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Nonuniversal dynamic critical exponents are obtained for both the Glauber and Kawasaki dynarn-
ics of the Ising chain with alternating near-neighbor interactions, Ji, J2, with the exponents related to
the ratio of the two interaction strengths. We expand upon the recent work of Droz et al. [Phys.
Lett. 115A, 448 (1986)] for the ferromagnetic system (J»O, Jz &0). For Glauber (spin-(lip) dynam-
ics we obtain the exact exponent z =1+p (p—:

~
J~ /Jz

~
) which generalizes the result of Droz et al.

and is valid irrespective of the signs of J~ and Jz, where it is assumed that
~
J,

~
&

~
J,

~
(p & 1). For

Kawasaki (spin-exchange) dynamics, we obtain dynamic critical exponents from conventional theory
which provides a rigorous lower bound for the exponent z. For the case of the conserved (ferromag-
netic) order parameter, however, we present arguments that the conventional exponent is exact. We
obtain z =4+p in this case. For Ji ~ O, Jq & 0 we derive the conventional exponent z = 1+p, whereas
for Ji &0 we find z =2 irrespective of J2. A key aspect of this system is the narrowing of the dynam-
ic critical region as compared with the isotropic system (Ji ——J&). The extra bond periodicity splits
the isotropic order parameter iiito components such that only comparatively closer to criticality does
the order parameter become the dominant slow mode. The nonuniversal critical dynamics is intrinsi-

cally linked to the nonuniform bond distribution, being shown to arise from a kinetic coefficient

which vanishes with a nonuniversal critical exponent. Nonuniversality of the dynamic exponent for

Ising systems with inhomogeneous couplings is argued to be specific to zero-temperature critical
points.

I. INTRODUCTION AND SUMMARY

Recently, Droz, Kamphorst Leal da Silva, and
Malaspinas (DKM) have investigated the critical dynam-
ics of an Ising chain with two dN'erent near-neighbor in-
teraction strengths, J&,Jz alternating in succession. ' As
these authors show, the dynamic critical exponents of this
system are nonuniuersal and can assume a continuum of
values given by the ratio of the two coupling constants.
For relaxational, spin-flip Glauber dynamics, in which
the order parameter is not conserved, DKM obtain the
exact exponent z = 1+JI /Jz where it is assumed
Jt & Jz &0 (ferromagnetic interactions). Thus, z can as-
sume any value greater than two for the spin-flip dynam-
ics of this system. For diftusive, spin-exchange Kawasaki
dynamics, which conserves the total spin, DKM obtain
z =3+2J&/J2 from an analysis of the motion of domain
boundaries, also for the ferromagnetic chain. The larger
exponent here reflects the slower dynamics of the con-
served order parameter. In the isotropic limit, J& ——J2,
these expressions reduce to previously known values:
z =2 for Cslauber dynamics and z =5 for Kawasaki dy-
namics. " The findings of DKM are noteworthy in that
the nonuniversality occurs within aPxed dynamical mod-
el and hence is directly associated with the spatial nonuni-
formity of coupling strengths. This is to be contrasted
with prior dynamic universality classes in one dimension,
which are prescribed essentially through the arbitrariness
which remains in these models once detailed balance has
been satisfied. Non universal factors in the transition

probability, which are irrelevant for detailed balance, can
nonetheless control the dynamic critical exponent. As
discussed below, this anomalous situation is related to the
zero-temperature critical point. The latter occurrence of
nonuniversality, therefore, is not related to an intrinsic
property of the system, e.g. , as specified by the Hamiltoni-
an, but rather to an ambiguity of kinetic Ising models
whereby the transition probability is not uniquely deter-
mined by detailed balance.

In this article, we examine at greater length the critical
dynamics of the alternating-bond Ising chain. In particu-
lar, we address in detail the mechanism whereby dynamic
nonuniversality occurs for this system, which we find to
be directly tied to the vanishing of the transition tempera-
ture. We also discuss, as contrasted with the isotropic
system, the narrowing of the dynamic critical region
which results from the extra bond-periodicity. We obtain
expressions for the dynamic critical exponents for both
spin-flip and spin-exchange dynamics for arbitrary in-
teraction parameters, i.e., where J~,J2 are not restricted to
be positive. Thus, in addition to the ferromagnetic sys-
tem, we investigate the critical dynamics of the alternating
antiferromagnetic chain (J& ~O, Jz ~0) and also the mixed
ferro- and antiferromagnetic cases (J~Jz) &0. We assume
throughout that

~

J
& ~

&
~

Jz
~

. Our results can be sum-
marized as follows. For Glauber dynamics we obtain the
exact relaxation spectrum from an explicit time-dependent
solution. The extra periodicity splits the "unperturbed"
spectrum of the isotropic Cxlauber model into two
branches. From the low-lying branch, we obtain quite
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generally z = 1+p(p =
~
J1/J2 ~, ) 1) which generalizes

the DKM result, and applies for all ground states of the
system. For Kawasaki dynamics, however, it is necessary
to consider the separate cases of J~ and J2 as regards their
sign. This is because only for the ferromagnetic system is
the order parameter conserved. For reasons discussed
below, we study the Zwerger model adapted to the alter-
nating chain. Unable to solve the spin-exchange equa-
tions of motion (EOM) in general, we obtain information
about the critical dynamics from the initial response rate
of the order parameter in the critical region (conventional
theory ), which, when combined with Kawasaki's inequal-
ity, provides a rigorous lower bound for z. In this way,
for Ji &0, and hence when the dominant interaction is
ferromagnetic, we obtain the lower bounds z =4+p for
Jq&0 and z =1+p for J2(0. The large change in ex-
ponent here is related to the difference in ground state
structures which occur for the two signs of the weaker
bond J2. For the case of the conserved order parameter,
however, we present evidence that the dominant contribu-
tion to the long-wavelength critical response is given by
conventional theory. Hence, we conclude that z =4+p is
the exact dynamic exponent for spin-exchange kinetics on
the ferromagnetic alternating chain. This differs from
DKM's exponent and is in fact smaller, as would be ex-
pected of the lower bound. Our result would suggest
there is a faster mechanism for domain diffusion than that
considered by DKM. Finally, for the case of J1 (0 (dom-
inant interaction antiferromagnetic), we obtain the con-
ventional exponent z =2, irrespective of Jq.

In contrast to the Glauber model, spin-exchange dy-
namics cannot be solved without approximation, even in
one dimension. The single-spin EOM contains three-spin
terms, and in principle one is faced with an infinite hierar-
chy of coupled dynamical equations. Some analytic re-
sults, however, are known for the long-wavelength limit.
It can be shown, for the particular case of the (isotropic)
Zwerger model, that while the order parameter EOM con-
tains three-spin nonlinearities, the projection of these non-
linearities orthogonal to the order parameter contributes
to the associated memory function only at the leading or-
der O(q ) for small wave vector q. The significance of
this is that the projected, linear EOM is therefore exact
through O(q ), and thus the diff'usion coefficient can be
obtained exactly in the isotropic limit. We discuss the an-
isotropic case below. Neglecting the "orthogonal non-
linearities" in the EOM is equivalent to retaining only the
static, frequency-independent part of the memory func-
tion, which prescribes the initial response rate. The fre-
quency dependence of the memory function therefore be-
gins at O(q ) for the isotropic Zwerger model. 9 Since the
initial response rate for kinetic Ising systems forms an
upper bound to the subsequent response, ' dynamic scal-
ing of the static memory function provides a rigorous
lower bound to the dynamic critical exponent. Thus,
while Haake and Thol have shown for general one-
dimensional spin-exchange models that z )S, the (isotro-
pic) Zwerger model is in fact described by the lower
bound z =5. In Sec. IV we utilize the static memory
function for the anisotropic exchange dynamics to find the
concomitant lower bounds for z. We will argue that like-

II. EQUILIBRIUM PROPERTIES
OF THE ALTERNATING CHAIN

In this section we present the equilibrium properties of
the alternating system which will be required in our dis-
cussion of the dynamics. The system in equilibrium is
governed by the alternating-bond nearest-neighbor Ising
Hamiltonian:

X (J1~21 —1+J2a2i +1)~2i

where we have 2N spins with N unit cells. There is a crit-
ical point at T, =0 for the infinite system (N~ ~ ), which
we have assumed. The equilibrium probability distribu-
tion is given by

p [o'] =Z 'exp( pH [g])—(2.2)

wise for the anisotropic dynamics, the lower bound is ex-
act for the conserved order parameter. Retaining only the
static part of the memory function is tantamount to the
conventional approximation of dynamic critical phenome-
na. A naive application of conventional theory to one di-
mension, however, leads to erroneous results:
z =4—g=3 for Kawasaki dynamics and z =2—g=1 for
Glauber dynamics. The new wrinkle is a kinetic
coefficient which vanishes at the zero-temperature critical
point. " As discussed in Sec. III, it is in fact the
nonuniversal vanishing of the kinetic coefficient, which de-
pends on short-range correlations, which is responsible for
dynamic nonuniversality.

For the anisotropic exchange dynamics we find the fol-
lowing. The anisotropic interactions result in anisotropic
transition rates, which we find leads to a frequency depen-
dence in the memory function at the lower order O(q ).
Thus, conventional theory for this system does not readily

lead to an exact exponent as in the isotropic case. Still,
the possibility of an exact dynamic critical exponent can-
not be a priori excluded from this level of approximation.
As shown by Mazenko and Valls, to obtain a nonconven-
tional exponent requires, in the zero-frequency limit, a
delicate cancellation between the frequency-dependent
part of the memory function and the static part in the
critical region. We show in Sec. IV that the many-body
contributions to the response rate at 0 (q ) in fact vanish
in the critical region faster than the conventional
response, and thus there is no evidence for this cancella-
tion through second order.

The article is organized as follows. We first present the
equilibrium properties of the alternating-bond Ising chain
which will be useful in our discussion of the dynamics.
In Sec. III we solve for the explicit time dependence of
the spin-flip dynamics. The exact exponent for arbitrary
interaction strengths is obtained and the mechanism for
dynamic nonuniversality, via the vanishing kinetic
coefficient, is discussed. In Sec. IV we set up the spin-
exchange equations of motion for the alternating system.
The critical dynamics is then examined in the frequency
domain via the associated memory function. In Sec. V we
close with some remarks.
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where p=—1/kzi T, with T the temperature and where Z is
the one-dimensional partition function. All equilibrium
averages can be calculated exactly for this system. For
example, the correlation functions are of the form'

j—1

&o., o., &= g u„
n =i

(j ) 1) , (2.3)

1
R& —— —g exp(i qna )cr z„v'N

1
S~ = —g exp[iq (2n + 1)a /2]o 2„+1,

n

(2.5a)

(2.5b)

where a is the length of the unit cell, i.e., twice the lattice
spacing. An order parameter for the entire system is then
given by

where the brackets denote an average with respect to
P[o], and where u„=tanh(E„) with E„=PJ„and J„ is
the bond coupling spins o„o„+1. From Eq. (2.3) one ob-
tains the correlation length,
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Thus, since
I
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I
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I
I~2

I
) as 7 ~o i e

g is controlled by the weaker bond. We note here that
exp(2

I
%1

I
)=P.

The sequence of alternating bonds creates an extra
periodicity, J„+2——J„, and can be thought of as creating
two interpenetrating sublattices which, respectively, "see"
J1 (Jz ) to the left and Jz (J1 ) to the right, the even (odd)
sites. It will be useful therefore to introduce the spin
Fourier transforms at alternating sites, which act as
separate sublattice order parameters,

III. SPIN-FLIP DYNAMICS

In this section we derive the exact spectrum of relaxa-
tion rates for the alternating system under spin-Hip dy-
namics, and from this we extract the dynamic exponent.
We then examine the mechanism of nonuniversality.

A. Dynamical equations

We first require the basic dynamical equations obeyed
by Ising spins. The time development of Ising spins ' is
generated stochastically such that the time-dependent
probability distribution satisfies a master equation, the ac-
tion of which we denote as an operator

dP[o, t] D P[
dt

(3.1)

D is an operator in the space of system configurations,
which, via the spin dynamics, evolves an arbitrary vector
in this space to the equilibrium governed by Eq. (2.2),
about which detailed balance is satisfied. Analytic expres-
sions and further properties of spin-Hip operators can be
found in Refs. 14 and 15. For our purposes, we note that
the time rate of change for a single spin under spin-Aip
dynamics is generated via

D o; = —ao; W(cr), (3.2)

where D is the adjoint of D and is the evolution opera-
tor for spin functions. o; is the basic Rip rate in the ab-
sence of interactions and W;(o ) is the transition probabili-
ty (see below) which contains the eff'ects of local correla-
tions. The simplest form of W;(cr ) is that due to
Glauber, which is readily adapted to the alternating
chain.

The alternating spins satisfy separate EOM of the form
given by Eq. (3.2), with transition rates

—(R~+Sq) .
1

(2.6)

Of importance in what follows is the structure factor 7q,
which prescribes the spectrum of equilibrium Auctuations,

~2 (cr) o 2 (j zo2 +1+Yloz —1)

2n +1(~) ~zn +1() 1Ozn -+2+ Yz~zn )

where, to satisfy detailed balance,

(3.3a)

(3.3b)

We find, in the limit N~oo,
(1—u1uz)[1+u1uz+(u1+uz)cos(qa /2)]

Xq
(1—2u, u zcos(qa)+ u 1u 2 )

(2.7)

(2.8)

u, (1—uz)
71

1 —u 1u2

uz(1 —u1)2

1'2 =
1 —u 1u2

(3.4a)

(3.4b)

Equation (2.8) reduces to the isotropic expression when
the doubling of the Brillouin zone is taken into account.
Pq demonstrates the critical fluctuations of this system.
When both u1, u2~1, the system is dominated by long-
wavelength ffuctuations. When both u, , uz~ —1 (antifer-
romagnetic chain) the ground state of alternately aligned
spins develops for q~2m/a. Finally, for the mixed ferro-
and antiferromagnetic cases (u1uz~ —1), a dimerized
ground state of alternately oriented spin pairs develops for
q~~/a. We note that for each of the three ground-state
structures, the susceptibility at the critical wavevector
diverges linearly with g', X-g. This is a manifestation of
the fact that the static critical exponents of this system
(y/v= 1) are independent of J1 and Jz, i.e., universal. '

The above transition rates have been derived previously in
a real-space dynamic renormalization-group analysis of
the Glauber chain. ' In that context it was necessary to
develop an anisotropic Glauber dynamics in which, for
coarse-graining cells of two spins, the alternating bonds
were referred to as "intra-cell" and "inter-cell" couplings.

The sublattice degrees of freedom form separate, but
coupled, dynamical systems. It is therefore convenient to
first obtain the evolution of an auxiliary column vector
%~—:(R~S~ ) ( T denotes transpose). The order parameter

is ultimately the dynamical variable of interest, the
time dependence of which will be obtained from that of

We find from Eqs. (2.5), (3.2), and (3.3), the linear
system of dynamical equations,
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D.%, = —c M, %, ,

where Mq is the Hermitian matrix

—A, e'
—A, e-'

with

A~ = [(ye+7', ) —4),1 2sin (qa /2)]'

and phase angle 6 defined via

(3.5)

(3.6)

(3.7a)

namics is therefore dominated by the lower branch. Note
that A, is nonzero for all q, which reflects the absence of
conserved modes for spin-flip dynamics. For tempera-
tures approaching criticality, however, the minimum of

vanishes like g ', where z is the dynamic critical ex-
ponent.

The dynamics in the critical region is characterized by
asymptotically long-lived critical fluctuations, i.e.,
vanishes at the same ordering points where +q diverges.
This can be seen as follows: from Eq. (3.8a),

tanh(K )
—K2 )

tan(6) = tan(qa /2) .
tan )+ (3.7b)

I
1'

& I +
I
)'2

I
)

—4 )'i) z I

»n'[(q —qo)a /2] I
'" (3.13)

Note that a direct EOM for g~ does not couple to itself,
but rather separately to its components Rq, Sq, i.e., the
order parameter is not an eigenmode of the dynamics as
occurs in the isotropic case. As we will see, it is only in
the critical region that the components of g~ order togeth-
er such that the order parameter is the characteristic
dynamical mode.

Mq has eigenvalues and eigenvectors

~q —1+Aq, (3.8a)

1
q

(3.8b)

in terms of which the solution to Eq. (3.5) is expressed as

%~(t)= g A~g~e (3.9)

where the expansion coefficients

Aq~= —(+-e ' Rq+Sq) . (3.10)

The time-dependent order parameter then readily follows
via g~(t) = UV~(t), where the row vector U = I/&2(1 1).
Thus, the auto-correlation function of the order parameter
is given by

(1(,p, (t))= g X,'e (3.11)

where

X;=(UP;)(1t, A,") . (3.12)

Equation (3.11) is the time-dependent structure factor; it
contains all information concerning the time-dependent
correlations of fluctuations for this system under spin-flip
dynamics. Of particular interest, however, are the dy-
narnics of critical fluctuations to which we now turn.

B. Critical dynamics

The eigenvalues A,
— prescribe the relaxation spectrum

for the alternating-bond Ising chain, of which there are
two branches separated by a gap at the zone boundary.
The gap size is, in all cases, given by
2 tanh(

I
K,

I

—
I Kq ), which has a sensitive temperature

dependence: For the slightest anisotropy, a large gap
eventually develops for T~O. The low-temperature dy-

where qo is the wave vector describing the ground state
structure (see Sec. II), i.e. , qoa =0,2~, for (J,Jz) &0
(ferro- and antiferromagnetic systems, respectively) and
qoa =tr, for (J,J2) &0 (mixed cases). We easily find for
T~O that in each case for q~qo,

4 =2k "+"I1+-.'[(q —qoC]'+ (3.14)

Xq+ =—,'Xq ~q
A —(y, +y2)cos(qa /2)

q

A~ 1+( y, +y&)cos(qa /2)
(3.15)

Hence, for q =tr/a, X~+ vanishes like g' '=g ~ in the
critical region and it is only in the limit as T~O that
X~ ~X~. We see also from Eq. (3.15) that X~+ is in gen-
eral nonzero away from the special wave vectors q =0,
2~/a. The alternating bond environment therefore leads
to a dynamic critical region narrower than that of the iso-
tropic system, since one must be relatively closer to criti-
cality for the order parameter to have become the dom-
inant slow mode.

This expression is of the dynamic scaling form and thus
we readily identify z =1+p, which is nonuniversal, i.e.,
dependent upon J& and Jz. The nonuniversality mecha-
nism is discussed below. This result generalizes the
DKM exponent and applies for all ground states of the
system for spin-flip dynamics.

We now examine the spin modes associated with the
lower branch, which we expect to be given by the order
parameter in the critical region. From Eq. (3.10), it is
seen that the correspondence A~ ~P is controlled by
the phase factor 5 which is temperature dependent
through Eq. (3.7b). Note that when 5=0, this correspon-
dence holds manifestly since then UP~+ =0, UP = 1,
A~ =P~, and thus X~ =X~. When 5=~ the relaxation is
entirely in terms of the upper branch kq+, since then
Up =0, Up~+=1, and A~+=1(~. It can be shown that
for q =0, 5=0, for J] & 0, while for J] &0, 6=~. For
q =2m/a we find the opposite, 6=~, for J»0, while for
J

& & 0, 6 =0. These results hold irrespective of J2.
Hence, for precisely these wave vectors, which are ap-
propriate for the critical ferro- and antiferromagnetic sys-
tems, respectively, the dynamics is a simple decay of the
order parameter with the relaxation rate, kq . The mixed
regimes, ( J~J2 ) & 0, however, are more complicated in that
the critical correspondence gq ~gq holds only asymptoti-
cally. To see this, consider the "remainder" quantity Xq+,
since gq =gq —gq+. We find
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C. Dynamic nonuniversality at T, =0

We now examine the nonuniversality in detail. As we
have just shown, the dominant contribution to the time-
displaced correlations of critical order parameter fluctua-
tions is in terms of a relaxation of the zero-time correla-
tions with the single, critical relaxation rate. It is there-
fore convenient to define an eA'ective critical frequency via

tv, (q)=(X ) (3.16)

where the kinetic coefficient is taken from

(3.17)

We can then obtain a dynamic exponent from cv, (q), the
advantage of which is that there is a simple physical inter-
pretation for I q. However, this identifies z from the ini-
tial response of the system, whereas dynamic critical phe-
nomena is associated with the long time response. We
defer momentarily the justification of such a procedure.
We will see that nonuniversality arises from the critical
behavior of I q. We find

&(q,z) =X,(z +P(q, z))

where

C(q, z)= J "dte "(P,P, (t))
0

(3.20)

(3.21)

is the dynamic structure factor. The above inequality can
then be formulated as,

dimensional dynamic critical exponent can be understood
for the isotropic, ferromagnetic chain in terms of the
random-walk motions of domain walls. ' We have not
formulated arguments of this type which encompass the
ground state structures for which our result z =1+p ap-
plies.

For kinetic Ising systems, the initial response rate is al-
ways larger than the subsequent response rate, ' implying
that the conventional exponent is in principle the lower
bound, z)z, . As in the above example, however, it may
happen that the exponent computed from the initial
response equals the (true) exponent characterizing the
long-time response. The long time response is naturally
discussed in the frequency domain in terms of the associ-
ated memory function, '

P(q, z), defined via

I =oI ~,
where

(3.18) P, (q) & P(q, z),
where

(3.22)

(1—u ])(1—u ~)
I R

—( W,„(o ) ) = ( W,„+](o) ) =
(1 —u ]u2)

])),(q)= lim P(q, z)
Z~ oo

(3.23)

(3.19)

We see that I
q

is simply the average lip-rate per spin in
the presence of interactions, which here is identical for the
two sublattices. Conventional theory presumes this quan-
tity to be finite at T„ the argument being that it should
not exhibit critical behavior since it depends on local in-
teractions. In two dimensions, I R is indeed a smooth
function of temperature at T, . The conventional dynam-
ic exponent is thus given by z, =y/v=2 —g, in terms of
the (universal) static critical exponents. However, for the
one-dimensional system T, =0, the significance of which
is that now I z is forced to critically vanish. As T~O,
large domains develop, with possible excitations occurring
only at domain boundaries. Detailed balance then re-
quires the average flip rate to vanish in such a case. This
"anomalous" kinetic coefficient results in a "nonconven-
tional" dynamic exponent. For the alternating bond sys-
tem, it is clear that the vanishing kinetic coef5cient is the
mechanism for nonuniversality, since I z depends on
short-range correlations, and hence its vanishing occurs
nonuniversally Indeed, from Eq. . (3.19) we find I z —g
Combined with the divergence of X~, Eq. (3.16) yields the
exponent z =1+p, in agreement with our exact calcula-
tion. Generally, if the kinetic coefficient vanishes in the
critical region as g, then the conventional exponent for
model 2 is given by" z, =2—g+x. I z is the canonical-
ly averaged flip rate for all spins of the system. A more
microscopic interpretation of the low-temperature dynam-
ics in one dimension focuses on the spins most likely to
flip, the domain boundary spins. As shown by Cordery,
Sarker, and Tobochnik, ' the physics of the one-

is the static part of the memory function. For the spin-
flip dynamics of the alternating-bond system, an exact
solution could be obtained. For the Kawasaki dynamics
this is not the case and we must resort to approximate
methods. By focusing on the memory function for this
system, we obtain the rigorous lower bound to the dy-
namic exponent in all cases. It will also be possible to
ascertain when the conventional exponent is exact. We
now turn to the spin-exchange dynamics of the alternating
chain.

IV. SPIN-EXCHANGE DYNAMICS

In this section we set up the EOM for spin-exchange
dynamics. We obtain ])],(q), from which we extract the
conventional critical exponents. We then analyze the
remaining frequency dependence of P(q, z). We present
evidence that the conventional exponent is exact for the
case of the conserved order parameter.

A. Equations of motion

D O;= —P g (o; —o';+, )W';;+, (tr),
a =+1

(4. 1)

where f3 is the exchange rate in the absence of interac-
tions, the sum is over nearest neighbors and 8';;+, is the
probability of near-neighbor exchange (see below). The
total spin is manifestly conserved as can be seen by sum-
ming Eq. (4.1) over all sites. Spin-exchange dynamics is a
two-site process, and thus for the alternating bond envi-

The EOM for nearest-neighbor spin-exchange dynamics
is of the form '
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+(o2„—o2„1)W2„1 2„( 1T)],

ao2n +1 l3[ (o2n +1 o 2n +2) W2n +1,2n +2(o )

+ (o 2„+1—o 2„)W2„2„+1(o)] .

(4.2a)

(4.2b)

The simplest transition rate in one-dimension is that due
to Zwerger which we adapt to this system. For even-odd
exchange (taken from left to right, respectively) we find

W2, 2 +1(~} 1 91(~2 —lo2 +~2 +lo2 +2} (4 3a)

while for odd-even exchange (taken left to right)

W2n —1, 2n (o )
p l2(o2n —2o2n —1+o2n o2n +1)

where

g, 2
=—tanh(2K1 2) . (4.4)

Note that the transition rate for even-odd (odd-even) ex-
change, i.e., between spins coupled by J2 (J, ), is actually
set by the other coupling, J1 (J2). This is because the
product of the exchanged spins is an invariant of the dy-
namics. Detailed balance is satisfied irrespective of the
bond coupling the exchanging spins, since the pair contri-
bution to the Hamiltonian from these spins is invariant.
The transition rate, however, is sensitive to the change in
energetic environment into which exchange occurs. This
is controlled by the "outside" bonds, which, because of
the bond-periodicity are the same on adjacent sides of the
exchanging pair.

The single-spin EOM generates nonlinear products of
three consecutive spins, as can be seen from Eqs. (4.2) and
(4.3). The occurrence of this type of nonlinearity is
specific to the Zwerger model and is the feature which al-
lows it to be tractable. Hence, in addition to the single
spin transforms, Eq. (2.5}, we require the Fourier trans-
forms of consecutive three-spin terms, of which there are
two types, centered on alternating sites,

1T = g exp(iqna)o 2„,o.2„o2„+, , (4.5a)

ronment anisotropic transition rates must be established.
The generalization of Eq. (4. 1) is therefore

Da o2n P—[ (o2n o2n +1)W2n, 2n +1(o )

b = —(q)1+F2)sin (qa/4)+ —(q), —q2)sin(qa/2) .
q 2

(4.7b)

D 0q = 4.(q)Wq—+&Iq (4.8)

where Eq. (4.8) combined with Eq. (4.6) defines Iq such
that

(y, I, ) =0,
and where

(4.9)

(4.10)

Equation (4.10) is equivalent to Eqs. (3.16) and (3.17).
Note that the two terms in Eq. (4.8) are orthogonal at
zero time only. Whether the degrees of freedom which
comprise Iq are relevant to the long-time critical response
is addressed below. It is natural to separate from (t(q, z)
its frequency-dependent, "dynamic part, "

pd(q, z) via

4(q z)=0, (q)+ed(q—z) . (4.11)

1f)d(q, z) arises solelp from the contributions to the equation
of motion which initially have no component along the or-
der parameter,

The total magnetization, which is the q =0 component, is
readily seen to be conserved. Note that the terms odd in

q are associated with anisotropy of the coupling strengths,
i.e., they vanish in the isotropic limit. These terms can be
traced to the anisotropy of exchange rates which breaks
the invariance of the dynamical equations under q~ —q.
An attempt to find an explicit solution for P would entail
confronting an infinite hierarchy of coupled dynamical
equations. EOM for Tq and Vq couple to five-spin terms,
etc. As discussed in the previous section, information
concerning the critical response can be directly obtained
from the associated memory function.

The EOM for 1)'rq is complicated in that it couples sepa-
rately to the modes Rq, Sq, Tq, and Vq. This prolifera-
tion of modes is characteristic of the alternating bond sys-
tem, with its extra periodicity. To achieve simplicity,
then, we explicitly project the order parameter out from
the EOM,

1
V, = g exp[1q(2n +1)a/2]o2no2n+, o2n+2 .&x „

(4.5b)

Pd(q, z) = —(Xq ) 'P Pq, (I q, I, ),
where the projectorlike quantity

Pq (A q Bq) ( A qR (z)Bq )

(4.12)

The order parameter EOM is then given by

D g =aqRq+a Sq+bq T +b q
V (4.6)

where

aq = —4 sin (qa /4)+ —,'(2), +g2)[cos(qa /2) —cos(qa)]

—(A qR(z)1ttq)C '(q, z)(P qR(z)Bq)

(4.13)

will be useful in what follows. Pq, (A,B) effectively pro-
jects any component of the order parameter out from the
dynamical correlation function between variables A and
B. R (z) is the resolvent operator

I+ —(21, —g2) [sin(qa ) —sin(qa /2) ]
2

(4.7a)
R (z)—:[z D]— (4.14}

and
(fd(q, z) is a complicated object which refiects the non-
linear nature of the problem. On the other hand, P, (q) is
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B. Conventional critical dynamics

We find from Eq. (4.10)

P, (q) =213sin (qa l4)I D(+q )

where

(4.15)

I D
——I i(1 —uz)+ I q(1 —u i ), (4. 16)

and where I ] and I 2 are the two average exchange rates

(4.17a)

exactly calculable. We first extract the conventional re-
sults for this system from P, (q). We then return to the
effects of the remaining dynamic piece upon the critical
response.

(4.22)

Thus, the conventional exponent is z =4+p. Note that
since p) 1, our result is smaller than that of DKM, who
obtain 3+ 2p from an analysis of domain wall motions.
As noted in Ref. (11), domain wall random walk argu-
ments seek to identify the fastest dynamical mechanism by
which a domain can traverse a distance g and therefore
arguments of this type should yield a lower bound to the
dynamic exponent in agreement with conventional theory.
The discrepancy here is not understood. Our result
would imply a still faster mechanism for domain diffusion
than that considered by DKM.

For J2&0, the ground state is a dimerized structure
consisting of alternately oriented spin pairs. The vanish-

ing of I D is

(4.17b) I D=l —ui-g (4.23)

Equation (4.15) prescribes the lifetimes of fluctuations un-
der Kawasaki dynamics for the alternating chain in the
conventional approximation, which, as we will see, can be
the limiting form of the P(q, z) in the critical region. We
note that Eq. (4. 15) becomes exact in the high-
temperature limit. Its nontrivial q dependence in this lim-
it reflects the dynamical coupling needed to maintain spin
diffusion even in the absence of interactions. As we
remarked previously, the divergence of X~ is universal,
i.e., independent of ground state. Thus, the nonuniversal-
ity again occurs via the vanishing of I D as T~O. We
now examine the various cases.

1
D = lim lim P(q, z) .

q~o z~o q
(4.18)

P(q, z) has an overall, leading q dependence for small q
[see Eq. (4.28)] and the limit can be taken directly. We
thus obtain the conventional diffusion coefficient

(4.19)

In the isotropic limit D, reduces to the e~act Zwerger
diffusion coefficient. As we will show, D, is the dom-
inant contribution to the full diffusion coefficient in the
critical region [see Eq. (4.33}]. In the critical region,

I D =(1—u, )(1—u2)-g "+~' (4.20)

Combined with the divergence of the susceptibility, the
diffusion coefficient then vanishes asymptotically as

g
—(2+p)

We obtain from Eq. (4.15),

(4.21)

1. Dominant interaction ferromagnetic

When both interactions are ferromagnetic, critical Auc-

tuations occur at long wavelength and the dynamics is
dominated by the conserved order parameter. The spin
diffusion coefficient associated with this hydrodynamic
mode is then obtained via'

Thus, the conventional exponent in this case is z =1+p.
The smaller exponent (faster dynamics) for this system as
compared with the ferromagnetic chain is due to two
effects. The order parameter is not conserved which
lowers the exponent by two. Secondly, however, spin ex-
change proceeds more readily in the presence of the "in-
terfaces" of the dimerized structure. Correlations decay
more rapidly as the domains can "dissolve" rather than
diffuse. This is reAected in the less severe vanishing of
I D, i.e. , I D-g ~ as opposed to g

"+~' for J2 &0.

2. Dominant interaction antiferromagnetic

For this system we obtain z =2 irrespective of the
weaker bond, J2. For J2) 0, the vanishing of I D is
characterized by

(4.24)

whereas for J2 &0,

(4.25)

Thus, we obtain z =2 for both cases. Note that we also
obtain z =2 for the isotropic antiferromagnetic exchange
dynamics. This case has not received prior investigation
to the best of our knowledge. The exponents from Eqs.
(4.23) —(4.25}, i.e., z = I+p and z =2, resemble spin-Ilip
exponents. This is to be expected, since while the total
magnetization is conserved by the dynamics, the order pa-
rameter for these cases is not.

C. Dynamic memory function

As we have stated, the conventional exponent is in prin-
ciple the lower bound to the full exponent. This can be
readily seen from the Kawasaki inequality, Eq. (3.22), as
both P, (q) and P(q, z) are positive. One can also infer that
Pd(q, z) (0. If the long-time critical response is to be
slower than the conventional result, we see that in the
critical region the form of Pd(qo, 0) must be such that it is
composed of —P, (qo) plus a piece Ag ' with z &z,
(3 &0). Thus, if it can be shown in the critical region
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that P, (qo) ))
~
Pd(qo, O) ~, then conventional theory

yields the exact exponent. While we are unable to evalu-
ate Pd(q, z) explicitly, we can gain insight from its overall
structure. Combining I~ from Eqs. (4.6) and (4.8) with
Eqs. (4.12) and (4.13), it is readily shown that Pd(q, z)
consists of higher-order correlations among the split linear

I

(L) single-spin modes R,S and the nonlinear (N) three-
spin modes, Tq, Vq,

—Xq Pd (q, z) =P [GLt (q, z)+ GL&(q, z)+ Gv~(q, z)]

(4.26)
where

GLL (q, z) = —,
'

( g ~
—g2 ) sin (qa l2) [2 cos(qa l2) —1] P, (R —S,R —S),

Gt ~(q, z) = ,'(ri~ ——g2)sin (qa l2)[2 cos(qa l2) —1][P,(R —S, T —V)+P, (T —V, R —S)]

(4.27a)

+ —
(g& —qz)sin (qa l4)sin(qa l2)[2 cos(qa l2) —1][Pq,(R —S, T —V) Pq, (—T —V, R —S)], (4.27b)

and

Gzz(q, z)= 4(7)& —gz) sin (qal2)Pq, (T —V, T —V)

+i(g, —gz)sin(qa l2)sin (qa/4)[ P~, (T, V) P~, (—VT)]+(g&+gz) sin (qa l4) P~, ( T+ V, T+ V), (4.27c)

where the function Pq, (A, B) is defined by Eq. (4.13).
Note that Pd (q, z) is a real-valued function. Pd (q, z)
reflects the full many-body nature of the problem, which
is complicated by the splittings induced by the extra bond
periodicity. The following, however, is readily observed.
If the sublattice degrees of freedom were identically
equivalent dynamical variables, note that only the third
contribution to Gzz(q, z) would remain in Pd(q, z). These
same cancellations also occur in the isotropic limit,
J& ——J2. Yet even with anisotropy, these terms eventually
vanish in the critical region for much the same reason:
the components of P order together. Once again, we see
a narrowing of the dynamic critical region. We notice,
however, that the terms associated with anisotropy involve
correlations among relatively "fast" modes, R —S, T —V.
Hence, we expect that, asymptotically, correlations among
the "split" linear and nonlinear modes are irrelevant to
the long-time critical response of P~, and furthermore,
that only the "intrinsically" nonlinear correlations,
Pq, (T + V, T + V), could lead to a nonconventional ex-
ponent. However, note that the "slow" nonlinear correla-
tion begins only at O(q ) for small q, as seen from Eq.
(4.27c). Thus, for the same reasons that the exponent is
exactly known for the isotropic ferromagnetic exchange
dynamics, these considerations suggest that the conven-
tional exponent could also be exact for this system in the
case of the conserved order parameter. We must show
that the contributions to Pd(q, z) at O(q ) do not vanish
any slower than the conventional response.

In the long-wavelength limit, the separate contributions
in Eq. (4.26) combine into the following form

/3 (qa)
16+o

XP„(R—S+T —V R —S + T —V)+0 (q') .

(4.28)

The exact expression for the diffusion coefficient is there-
fore

D =D, —P'a '(rii n2)'—
16+p

XPO o(R —S+T —V, R —S + T —V), (4.29)

where D, is given by Eq. (4.19). Note that
(ri~ —g2) —g and thus the prefactor in the "dynamical"
term vanishes as g . The above correlation function
is among the nonconserved set of variables
R p

—Sp + Tp —Vp, which relaxes rapidly when compared
with the (conserved) order parameter. For convenience
we define the combination of variables Wq —R q

—Sq
+ Tq —Vq. It is shown in the Appendix that

( w', )
Po, o(w w)=

&ww oo (4.30)

( w,') -g-~,
&w, w(0 0)-0 '

(4.31)

(4.32)

which, when combined with Eq. (4.29) yields as T~O,

D =D, —O(g "+~') . (4.33)

' +~' [Eq. (4.21)], the conuentionai result is
the leading contribution to the diffusion coe+cient in the
critical region. This implies, then, that the conventional
exponent z =4+p is exact.

V. DISCUSSION

We have examined the critical dynamics of the alternat-
ing bond Ising chain for two types of kinetic processes
and for arbitrary bond strengths. We find nonuniversal

where K~ ~ is the memory function associated with the
variable W~. The remaining "projection" terms [see Eq.
(4.13)] start at O(q ) and thus do not contribute at long
wavelength, i.e., dynamically there is no component of
Wp along the uniform order parameter. We show in the
Appendix that in the critical region [Eqs. (A4) and (A8)],
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dynamic critical exponents which are governed by the ra-
tio of the couplings. For the general Glauber dynamics
and for the ferromagnetic Kawasaki dynamics we obtain
exact dynamic exponents. For the remaining cases of
spin-exchange dynamics we obtain rigorous lower bounds
corresponding to conventional theory, which may also be
asymptotically exact. Dynamic nonuniversality was
shown to arise from the nonuniversal vanishing of the ki-
netic coefficients, which depend on local correlations. The
nonuniversal critical dynamics of this system is therefore
a consequence of T, =0. However, not every system with
T, =0 may in fact show nonuniversal dynamic critical
phenomena due to anisotropy. A counter-example is the
fractal Sierpinski gasket, which due to its finite
ramification has a zero temperature critical point. In this
case the self-similar geometry greatly extends the static
critical region via an anomalously divergent correlation
length. As for the conventional critical dynamics of this
system, ' the strongly diverging correlation length forces
the kinetic coefficient, with its dependence on local corre-
lations, to vanish not as a power of g but instead only log-
arithmically. Thus, we would not expect nonuniversal
critical dynamics for a Sierpinski gasket with anisotropic
couplings, unless the static critical phenomena were also
nonuniversal. The dynamic exponents for the alternating
chain are larger than those for the isotropic system, which
result from the energetic "bottlenecks" produced by the
stronger bonds. One can speculate whether the larger ex-
ponents of this system can be seen as a remote precursor
to the breakdown of dynamic scaling seen in less regular
geometries. Formulated differently, the extra periodicity
of the alternating bond system forces the dynamical criti-
cal region to be narrower than that for the isotropic sys-
tem. This is due to the extra dynamical freedom of the
"split" order parameter components, where only asymp-
totically in the critical region does the order parameter be-
come the dominant slow mode. One can then envisage a
route to the breakdown of dynamic scaling as a progres-
sive narrowing of the dynamic critical region as further
periodicities are introduced.

APPENDIX

We calculate the higher-order correlation function
which contributes to the diffusion coefficient, Eq. (4.29).
From Eq. (4.13),

(W, W, )
Pq p(W, W')=

&w, w(e o)
y(q, o)

Xq
~
Kw @(q,O)

~

where K~ ~ and K~ & are the respective memory func-
tions. We find that

~
(W, P, ) ~'-O(q'), (A2)

(A3)

which vanishes in the critical region as

(W', ) -g-& (A4)

We calculate the memory function associated with 8 o

utilizing its initial relaxation rate. As the fluctuations of
Wp have no critical weight [Eq. (A4)], we expect this to
be a good approximation. Thus, we have

(O, O)= —(W,IJ.W, ) . (AS)

It can be shown that

( WpD W' ) = —2/3[ I, ( 1 — z) (3—u2)

+1 q(1 —ui) (3—ui)], (A6)

and the equilibrium correlation between W, g vanishes
at long wavelength. Furthermore, we find that the
memory function K~& is independent of q as q~0. The
"projection" piece in Eq. (Al) therefore starts at O(q ).
This is to be expected since 8'0 is nonconserved and thus
is a faster mode than Pq. Therefore, the q =0 limit can
be taken in Eq. (Al). It can be shown that

( Wp ) = 2uiuq(2 —u, —u2)

+ [(1—u)) +(1—u2) —(u, —u2) ],2 3 3 2

1 —u&u2
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which vanishes in the critical region as

—( WpD Wp) -g ' +~' .

From Eqs. (A4), (AS), and (A7),

&w, w(o o)-k '

(A7)

(A8)
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