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Conductance fluctuations in small disordered conductors: Thin-lead and isolated geometries
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We extend the analysis of conductance fluctuations in small disordered metallic systems beyond
the conventional thick-lead geometry to thin-lead and isolated geometries. We find that, for the
thin-lead geometry, the conductance fluctuations are still given by the "universal" value e /h, in-

dependent of the lead width. In the isolated geometry, the conductance fluctuation is enhanced by
a factor (L;„/L)'&&1 over e /h. The typical distance between consecutive peaks and valleys in

the structure of conductance fluctuations, both as a function of external magnetic field and of
chemical potential, is found to be dramatically reduced in both of these restrictive geometries.

Recently, the phenomenon of "universal fluctuations"
in the metallic regime of small disordered conductors
has attracted much attention in condensed-matter phys-
ics. Experimentally, ' it was shown that the conduc-
tance has a sample-specific, but reproducible noiselike
structure as a function of external magnetic field and
chemical potential, at low temperatures. Theoretical-
ly, this phenomenon was understood in terms of
quantum interference between different multiple elastic
scattering paths of the electron. Moreover, the average
value of the conductance fluctuations (CF's) was estab-
lished to be "universal" —of the order e /h-
independent of the sample size or degree of disorder, as
long as the conductor remains in the metallic regime.

So far, however, both theory and experiment have ad-
dressed only the thick-lead geometry in which the width
t of the leads made of a clean metal is of the same order
as the sample size L, t-L. This geometry is shown in
Fig. 1(a). In this Brief Report we address the problem of
CF s in thin-lead and isolated geometries, depicted in
Figs. 1(b) and 1(c), respectively. Our interest in this
problem was motivated by the fact that due to "entrap-
ment" of diffusing electrons in such restrictive
geometries, the fluctuations in the electronic level densi-
ty (LD) at the Fermi level can be greatly enhanced.
Since the CF is proportional to the fluctuation in the
LD, one would expect an enhancement of the CF as
well. Indeed, we demonstrate below that for the isolated
geometry of Fig. 1(c), the CF is enhanced compared to
the universal value e /h. On the other hand, it turns
out that for the thin-lead geometry in Fig. 1(b) the
enhancement of the fluctuation in LD is offset by the re-
duced conductance, so that CF is still given by e /h. In
the following we first give a heuristic argument which
produces all the results correctly. These results are then
derived using diagrammatic techniques.

Let us first address the thick-lead geometry. We start

5g =6vh /v. d;~ . (2)

They also showed that due to the phenomenon of "level
repulsion, " the fluctuation in LD is proportional to the
diffusion time, 5v=r~;fflh. Substituting this into Eq. (2),
one obtains the universal value 6g =1.

We can now examine the thin-lead geometry by gen-
eralizing the ideas in Refs. 6 and 7. First, it is plausible
to assume that Eq. (1) applies to any geometry with
leads. In the particular geometry of Fig. 1(b), diffusing
electrons get effectively "trapped" inside the sample, as
manifested by an enhancement of the diffusion time,
Td ff—(D /L )(L /t)" '', where t ' (t «L ) is the
cross-sectional area of the leads. Thus we conclude that
in this case the conductance is (t/L) ' times smaller
than in the thick-lead case: g'=vh /r'd ff v(hD/'—
L )(t/L)" '. Second, the argument of Ref. 7 can be
modified to show that the fluctuation in LD is deter-
mined by the "level lifetime:" the lifetime of a coherent

Let us first address the thick-lead geometry. We start
with Ohm's law for the conductance G=o. A/L, where
o. is the conductivity and A =L is the cross-sectional
area of the sample. Using the Einstein relation
o =e Dv/0, where u is the LD and 0 is the sample
volume, we find for the dimensionless conductance
g =G /(e /h ) =v( hD / L ). The sample is metallic
when g ~&1. Since rd;ff L /D is t—h—e time it takes for an
electron to diffuse out of the sample (diffusion time), g
can be rewritten as

g =vh /vd'ff,

a relation first given by Thouless. Recently, Al'tshuler
and Shklovskii used Eq. (1) to give a simple explanation
of the CF. They showed that the fluctuation in LD and
the fluctuation in the diffusion coefficient give contribu-
tions of the same order of magnitude to CF, so that the
rms CF is given by
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quantum-mechanical state. In any geometry with leads,
this time is the diffusion time. Thus 6v=~d;z/h. From
this and Eq. (2), we obtain that the CF in the thin-lead
geometry has the universal value 6g=1, irrespective of
the fact that the fluctuation in LD is enhanced com-
pared to the thick-lead geometry due to an increase in
the diffusion time. We thus observe that in any
geometry with leads we should expect conductance fluc-
tuations to have the universal value of the order of e /h,
independent of the width of the leads. This conclusion is
quite natural if we view the sample with the disordered
leads [unshaded part in Fig. 1(b)] as a "black box" and
consider the transmission probability through such a
black box. The statement of universal conductance fluc-
tuation is the same as stating that the quantity Tr(t "t ),
where t is the transmission matrix, has fluctuations of
unity regardless of the nature of disorder. Evidently it
applies to the present geometry as well. Since conduc-
tance itself decreases with t, we expect that the sample
would eventually cross over to the regime in which elec-
trons are effectively localized inside the sample. Clearly,
5g =g =1 then.

Consider now the isolated geometry [Fig. 1(c)]. The
conductance of the sample can be determined, for in-
stance, by measuring the absorption coeKcient of small

particles in a microwave cavity. Since the electrons can-
not diffuse out of the sample, however, the level lifetime
is no longer determined by D/L, but by the time be-
tween consecutive inelastic collisions, ~;„. The fluctua-
tion in LD is then given by 6v=~;„/h, which leads to
the relation

5g =(Dr;„/L') =(L;„/L )', (3)

where L;„ is the inelastic diffusion length. Thus we ob-
serve that provided L;„~~I, conductance fluctuations in
isolated samples can be dramatically enhanced over the
universal value e /h. In fact, one can show that in the
limit when fluctuations of LD are as large as LD itself,
conductance fluctuations can be as large as conductance
itself, 5g =g ~~1.

As was mentioned in the Introduction, the aperiodic
structure of conductance is observed experimentally' as
a function of magnetic field or as a function of chemical
potential. We now estimate the typical distance between
consecutive peaks and valleys in such structures, i.e., the
energy and magnetic field correlation range, E„„and
8„„,respectively. At low temperatures the inverse level
lifetime defines the energy range I" within which the en-
ergy levels are correlated. Thus when T &I, we have
E„„=t,whereas when T~ I, one obtains E„„=T.
In geometries with leads the level lifetime is given by the
diffusion time, thus we find that I =h /'Td g, which yields
I =(hD/L ) in the thick-lead case and
I =(hD/L )(t /L )

' in the thin-lead one. Conse-
quently, we observe that (i) the onset of the universal
value of conductance fluctuation occurs at a lower tem-
perature, and (ii) the structure of the conductance as a
function of chemical potential is more compact in the
thin-lead geometry. The same pertains to the isolated
geometry in the regime when L & L;„, since here the lev-
el lifetime is defined by inelastic processes, so that
I = h /r;„= ( hD /L, „).

To find B„„,it is constructive to use the physical pic-
ture of interference among Feynman paths. In the thick
leads case this picture gives the value of B„„from the
condition that the flux through the area between two
typical interfering paths (of order L 2), is a Ilux quantum
$0, i.e., B„„L=$0——hc/e. In the thin leads geometry,
the typical Feynman-path length is longer,
L„,„„=L (L/t)' 'I (measured in units of I), since it
takes longer for an electron to diffuse out of the sample.
Similarly in the isolated geometry L z,„„=L;„, when
L;„~L. Knowing Lz,~„, the field correlation range is
found from the relation

L 2(L /L 2)1/2 (4)

FIG. 1. Three difterent geometries for which conductance
fiuctuations are calculated: (a) thick-lead geometry of size L;
(b) thin-lead geometry of size L and width t &&L; (c) isolated
geometry. Unshaded areas indicate regions of disordered con-
ductor. Shaded areas indicate regions of clean metallic leads.
Square (cubic) shapes are chosen for simplicity.

Equation (4) is obtained by observing that a diffusion
electron covers the area of the sample a number of times
Lz,„„/L before it loses coherence. Each time two in-
terfering paths acquire a phase difference of the order
BL /Pp. Accumulation of these phase differences with
random signs gives a total phase difference of
BL /$0(L&, „„/L )', and hence Eq. (4). Thus we see
that the field correlation range can be dramatically re-
duced in thin-lead and isolated geometries.
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We now turn to the detailed analytic calculations.
Starting with the relation G =I /V =P /V, where P is
the power dissipation, we find by applying the Kubo for-
mula that

(G ) = V f f drdr'E (r)(o (3(r
~

r'))Ep(r'), (5)

where cr &(r
~

r') is the conductivity tensor and E(r) is
the classical electric field, which satisfies the Maxwell
equations. Using current conservation, Eq. (5) can be
rewritten as

(G & =L f fdrdr'&cr„(r
~

r')) . (6)

To lowest order in the disorder parameter 1/kFI, there
are two contributions to the averaged conductivity ten-
sor: the short-range part [depicted in Fig. 2(a)],
(o ~)sR —5(r —r'), and the long-range part [depicted in

»g. 2(b)], (tT &)«-V V&P(r
~

r'), where P(r
~

r') is the
diffusion propagator. It is then easily seen that

!

(o'~p) =(o~p)sR+(rr~p)LR satisfies the condition
V (o )s) =0, as imposed by current conservation.

Equations (5) and (6) should obviously give the same
answer for the average conductance. We can prove,
however, that (o. )s)„R does not contribute to the in-
tegral in Eq. (5), and therefore in this equation only the
short-range part of the conductivity tensor need be used.
The integration is trivial for the thick-lead and isolated
geometries due to the uniform electric field, and we im-
mediately obtain the result of Eq. (1). For the thin-lead
geometry we note that the potential drop occurs
predominantly along the disordered parts of the leads
[Fig. 1(c)], so that

drE r = V/L Lt (7)

Together with Eq. (5), this relation leads to the reduced
value of g'.

We consider the CF:

(5G ) = V f f f fdrdr'dr&drI[E (r)Ep(r')(cr ~(r
~

r')o &(r,
~

r', ) )Er(r, )Es(r&)] .

As in the case of conductance, we can use the short-
range part of the conductivity-tensor correlation func-
tion, (o ~(r

~
r')ops(r& r&)), which can be shown to be

given, up to a constant of order unity, by the diagram
shown in Fig. 3. The diffusion propagator involved in
this diagram satisfies the diffusion equation

I

tions &p„(r) and eigenvalues k„of the diffusion equation
as P(r

~

r') = g„A,„'p„(r)y„(r'). This allows us to com-
pute the diagram in Fig. 3, and the value of CF can then
be derived from Eq. (8). For the case of a uniform elec-
tric field, which is true in the thick-lead and isolated
geometries, we find

( —V +L;„)P(r
~

r')=(hD) '5(r —r'), (5g ) =(hD/L ) g A,„=(hD/L )ko (10)

(aj iVYVQ

subject to the boundary conditions that P =0 at the
clean metal leads and V„P=O on the insulating walls.
P(r

~

r') can then be expressed in terms of the eigenfunc-

where the sum was approximated by the contribution
from the lowest eigenvalue. For thick leads we have
Ao ——hD(1/L + 1/L;„)=hD /L at low temperatures,
whereas for an isolated sample we have A,o

——ha/L;„ in-
dependent of L. Substitution of the latter value of A, o in
Eq. (10) yields the result of Eq. (3).

In the same manner, we obtain for the thin-leads
geometry

(5g ) —(gD/L ) g V L " f drE (r) (11)

where

I

X
I
I

FICx. 2. Diagrams which contribute to the averaged conduc-
tivity tensor (o. p(r r')). (a) Short-range part (o p)sR
—5(r —r ); (b) long-range part (o'~s)LR —V V (3P(r

~

r ).
P(r

~

r') is the diffusion propagator such that
V'P(r

~

r')- —5(r —r').

FIR. 3. One of the diagrams which contributes to the
short-range part of the conductivity tensor correlation function
(u ~(r

~

r')o. ~s(r~
~

r~)).
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A.o
—hD [(1/L )(t /L) '+ 1/L;„]
=AD(1/L )(I/L)

at low temperatures. Evidently, h /ko describes the
enhancement of the diffusion time and LD in the thin-
lead geometry. However, with the help of Eq. (7) we
find that this enhancement is offset by the electric field
factor which is also ultimately responsible for the re-
duced conductance. As a result we arrive at the univer-
sal value (5g ) =1 of CF.

In the presence of a small field difference AI3 between
the loops of the diagram in Fig. 3, the diffusion equation
has to be modified by substituting V~V —iehA. The
perturbation expansion in AB yields the following
change for the lowest eigenvalue:

ko~ko+(hD /L )(ABL /Po)

Fig. 1(a), the conductance change due to moving one im-
purity atom (by a distance 5r ) 1/kF ) in the system is
given by

5g', =(kF1) '(kFL )
' I= 1/g (1 .

If m impurities move in an uncorrelated fashion, then
5g =x, when x:—m 5g ) & 1, and 6g saturates at the
universal value = 1 when x ) 1. For the thin-lead
geometry of Fig. 1(b), a parallel calculation yields an
enhanced conductance change due to moving impurities.
In particular, we have x ' =m 5g 1 (L /t ) '. Notice,
however, that one can still write the conductance fluc-

I

tuation due to moving one impurity as 6g& =1/g'& 1,
since the conductance in the thin-lead case is reduced by
the same factor (L/t) '. Similar calculation for the
isolated geometry gives x"=m5g| (L;„/L ) .

Using this relation, we find the field correlation range
from the relation B„„L(hD/A, oL )' =go, which
reproduces the desired results. The energy correlation
range E„„can be obtained similarly, and the result
coincides with the qualitative estimate given above.

We can extend the above analysis to obtain the con-
ductance fluctuation due to moving impurities. ' '" In
Ref. 11 it was shown that for the thick-lead geometry of
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