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Electron and positron chemical potentials at a given crystal volume are obtained from first-
principles density-functional calculations. The calculated chemical potentials are used to obtain
the positron work function and deformation potential. The results are compared with previous
calculations for several simple metals, and with experimental measurements of aluminum and

copper.

INTRODUCTION AND THEORY

The positron work function is of interest in the study
of the behavior of positrons at metal surfaces,! and the
positron deformation potential is related to positron
diffusion in metals.” The experimental measurements of
these quantities can also be used as a test of theoretical
calculations of the electron and positron chemical poten-
tials and the surface dipole potential of metals.

The work function ¢ _ of a metal can be expressed as®

¢6_=D—pu_, (D

where D is the surface dipole potential barrier against
electron escape, and p_ is the internal electron chemical
potential. The positron will experience just the negative
of this potential barrier upon emission from the surface,
so its work function is given by

¢p.=—D—p,, (2)

with pu the positron chemical potential. The emission
of a positronium atom from the surface can also be de-
scribed by a work function,

bps=¢,+é_—0.5Ry, (3)

which is less than the positron work function because
the electron work function is usually less than 0.5 Ry.
The internal electron chemical potential u_ and the pos-
itron chemical potential u are purely bulk properties
that can be obtained from a band structure calculation.
The quantity p_ is equal to the Fermi energy and p , is
the lowest energy of the positron energy band. These
quantities are measured relative to the ‘“crystal zero” of
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the electrostatic potential, which for the spherical cellu-
lar model to be described below, occurs at the cell
boundary.

The deformation potential model is used in the treat-
ment of the contribution to the relaxation time by
positron-acoustical phonon scattering, which is a quanti-
ty that is needed to calculate the positron diffusion con-
stant.2 The deformation potential E; is defined as
QOJE /3Q) where E () is the energy of the lowest posi-
tron Bloch state at the crystal volume (2, provided we
take the local variation of the electron density into ac-
count. Bergersen et al.? express E; as the sum of three
contributions. The first two come from the zero-point
energy E, and the electron-positron correlation energy
E .- In terms of these quantities, the positron chemical
potential is given by u, =Ey+E,,. The third contri-
bution to the deformation potential comes from a charge
transfer between regions of different density. This gen-
erates an electrostatic potential equivalent to a surface
dipole term that compensates the shift in u_ due to
crystal dilation, therefore maintaining a constant elec-
tron chemical potential throughout the crystal. Conse-
quently, we can calculate the deformation potential from

d
—0-2 . 4
E; an(,u++,u_) (4)

The deformation potential and the positronium work
function depend on u, +u_, and therefore do not in-
volve the surface dipole potential D, which, being a sur-
face property, is more difficult to calculate accurately.
Lang and Kohn* used the jellium model values of D and
{_ to calculate ¢_ according to Eq. (1). Their work
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functions were in good agreement with experiment even
for the higher density metals for which the jellium
values of the chemical potential u_ are too large. This
was shown by Heine and Hodges® to be due to a nega-
tive feedback mechanism in which the outward penetra-
tion of the electrons which determines the dipole poten-
tial D is inversely related to the magnitude of u_. As a
result, the variation in the work function is much small-
er than that in #_ and D. In this work, we circumvent
calculating D by using our calculated values of u_ and
measured work functions® to obtain D from Eq. (1).

CALCULATIONS AND RESULTS

We calculate the chemical potential and the electronic
density of the metal from first principles using the self-
consistent density functional method and the local densi-
ty approximation, with the Hedin-Lundqvist’ form of
the exchange-correlation energy. Since full details of our
method are being published elsewhere we only give a
brief description here. To calculate the band structure,
we solve the effective one-electron Schrodinger equation
by applying the set of boundary conditions for the Bloch
wave functions over the surface of a Wigner-Seitz
sphere.® When used to calculate the band structure and
the bulk properties of simple metals,” the results of the
spherical cellular method were in good agreement with
the calculations of Moruzzi, Janak, and Williams!®
(MJW), who performed a self-consistent Korringa-
Kohn-Rostoker (KKR) calculation with muffin-tin densi-
ties in a polyhedral cell. In particular, our chemical po-
tentials were in good agreement with results based on
the MJW calculations.!! The MJW calculations are tab-
ulated only for the equilibrium lattice constant, however,
while for the present problem the volume dependence of
p_ is required. By using the spherical cellular method
we could calculate such quantities as the chemical poten-
tial and the electron density at any volume.

We apply the spherical-cell approximation again in
the calculation of the positron chemical potential u .,
and treat the electron-positron correlation in a local den-
sity approximation by including it in the effective poten-
tial of the positron. The effective potential a positron
would see has the form, in atomic units,

vin=2%_ f—ﬂ‘—’"—dr e ), (s)

TABLE I. Components of the positron work function ¢, for simple metals.
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where Z is the atomic number, p(r) is the total electron
density, and €° ~P(r) is the electron-positron correlation
energy. For this quantity we use a recently published
parametrized form for the energy of a single positron in
a uniform electron gas by Boronski and Nieminen."? In
previous calculations of the positron chemical poten-
tial,>3 the Schrédinger equation was solved with only
the electrostatic potential, i.e., the first two terms of Eq.
(5), thus obtaining the “zero-point energy” E,. The
correlation energy of the positron was calculated at the
average valence electron density of the metal in the jelli-
um model, and was then added to E, to obtain u,. As
we describe below, we find that our complete local-
density approximation (LDA) results for p1, are in quite
good agreement with these earlier calculations. We also
compared the LDA result with a calculation in which
the correlation energy is treated as a first-order perturba-
tion to the electrostatic potential, and found the effect on
i, to be less than 0.01 eV. The insensitivity of u, to
the use of a self-consistent € “P(r) can be explained on
the basis that the positron wave function is largest in the
interstitial region where the electron density is nearly
constant, and that €® ~P(r) is a weakly varying function
of electron density.'?

For thermalized positrons, around room temperature,
~0.025 eV, u, is nearly the energy of the bottom of
their energy band. The band effective mass, also of in-
terest in positron calculations, can be obtained from the
curvature of the energy band at k=0. For instance, for
aluminum we found a positron band effective mass of
1.05m, which is in agreement with other calculations.'?

In Table I we present the components of the positron
work function. The surface dipole potential D was ob-
tained from the experimental ¢ _ and the calculated p _
Also given are the experimental values of ¢, of Al and
Cu.'* The experimental work functions in this table are
averages over different faces.

Gullikson and Mills have measured the face-
dependent positron work function for AIl(100) and
Al(111) from 20 to 300 K. To calculate the face
dependence of ¢, we note that the chemical potential is
a bulk property, so the face dependence is due solely to
the surface dipole potential. We can again obtain this
quantity from the measured electron work function for
the various faces, 4.41 eV for Al(100) and 4.24 eV for
Al(111).'® Assuming that the temperature dependence of

Energies are in eV.

Metal rg [T J ¢ _(expt)? D é, ¢ . (expt)
Li 3.26 —5.27 —2.53 2.90 0.37 4.90

Na 3.93 —5.28 —2.41 2.75 0.34 4.94

K 4.86 —5.32 —2.31 2.30 0.0 5.32

Mg 2.65 —4.59 —2.04 3.66 1.62 2.97

Al 2.07 —4.00 —0.43 4.28 3.85 0.15 —0.07°
Cu 2.67 —3.51 —1.06 4.65 3.59 —0.08 —0.4°

#Reference 6.
®Reference 19.
‘Reference 13.
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TABLE II. Positron work function of Al(100) and Al(111)
at T=20 and 300 K. The chemical potentials are in eV, posi-
tron work function is in meV.

T rs [ [ [ ¢ (expt)®
(100) —98 —300
20 2.061 —0.325 —3.987 (111) 7 80
(100) 27 —155
300 2.07 —0.432 —0.4005 (111 197 65

*Reference 15.

the chemical potentials is due to the lattice thermal ex-
pansion, we can use the thermal expansion data to con-
vert the volume dependence of these quantities to tem-
perature dependence. Due to the negative feedback
mentioned earlier, we expect the temperature depen-
dence of the electron work function to be negligible.
This is also confirmed by experiment where it is found to
be much smaller than the temperature variation of the
positron work function.!® In Table II we present the re-
sults of calculated ¢, for A1(100) and Al(111) at 20 and
300 K along with the experimental measurements. The
observed change in ¢, with temperature is 145 meV, in-
dependent of face. This provides strong evidence that
the temperature dependence of ¢, is indeed due essen-
tially to changes in u +u_ with volume. Our calculat-
ed change in ¢, is 125 meV, in quite good agreement
with the experiment.

We obtained the deformation potential by calculating
u 4 and p_ as functions of r; near the equilibrium 7, of
the metal, and then using

The results are given in Table III along with calculated
values of E; by Bergersen et al., and experimental re-
sults for Al and Cu. To obtain the experimental value
for copper, we used the slope (d/dT)¢, +¢_)
=5x10"* eV/K given by Schultz and Lynn,!” and the
T =200 K value of the thermal expansion coefficient,
a=15.2x10"% K~!, in d/dT(¢,+¢_) =—3aE,.'
This, however, involves some uncertainty because the
data of Schultz and Lynn extended from 40 to 300 K,
and the thermal expansion coefficient is temperature
dependent. For this reason, the extremely close agree-
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TABLE III. Deformation potential and its electron and pos-
itron components for simple metals. The work of Bergersen
et al. (Ref. 2) and available experimental values are given for
comparison. Energies are in eV.

Metal Q% Q% E, E;? E (expt)
Li —1.46 —0.05 —1.51 —2.58
Na —1.57 —0.26 —1.73 —2.04
K —1.37 —0.32 —1.69 —1.77
Mg —3.11 —0.66 -3.77 —5.17
Al —8.24 —1.39 —9.63 —8.57 —11.7°
Cu —17.76 —2.66 —10.42 —10.9°¢

2Reference 2.
"Reference 15.
‘Reference 17.

ment of calculation with experiment may be somewhat
fortuitous.

CONCLUSION

In the calculation of the positron chemical potential,
there is not a significant numerical difference between
previous calculations, treating correlation in the jellium
model, and this work, treating correlation in the local-
density approximation. Owur assumption that the tem-
perature dependence of u, was due to the lattice
thermal expansion, and not any intrinsic effects, seems to
be justified by the very good agreement of the calculated
temperature dependence of the positron work function
with experiment. The experimental value of the defor-
mation potential is obtained from the data based on the
same assumption and here, too, the agreement between
theory and experiment is good. Finally, we emphasize
that the strong volume dependence of the electron chem-
ical potential indicates that this quantity has to be calcu-
lated at the correct experimental value of r; in these cal-
culations.
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