly for I'p and X' p. Then the muI-
ticomponent FHNC convolutions can be written as a set
of matrix equations

Ndd(k) I ddXdd+ I ddXed+ I deXdd

Nde(k) I ddXde+I ddXee+I deXde

Ned(l ) I edXdd+ I edXed+ I eeXdd

(6a)

(6b)

(6c)

i =1, . . . , N —1, j =2, . . . , N for a=p, such that
each pair of particles appears only once in this product.
In the case of a two-component fiuid, for example, we
have two Slater determinants (which are known) and
three correlation factors f», f,z, and f22 which have to
be determined by optimizing the energy of the system.
The FHNC integral equations allow us to calculate
pair-correlation functions g p and energy corresponding
to the wave function (1), if the f p are known. The
graphical expansion leading to the FHNC integral equa-
tions will not be discussed here; we refer to original
works' ' and review articles' ' for background rnateri-
al in this subject and detailed derivation of those equa-
tions. In the following, only a brief review of the FHNC
theory is given, while the equations are presented in the
form suitable for multicomponent systems.

Extension of the FHNC method to many-component
systems is straightforward. As in the one-component
case, each pair distribution function g p is decomposed
into partial contributions

g p(r]p) = I+ I p(r]2)+ I p(ri2)

+ r'.dp(r»)+ r:p(r, 2),
where each I'&2 represents certain subclasses of diagrams
labeled by superscript i (i =dd, de, ed, ee). The subscripts
aP=11, 12,22, . . . refer to component species a and P.
Every I 'p is further decomposed into sums of nodal
(N' p ) and non-nodal or direct (X' p ) diagrams,

Nee(k) I edXde+ I edXee+I eeXde

N"(k) =(I "—L)X"
(6d)

(6e)

X p(r, ~)=I p
—1 Np, —dd dd dd

X~'p(ri2) = I ~pN~p,

X"p(r, )= r"~"p+(I+r p)

X [N'pN p v(N"p L—p) ], —

X"p(r, )=I p(N"p Lp) . —

(Sa)

(Sb)

(8c)

(Sd)

Here again we suppressed the argument r&2 on the rhs of
Eqs. (Sa)—(8d). For each X'p the rhs represents the
most general diagram constructed of a single link and
chains of it, compatible with graphical rules, such that it
has two external points (r| and r2) and no internal
nodes. (We ignore so-called elementary diagrams, except
the single link. ) For example, one may exponentiate dd-
type chains, but not those of type ed or ee because the
exchange loops must not overlap. Note that N" and L
are diagonal; in r space L p represents the one-body
density matrix of the noninteracting Fermion quid, i.e.,
the single-particle plane-wave states lead to

L p(r)=o pl(kF r)lv (9)

where l(x)=3j, (x)/x and v is the degeneracy of
species a. If the correlation factors f p are known, the
FHNC equations (6a) —(6e) and (8a) —(8d) can be solved,
perhaps by a straightforward iteration, to obtain the
pair-correlation functions g p. However, we wish to in-
vert them in such a way that they can be solved for f p
assuming that the g p are known. This allows us to
compute the energy for a given set of the g p. To reach
that goal we calculate I "p appearing in Eqs. (8b) —(Sd)
using the following r-space relation:

1+I p(r)=g pl[I+N 'p+N'p+N pN'p

+N"p v(N"p —L p) ] . —(10)

Here, L is a diagonal matrix whose elements give the oc-
cupation probability of single-particle states of the ideal
fermion system, i.e., L p

——5 p if k (kz and zero other-
wise. For notational economy, we have dropped the ar-
gument k from I"s and X's on the right-hand side (rhs)
of these equations. We note that N " and N" are sym-
metric matrices, N' is a transpose of N ', and N" is di-
agonal; thus the actual number of unknown functions is
reduced by symmetry. For example, in the two-
component case only 12 functions, instead of 20, need be
solved. Similar symmetries hold for I' and X' also.
Now, given the "direct correlation" functions X' p, one
may iterate Eqs. (6a) —(6e) to construct the chains of
these links. The idea of hypernetting the chains means,
of course, that the links X'

p depend on chains N' p, and
vice versa. This dependence is conveniently given in r
space for the matrix elements on each X'. First, we ob-
serve that

I "p(r,2) =f p(r, z)exp[N p(r, z)]—1 .

Then the netting of the chains is achieved by writing
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To simplify the notation, we introduce two matrices, N"(k) =(X"—L)X"(I—X) (13c)

(1 la)

(1 lb)

and define the matrix of structure functions

[S(k)—I] ~
——(p~~)' J dre'"'[g &(r) —1] . (12)

(13a)N '(k)=bc S(I cb)+—b I —X—',
N"(k)=bc Scb+S(I cb)—bc —S b+—I —X",

(13b)
I

Then we are ready to solve N'
p in terms of X'

p and S p.
After some manipulation of Eqs. (6b) —(6d), we obtain

Here superscript T refers to transposed matrix. Now,
these relations, together with Eqs. (8b) —(8d), make up
the FHNC equations which we need to solve for any
given set of functions g p. For two-component fluids,
only nine N'p and L'p need be solved, because N" is
symmetric and X" is diagonal. In practice, we solve
these equations by iteration.

Once the above set of the FHNC equations is solved,
we may proceed to the energy calculation. The total en-
ergy of a multicomponent fluid described by the wave
function (1) may be written in the FHNC approximation
as

g2
,'p~p I—dr g &(r)v &(r) — g &(r)V Iln[1+I "&(r)]—N &(r)I2

8P~p

2
—g v~ J dr[1 (r)[V L (r) —2N" (r)V L (r)]I .

4m
(14)

Here, v p is the potential between a pair of particles and

p p is their reduced mass. In order to calculate I "p and
N ~ we make use of the FHNC equations to obtain (ma-
trix) relations

I 4~( k) =bc Scb b, —

X (k) =cbc —S (16)

III. OPTIMIZATION OF THE TRIAL
WAVE FUNCTION

Earlier we presented a practical method' for op-
timization of the FHNC energy of a one-component

and observe that N "=1""—X"". In writing Eq. (14) we
have, for simplicity, ignored one (three-body) term which
belongs to the full FHNC energy expression. ' Howev-
er, that term is usually very small and may be safely
neglected, except at the highest densities. Comparable
or larger contributions to energy may be missing due to
the fact that we have omitted so-called elementary dia-
grams from the FHNC expansion. Also, the wave func-
tion (1) could be improved by including, for example, ex-
plicit three-body correlations into it. Calculation of ele-
mentary diagrams is not practical, but, unfortunately,
their contributions cannot be totally ignored. Namely,
an exact property of the quantities X"p(k) is that they
should vanish in the small-k limit, ' ' but in the present
FHNC approximation this property is not satisfied. In
applications to be described below, we shall impose such
condition in a simple manner, which also may affect the
energy by an amount comparable to the omitted three-
body correlations. It may be that these neglected contri-
butions cancel each other, to some extent at least, but
clearly the energy expression (14) is not exact and there-
fore we do not attempt to optimize it exactly. Instead,
an approximate optimization of it by means of Euler-
Lagrange equations is discussed in the next section.

c(k)=I,
b (k) = [Sp(k)]

(17a)

(17b)

Here, SF is a diagonal matrix whose elements are struc-
ture functions of the ideal fermion system. In fact, Eqs.
(17a) and (17b) represent the correct limiting behavior'
for c (k) and b (k) as k ~0, even for strongly correlated
systems. From Eq. (15) we see that I p is a long-range
quantity, proportional to 1/r at large r. In weakly
correlated systems it is small at short range, too, so that
we may expand the logarithm ln(1+I &) in powers of
I "p and neglect terms of second and higher order in I "p.
Doing this, the energy expression (14) simplifies so much
that we can solve the optimization problem analytically.
The result is

[S(k)MS (k)] ' = [Sp(k)MS@(k)] '+ v (k), (18)
4

where M =diag(m ) is a diagonal mass matrix and v(k)
is a matrix of the pair potentials in Fourier space. This
expression may be used to study the low-momentum be-
havior of the optimal structure functions for a given po-

I

fluid. In that method the quantities N' and X' were
treated as variables, in addition to g (r), with respect to
which the energy was minimized, and the FHNC equa-
tions were treated as constraints to be handled by means
of Lagrange multipliers. Extending such a procedure to
multicomponent systems would be straightforward but
tedious. Instead of doing that, we simplify matters con-
siderably be deriving and solving approximate EL equa-
tions for g p. We start by considering a weakly interact-
ing many-component fermion system, or, equivalently,
the low-momentum behavior for a strongly correlated
system. Then we can make the following low-order ap-
proximations: ¹'=0,X '=0, and 1+X"(k)=S~(k),
which means that
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(19)

We omit the last term on the rhs of Eq. (19), then insert
it into the energy expression (14) and minimize with
respect to g p to obtain the following set of EL equa-
tions:

fi
V [g p(r)]' +[v p(r)+w p(r)][g p(r)]' =0.

(20)

Now, the "induced potentials" w ~ that depend on g p
may be conveniently written using matrix notation in k
space,

fi kw(k)= —
I [S(k)MS(k)] ' —[SF(k)MSF(k}]

4

+M[S(k) —1]+[S(k)—1]MI . (21)

Equations (20) and (21) represent a generalization of the
one-component FHNC variational EL equations to arbi-
trary many-component mixture of fermion and/or boson
fluids. However, this set of EL equations represents only
approximate optimization of the FHNC energy expres-
sion, but numerical results to be described below prove
that this is a very sensible approximation. Note that in
a boson system SF is to be replaced by a unit matrix;
then Eq. (21) leads to w p derived by Chakraborty for
two-component boson mixture. We may write

w =w +w

where w represents a boson system and w'" an addi-
tional exchange contribution for fermion Quid. The ex-
plicit expression for w" is seen to be

w'"p(k) = —5~ [(1 SF (k)] . —Q2I 2

4m a (23)

Thus the induced exchange potential is diagonal, repul-
sive, and vanishes for k ~2k+ . This shows that fer-

a

tential v (k}. In order to go beyond the weakly interact-
ing limit or to improve the treatment of short-range
correlations, we note that

ln(1+I'"p) N—p ——lng p
—(g p

—1)+X"p
1 [(Pdd }2 (g 1 )2]+

mions feel an effective induced repulsion due to the an-
tisymmetry of the wave function. Because w ~ and g ~
are to be solved self-consistently, the actual difference
between the fermion- and boson-induced potentials is
not, in general, equal to that given by Eq. (23).

The above set of nonlinear integro-differential equa-
tions can be solved numerically by employing a method
which is direct generalization of a linearization pro-
cedure developed earlier. ' ' However, before discussing
numerical techniques, we consider a special case of an
impurity particle embedded into a fermion Quid.

IV. VARIATIONAL EQUATIONS
FOR SINGLE IMPURITY PARTICLE

From the multicomponent formalism discussed above,
we may easily derive the FHNC theory for screening
and correlation of a mobile impurity particle embedded
into an interacting fermion (or boson) fiuid. Here we
consider only the simplest case of a one-component host,
such as the jellium electron gas. Clearly, generalization
to the case of many-component host system would be
straightforward.

We start from the two-component theory discussed
above. Now, subscripts a= 1 and @=2 are used to refer
to the host and impurity particles, respectively. In the
many-body wave function (1) we set Nz ——1, F22 ——1, and
Pz ——1. Thus only f» and f2&, or, equivalently, g» and
g2] remain unknown, and g22

——1. Now, g2] can be ex-
pressed as

g„(r)=1+r,'", (r)+ r', ;(r),
and for a given g2& we calculate I z] using

1+r2d', (r) =g„(r)/[I+N,",(r)] .

(24)

(2S)

In order to derive the FHNC equations for IVY& and X2&
of the impurity system, we make use of Eqs. (13a)—(13c),
into which we make the following substitutions:

cia(k) 0
c (k) =

(26)
bii(k) 0

b(k)= 0 1

Then, using Eq. (13a), for example, N&& turns out to be

N",;(k)= S»(k)c„(k)b»(k)[1—c»(k)bii(k)1+bii(k) —1 —Xii(k)

+ IS2, (k)c2&(k)b»(k)[1 —2c»(k)b»(k)] —[cz&(k)b&&(k)] ) . (27)

Now, p2
——p&/N&, so that the term in the curly braces on

the second line of Eq. (27) represents a contribution of
order 1/X& to the one-component quantity X&& because,
according to our notation, the k-space quantities contain
the factor (p,p2)'~ . This means that we can first solve
the variational problem for the host system and then,
separately, the following coupled FHNC equations for

the impurity:

Nzf(k)=S»(k)[1 —c~, (k)b»(k)]+cz&(k)[1 b»(k)], —
(28)

(29)X2((r) = tg2)(r)/[1+N2f(r)] —1IN2) (r) .
Note that c2&

———Xz&. These two equations are the im-
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I„'(k) =S„(k)c„(k)b„(k)+c„(k)b„(k),
Xzi (k) =Szi (k)/S» (k)+czi (k)c» (k)b i i(k),
and again Nz&

——I z&
—X2&.

(30a)

(30b)

purity FHNC equations to be solved for any given gz&
and g, i. For I zi and Xzi we obtain, from Eqs. (15) and
(16),

Next, the total energy of the impurity-host system has
to be minimized with respect to g» and g2&. Minimiza-
tion with respect to g» leads to the EL equations for the
host system, since terms of order 1/Ni can be ignored.
However, when calculating the immersion energy of the
impurity, those contributions cannot be neglected. In-
stead, the immersion energy is calculated as

Ezi ——5Eii+pi J dr [gzi(r) —1]uzi(r) — gzi(r)V' [in[1+I zi(r)] —Nzi (r)J
8P2i

(31)

where 5E, i represents the (1/Ni )-order effects in the correlation factor f» of the host system. It amounts to
2

5E» —— p, J dr[( [1/[1+1 ii(r)] —1]5I ii(r) —5Xii (r))V' g»(r) —v, 5I ii(r)[V' L»(r) —2N'i'i(r)V' L „(r)]],sm,

(32)

where

5Xi, (k) = —Szi(k)/Sii(k),

51,i(k) =2Szi (k)czi (k)c» (k)b» (k)+ [c,(k)b „(k)]
(33)

(34)

Optimization of expression (31) with respect to gz, leads to the EL equation for the impurity-host correlation func-
tion. Again, we first consider the weakly interacting limit. We set c2&

——0, and retain only the leading term in the ex-
pansion of ln(1+ I zi ); then, the energy becomes

1 Ak
Ezi ——

3 J dk Szi(k)uzi(k}+ [Szi(k)/Sii(k)][1 —iMzi[Szi(k) —1]/miSii(k)]
(2m. ) p, 8p2]

(35)

4m'
X(k)= — S i i (k)

Ak
(37)

This result is reasonable in the sense that it represents
the response due to collective elementary excitations of
the host fluid, i.e., plasmons or phonons which obey fa-
miliar Feynman dispersion relation

Ake(k)=
2m, S, i(k)

(38)

The approximate EL equation of the form (20) for a
strongly interacting impurity is derived in a manner
similar to that discussed in the preceding section [see
Eq. (19)]. Now, the self-consistent induced potential to
be used with Eq. (20) turns out to be

Ak Pz, S,i(k) —1

wzi (k) = — Szi (k)
4P2i m, Szi, (k)

1

Sii(k)

(39)

Minimization with respect to Sz, (or gzi ) leads to

4P2i S'„(k}
Sz (k)=

z z uzi(k) .&'k' (Vzi/mi }[Sii«)—1]—Sii(k}
(36)

If we now take the limit m z ~ oo and identify the
coefficient of uz, (k) in Eq. (36) with the static linear-
response function 7 of the host system, as proposed by
Kallio et al. ,

' we get

gzi(r=0) X 10 s
12 9

TS

(40)

These results and an application of the multicomponent
theory are discussed in the next section.

V. RKSUI.TS AND DISCUSSION

As an application of this variational many-component
FHNC theory, we have calculated correlation energies
and pair distribution functions for a hypothetical
electron-positron mixture. This two-component "jelli-
um" is assumed to be neutralized by a properly charged
rigid background, whenever the positron density is

I

In deriving this equation we assumed that the energy
terms proportional to c2& are small, so their variation
can be ignored. Consequently, Eq. (39), which was ear-
lier derived in Ref. 22, does not contain terms which ex-
plicitly depend on the fermion character of the host sys-
tem. However, after solving the EL equation (20) with
induced potential (39), we can use Eqs. (26) and (27) to
obtain czi, and then use the full energy expression (31)
to compute the impurity energy.

We have applied this method to the case of a positron
impurity in a host electron gas. Interesting quantities to
be calculated are the immersion energy and the value of
g2& at r =0. The latter allows us to compute the
positron-annihilation rate in the electron fluid, which is
given by
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X p(k)~[S~ (k)Sr (k)]'i X 'p(k) . (41)

The vanishing of X p(k~O) is an exact property'
which is, unfortunately, violated by the FHNC approxi-
mation employed here. Similarly, X"p(k) should behave
such that 1+X"(k)~S+(k) in the same limit, i.e.,

b (k~O) = [Sp(k)] (42)

but this was not forced to do so, because it did not seem

smaller than that of electrons. Electronic densities are
chosen to be in the metallic range, i.e., r, =1—6, and for
each r, several values of positron concentration
x =p2/p& between 0 and 1 are considered. The x =0
limit corresponds to a single positron in the electron gas
and the fifty-fifty case x =1 represents an ideal model
for the electron-hole liquid (EHL). In the present case
the mass ratio mz/m, is set to unity, but we could have
varied that too. However, we have not been able to
solve the EL equations for very large mass ratios, corre-
sponding to, for example, a proton-electron fluid (liquid
metallic hydrogen).

The computational procedure for solving the many-
component EL equations is based on linearization of
Eqs. (20) and (21) and is similar to that developed earlier
for the one-component system. ' ' To start, we need
an initial guess for g p(r, ) (j =1, . . . , N) in N mesh
points on the r axis. Then we derive and solve a set of
3N linear equations for 5g p(rj ), which represents
corrections to initial g's. The procedure is iterated
several times until it converges. Naturally, the number
of iterations depends greatly on the quality of the initial
guess. It is possible, and often faster, to perform the
iteration such that only one (or two) of the g's is (are)
varied at a time, while the remaining two (or one) are (is)
kept fixed. Then the g p to be varied has to be alternat-
ed in some suitable manner. Doing this, one can avoid
solving 3N simultaneous (linear) equations, and solve
only N (or 2N) of them. We wish to emphasize, howev-
er, that solving these EL equations is not any major nu-
merical task. In the present study we have tabulated g's
(and other functions) in 55 mesh points, so that the size
of largest matrix inverted was 165)&165. This yields
reasonable numerical accuracy, keeping in mind other
approximations made in deriving the equations and com-
puting the energy.

After solving the EL equations for g &, we proceed to
solve the FHNC equations (13a)—(13c) and (Sb) —(Sd) us-
ing the solutions of the EL equations as input. This is
done by direct iteration, without any linearization, start-
ing with all the N's set to zero. Usually, about 10—20
iterations are performed. At each step of iteration a new
set of functions X' p(r) is calculated using Eqs.
(Sb) —(Sd); they are Fourier transformed and then insert-
ed into Eqs. (13a)—(13c) to obtain a new set of N'p(k).
In this process "brute force" is exercised to make sure
that each X p(k) goes to zero in the low-momentum
limit. Namely, before inserting X p (k ) into Eqs.
(13a)—(13c), they are multiplied by a function which van-
ishes at k=0,

to be necessary and we wanted to avoid inconsistency
between r-space and k-space quantities as much as possi-
ble. In the energy, the eff'ect of imposing condition (41)
remained small, but in some cases it crucially improved
the convergence of the iteration of the FHNC equations.

Finally, the energy is calculated using expression (14).
In order to make direct comparison of our results with
those of the more familiar one-component electron gas,
we have chosen to make use of normal electron-gas
units, where the length scale is determined by the proton
mass instead of the reduced mass of the electron-
positron pair. Thus the length is measured in units of
r, a0, where a0 ——0.523&(10 cm, r, =a0[3/(4mp&)]'
and the energy unit is 1 Ry= 13.6 eV.

Since the induced potential was derived by making
some simplifying approximations, we have tried to im-
prove it by multiplying the fermion part of it, Eq. (23),
by a constant X, and then varied A, to obtain the lowest
possible energy. In such a way we could lower the ener-

gy slightly. On the other hand, we have, just for sirnpli-
city, ignored a three-body term in the energy expression.
When calculated, that term turn out to be positive, rang-
ing from about 0.01 Ry at r, =1 to less than 0.001 Ry at
r, =5, thus cancelling much of the energy gained by
varying k away from unity. Accordingly, we chose to
use the induced potential of Eq. (23) as such and, at the
same time, omitted the three-body term. Note that, in
fact, we may manipulate the induced potential of the EL
equation as we like. The best potential is the one which
yields the lowest energy.

In recent variational work on a two-component
fermion system, another form of the fermion (or ex-
change) part of the induced potential was used, which
may be derived by employing other than the FHNC ap-
proximation to calculate the energy. That approxima-
tion, sometimes called the Lado approximation, leads
to

2

m'"p(r)= —5 p [2V' u (r)+[Vu (r)] I .
4m

(43)

Here, u (r) is determined to give the free-Fermi-gas pair
distribution function gz in boson HNC approximation,
i.e.,

u (r)=lng~ (r) —N (r), (44)

with

N (k)=[S~ (k) —1] /S~ (k) . (45)

In the case of one-component electron gas, this approxi-
mation yields solutions to the EL equations which are
similar to those obtained by the present method or by
the full optimization of the FHNC energy. In a two-
component plasma, however, a quite serious problem
occurs when expression (43) is used. Namely, the EL
equations become unstable for r, & 2, in the sense that
self-consistent solutions cannot be found by our iterative
procedure. Physically, it is the antisyrnmetry of the
wave function which prevents the two-component plas-
ma from collapsing to very high density. In the EL
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equation the antisymmetry shows up as the exchange
part of the induced potential which is mainly repulsive.
It seems that this Pauli repulsion is perhaps not ade-
quately represented by Eq. (43). The main difference be-
tween the two approximations is that the exchange po-
tential of Eq. (23) is more repulsive at small k than that
of Eq. (43), leading to more stable EL equations. The in-
stability shows up also when Eq. (23) is used, but at
much lower density, namely near r, =5, which is clearly
beyond the saturation density (r, =4).

For stable solutions the structure functions S p(k)
vanish linearly as k~O, unlike in the one-component
plasma, in which they vanish quadratically. As we ap-
proach the region of the instability, the energy of the
system become insensitive to the small variations of g &
and the slopes of S &(k) seem to increase without limit.
This may be taken as an indication that the system is
close to the point of phase transition where the compres-
sibility of the fluid diverges. If the exchange part of the
induced potential is set to zero, the EL equations be-
come unstable even at high density. This means that for
the charged two-component boson system we do not find
solutions of the EL equations at any density. Such a bo-
son plasma would be always unstable against collapsing
to infinitely high density.

We start discussing the results by showing, in Table I,
correlation energies of the one-component jellium. This
system has been very extensively studied by various
methods. Presently its energy is believed to be known
very accurately, thanks to the so-called Green's-function
Monte Carlo calculation by Ceperley and Alder. The
results of the present work are quite close to those of
Monte Carlo and some other works. ' This seems to
be a good starting point for two-component computa-
tions. The fact that our present energies differ slightly
from those obtained by more accurate optimization (Ref.
20) is partly due to imposing the "Fermi cancellation"
constraint of Eq. (41), which introduces some incon-
sistency between r-space and k-space quantities. For ex-
ample, I calculated from Eq. (10) is not fully con-
sistent with Eq. (15). In the present work we have used
the expression (15) for I in the energy integrations.
This yields little smaller correlation energy than if Eq.
(10) is used.

Vashista, Bhattacharyya, and Singwi (VBS) have,
among others, studied the two-component mixtures of
electrons and holes. For example, the question of
whether electrons and holes form a bound liquid in
stressed germanium has received much attention, both
theoretically and experimentally. The results of VBS
showed that almost certainly such a system would be
bound. Recently, Chakraborty and Pietilainen " (CP)
published results, based on a variational approach,
which were in apparent contradiction with those of
VBS. The difference in the results of those two works
can be traced back to their treatment of the idealized
system, i.e., the system equivalent to neutral electron-
positron mixture. In Fig. 1 we compare the total energy
of such an ideal system obtained by VBS, CP, and the
present work. Note that the units of length and energy
in the works of VBS and CP differ from ours by a factor
of 2. Our result is in fairly good agreement with that of
VBS and clearly much lower than that of CP. The ener-

gy calculation of CP employed the Lado approximation
instead of the FHNC method used here. It seems, how-
ever, that most of the difference between our results and
those of CP is due to the fact that the EL equations (20)
do not have self-consistent solutions in the region of en-
ergy minimum, if the exchange part of the induced po-
tential is taken to be that of Eq. (43). Due to some nu-
merical reason, this instability did not show up in the
work by CP, although the fact that the structure func-
tions of CP did not vanish as k~O might have been tak-
en as a hint of underlying problem. Rather peculiar
small-k behavior of the partial structure functions oc-
curred also when that method was applied to study the
structure of liquid metallic hydrogen. Curiously, with
the present method we have not been able to solve the
EL equations at all for very large mass ratios corre-
sponding to metallic hydrogen.

Near the saturation density the Monte Carlo energies
for the one-component fluid are slightly lower than those
of the present work. This suggests that, if we add twice
that difference into our two-component results, we end
up with, hopefully, more accurate estimates for the true
energy. Doing this, at r, =4, our energy is lowered by
about 0.01 Ry to about —0.47 Ry, while the correspond-
ing result of VBS is about —0.49 Ry. This amounts to

Method

TABLE I. Correlation energy (Ry) in the one-component electron gas.

Present
CA'

VMCb
BL'

STLSd
RPA'

Ef

—0.130
—0.120
—0.122
—0.123
—0.124
—0.157
—0.134

—0.090
—0.090
—0.087
—0.086
—0.092
—0.124
—0.094

—0.071
—0.074
—0.072
—0.075
—0.075
—0.105
—0.075

—0.059
—0.064
—0.062
—0.064
—0.064
—0.094
—0.064

—0.053
—0.056
—0.055
—0.057
—0.056
—0.085
—0.056

'Reference 27.
Reference 28.

'Reference 29.
Reference 30.

'Reference 31.
Reference 1.
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FIG. 1. Total energy of the model electron-hole liquid as a
function of r, . Curves labeled CP and VBS represent the re-
sults of Refs. 24 and 32, respectively, and the label L refers to
the present work.

about 7%%uo difference in the correlation energy, which is
well within the uncertainty due to the approximations
employed in the energy calculation of the present work.
Whether the VBS energy is closer to the true energy is a
question which may be answered only after accurate
Monte Carlo calculations for this system are performed.

%'hile our energy of the model system agrees quite
well with that of VBS, the correlation functions of the
two methods are very different. In Fig. 2 we show the
partial pair-correlation functions g&& and g&2 near the
equilibrium density r, =4. The solid curves show the re-
sults of the present work and the dashed lines are repro-
duced from Figs. 4 and 5 of VBS. The oscillations in the
g's obtained by VBS are very much larger than what we
have. For example, the minimum value of our g&z —1 is
about —0.05, compared to about —0.35 in case of VBS.
Similarly, the overshoot in the g's of VBS is very large
and in our case it is negligible. In this case we believe
that it is fair to say that our results are physically more
reasonable than those of VBS.

Values of g~&(r=0) are given in Table II. Short-range
behavior of our g &(r)'s is very similar to that obtained
by CP. As shown in Ref, 25, measured recombination
rates in some EHL's compare favorably with predictions
of the variational calculations. The results for the case
x =0 are obtained from the impurity calculations to be
discussed below. From Table II we can see that the
value of g&z(0) is quite sensitive to the positron concen-

0.5

00

FIG. 2. The pair-correlation functions g»(r) and g»(r) for
the model electron-hole liquid at r, =4. The solid lines show
the results of the present work and the dashed lines represent
results of Ref. 32 (VBS).

E~(r„x)= [E(r„x) e'(r,—)]/x, (46)

tration. It is obvious that the more we add positrons to
electron gas the less there are electrons to screen each
positron.

The static structure functions S &(k) for the positron-
electron mixture at r, =4, x =0.125 are shown by solid
lines in Fig. 3. Clearly, they all vanish linearly as k~0.
S,z(k) has a very strong 1/k tail as k ~ oo, correspond-
ing to the strong peak at g, 2(r=O). The dashed lines in

Fig. 3 represent corresponding ideal-gas structure func-
tions. S2z(k) deviates only slightly from the ideal-gas
quantity. This is not so surprising if we realize that the
positron-positron interaction is very efficiently screened
by electrons. Electrons themselves are correlated more
strongly, much like in the pure electron gas.

In Table III we show the correlation energy per elec-
tron E(r„x) in the electron-positron mixture as a func-
tion of r, and concentration x. Using these numbers we

may calculate the "excess" electron-positron correlation
energy per positron as

TABLE II. Values of g»(r=0) in positron-electron mixture as a function of electron density r,
and positron concentration x.

0.0
0.216
0.512
0.729
1.0

2.16
2.02
1.92
1.87
1.81

4.06
3.70
3.41
3.23
3.08

7.40
6.49
5.81
5.42
5.05

13.2
1 1.0
9.48
8.68
7.98

23.0
16.9
14.7
13.3
12.1
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0.0
0.064
0.125
0.216
0.343
0.512
0.729
1.0

—0.130
—0.163
—0.191
—0.227
—0.274
—0.331
—0.400
—0.466

—0.090
—0.116
—0.139
—0.168
—0.205
—0.251
—0.300
—0.357

—0.071
—0.095
—0.115
—0.141
—0.174
—0.214
—0.259
—0.308

—0.059
—0.083
—0.102
—0.126
—0.157
—0.194
—0.234
—0.280

—0.053
—0.078
—0.095
—0.119
—0.146
—0.181
—0.219
—0.262
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FIG. 5. Positron-annihilation rate in jellium as a function of
r, . The solid line shows the result of the present work. The
dashed line (Ref. 34) and dotted-dashed line (Ref. 35) as well as
experimental data are reproduced from Fig. 13 of Ref. 34.

FIG. 4. Excess positron correlation energy per positron [see
Eq. (46)] in the positron-electron mixture as a function of r, for
several values of positron concentration x. The curve marked
x =0 shows the energy of a single positron impurity in an elec-
tron gas, and the curve labeled AP gives the corresponding re-
sult of Ref. 34. For comparison, the correlation energy of a
one-component electron gas is also shown by the dashed line.

AP are indeed very close to the true energies, especially
when the density is in the range r, = 3 —5.

Finally, the positron-annihilation rate is determined,
according to Eq. (40), by the value of the pair-
correlation function g2& at the origin. Our results for
the annihilation rate, which are shown in Fig. 5, are gen-
erally 10—15% lower than those of AP. In fact, this
may be quite reasonable, since the rates obtained by AP
tend to be slightly too large compared to experimental
values. However, we cannot claim that the accuracy of
our results for g2& is better than, say, 10%, although the
present method is generally quite reliable in treating
strong short-range correlations in various kinds of quan-

turn fluids.
In conclusion, we have developed a simple variational

theory for many-component quantum fluids, which
makes use of multicomponent FHNC approximation and
Euler-Lagrange equations in the calculation of the ener-

gy and static correlation functions of the system. Appli-
cation to the case of a two-component plasma shows
that the results obtained by this method are in good
agreement with available experimental data and with the
best theoretical calculations performed earlier.
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