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Dipole radiation in a multilayer geometry
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There are several kinds of experiments that can be done with multilayer stacks of dielectric
media which require an understanding of light emission by sources within the stack for their
analysis. These experiments may involve, for example, light-emitting tunnel junctions, Raman
scattering in Kretschmann and other multilayered geometries, and Rayleigh scattering by small
amounts of surface or interface roughness, either alone or in combination with other processes. A
set of electromagnetic CJreen's functions for a multilayer stack of isotropic dielectric media [D. L.
Mills and A. A. Maradudin, Phys. Rev. B 12, 2943 (1975)] gives the electric fields produced every-
where by a point source of current oscillating at a frequency f. These Green's functions can thus
be used to solve this type of problem. In this paper we show how these Green's functions can be
written in terms of 2)&2 transfer matrices of the type commonly used to find the fields in a dielec-
tric stack due to an incident plane wave. With this simplification we can easily evaluate the
Green's functions for a stack with an arbitrary number of layers. We further show that, when the
electric fields generated by a point source within the stack are evaluated far away, they can be
written directly in terms of the electric fields that would be generated at the location of the
current source by plane waves incident from the direction of the observation point. We show that
this follows from the Lorentz reciprocity theorem. Thus, in this case the formalism of Green's
functions is not needed.

I. INTRODUCTION

Understanding the propagation and generation of light
in multilayered structures is necessary in order to
correctly interpret experiments with light emission from
metal-oxide-metal tunnel junctions, or with light scatter-
ing in multilayered structures. In the case of light
scattering, one must first calculate the electric fields due
to the incident beam at the locations of the scatterers in
the multilayered structures. Then the oscillating electric
dipoles of the scatterers radiate light into the multilayer
structure. Thus one needs to know how to calculate the
fields or the power radiated by oscillating dipoles in the
structures. In light-emitting tunnel junctions, the radia-
tion source is current fluctuations due to the tunneling
currents, and the surrounding medium is multilayered by
the nature of the device. Thus analyses of these experi-
ments require calculation of local (macroscopic) fields in
a multilayered stack due to oscillating electric dipoles lo-
cated in the stack.

A theoretical framework to deal with these problems
has been developed by Maradudin and Mills (MM). '
They and others have addressed both these problems for
various geometries. One example of such a geometry is
an experiment with a light-emitting tunnel junction on a
prism coupler, a structure consisting of five layers; the
prism, an aluminum film, a very thin layer of aluminum

oxide, a gold film, and air. Another example is a recent
experiment on Raman scattering in Kretschmann
geometry using a sample with four layers; a prism, a
silver film, an MgFz film, and a liquid Raman-scattering
sample. In analyzing both these experiments, some of
the present authors made attenuated total reflectivity
measurements, and compared them to calculations of
reflectivity done using the method of 2X2 transfer rna-
trices, in order to characterize the structures. In the
second experiment the method of 2&&2 transfer matrices
was also used to calculate the fields due to a plane wave
incident from the semi-infinite prism. However, to cal-
culate the fields radiated by the dipoles, it was necessary
to use the results of the present paper without presenting
a rigorous proof.

In this paper we show how to calculate the elec-
tromagnetic Green's functions for a general n-layered
structure using the 2)&2 transfer matrix method origi-
nally due to Abeles. One can use these Green's func-
tions based on 2X2 matrices to calculate the radiation
fields emitted by an oscillating electric dipole located in
a stack. We also show that the radiation fields due to
such an oscillating dipole take on a simple form when
observed in the top or bottom layer far away from the
rest of the stack, and that they can be written in terms
of the local electromagnetic fields created in the stack by
an incident wave without any use of the apparatus of
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where the matrix 3 is the transpose of A, E,'"' and
E~"' are the amplitudes of the s- and p-polarized light
emitted into the (O, y) direction, respectively, as seen
from far away, and E,'" and E~" are the amplitudes of the
s- and p-polarized light of a plane wave incident from
the (O, ~p) direction. This is not surprising; in fact, it fol-
lows from the Lorentz reciprocity theorem. This rela-
tion serves as a useful check on the algebra. The appli-
cation of this method to Raman scattering in Kretsch-
mann geometry in ultra-high vacuum will be treated in a
forthcoming paper.

Sipe gave an expression in terms of transfer matrices
for the power radiated by an arbitrarily oriented point
dipole located in the bottom layer of a stack of layered
media. He arrived at his result by a direct and intuitive
approach which is justified by the Lorentz reciprocity
theorem. He stated that it is easy to generalize his for-
mulas to the ease of a dipole located within any layer
but did not do so.

Finally, we note that the Green's functions of MM
can be applied to several kinds of problems involving
surface roughness. ' '

Green's functions. This reciprocity is a consequence of
the more general Lorentz reciprocity theorem, as shown
in the Appendix.

This calculation is based upon a set of Green's func-
tions derived by MM. ' The Green's functions give the
electric fields caused by a point source of current oscil-
lating at frequency f and having arbitrary location and
direction. The sinks and sources of charge necessary for
such a point source of current to obey the continuity
equation are assumed to exist.

We do not repeat the derivation of the Green's func-
tions of Mills and Maradudin. Since an oscillating elec-
tric dipole of frequency f can be thought of as a point
source of current together with the necessary sources
and sinks of electric charge, the Green's functions of
MM solve the present problem completely. However,
we rewrite the Green's functions presented by MM in
terms of 2&2 transfer matrices, a form which is well
adapted to computer calculation.

The method of stationary phase is then used to find
the limiting form of the electric field as

~

z
~

~ ce, in
much the same way that Lax and Mills did. We then
write out the explicit results for the electric field ampli-
tude of the s- and p-polarized radiation emitted into the
(O, cp) direction by an oscillating electric dipole poe
located at r=(0, 0,z) in the dielectric stack. We com-
pare this result with the electric field E(r) at r=(0, 0,z)
produced by s- and p-polarized radiation incident from
the (O, y) direction as calculated using 2X2 transfer ma-
trices. There is an exact reciprocity between these two
results, in the sense that

in

E(r)= A ';„e

II. A RADIATING ELECTRIC DIPOLE
IN A MULTILAYER

—5(r —ro)]

=
~ po

~

e ' 'V'5(r —ro).
b, r

Therefore p(r, t) = —[&5(r—ro)].poe
We now find the current density corresponding to this

dipole using the continuity equation V.J+Bp /Bt =0.
This yields

BJ, 85(r —r )
ioi g — po, e

Br, , Br,

There are an infinite number of possible solutions to this
equation, we use the simplest;

J= —ico5(r —ro)poe (2)

Although we do not derive the Green's functions of
MM, we now produce the equation which they solve.
Start with Maxwell's equations in Gaussian units:

V-D =4',
V.B=O,

(3a)

(3b)

e
~
(tu), cr

~
(ur)

&p(cu), cry(tu)
E&(cu), o &(cu)

e„(cu), cr„(cu)

z) =zp

Zp

zn

FIG. 1. Diagram of a multilayer stack. Note that 0=0 is in
the (x,y) plane.

In this section we indicate how the radiation emitted
by an arbitrarily oriented electric dipole oscillating at
frequency f =co/2m. and located within a stack of dielec-
trics (see Fig. 1) can be calculated. This calculation is
purely classical. The dielectric layer j is assumed to be
described by a local frequency-dependent isotropic
dielectric constant e(oi), which may be complex.

The dielectric layers are assumed to be stacked along
the z direction, as shown in Fig. 1, with layer 1 extend-
ing to z = Oo and layer n to z = —oo. The interface be-
tween layer j and layer j+1 is the plane z =z~+1. We
also take z& =z2 for convenience. %'e are interested in
the amount of radiation emitted by the dipole into the
(O, ip ) where p =arctan(y /x ) and 8= arctan[z /(x

2)1/2]

We first consider an oscillating electric dipole having
moment p( t }=poe

™located at r = ro in any isotropic
medium. Consider the dipole as consisting of two
charges of opposite sign of size p(r, t)=

~

p(t)
~

/~ b, r ~,
where Ar is their relative displacement, and take the lim-
it

~

b,r
~

~0. Then the charge distribution is

p(r, t) = lim e '"'[5(r—(ro+ b,r) )
I po I

(~r)-o
/

b, r
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V X E(r, t)+ — ' =0,1 BB(r,t)
c Bt
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(3d)

2 2

5q„e(r, co) — + V 5q„D„(r,r', co)

=4vr5 p 5(r —r' ) . (6)

In our case all the fields and sources will have e '"' time
dependence. We assume that all media have magnetic
permeability @=1, that D(r, co)=e(r)E(r, co), and that
some of the media may have finite conductivity cr(r).
The current J is given by J(r, co)=o(r, co)E(r, co)+J,„,.
J„,is the externally applied current, whose eff'ect we are
trying to determine. Finally, we assume that there are
no charges except those required by the continuity equa-
tion V.J+Bp/Bt =0. Thus J,„, requires a charge distri-
bution p,„, and the nonzero conductivity requires a
charge distribution p, . That is, p =p,„,+p, . Putting
this together

Multiplying both sides of Eq (.6) by —i (tule )J,„,(r', co),
integrating the resulting equation over all r', and sum-
ming over the index v, one finds that a solution of Eq.
(5) is

E„(r,co)= g f D„,(r, r', co)J,„,(r', ~)d r' .
C

COE„(r,co) = — g D„,(r, r', co)p()2
(8)

In particular, if the external current results from an os-
cillating electric dipole located at r, Eq. (2) implies

V. [e(r, co)E(r, co)]=4'[p,„,(r, co)+p, (r, co)],

V B(r,co)=0,

VXE(r, co)= B(r,co),

VXB(r,co)= — F(r, co)E(r, co)+ J,„,(r, co),
l CO 4~

C

(4a)

(4b)

(4c)

This physical situation has translational symmetry in the
x and y directions and therefore we can write'

D„(r,r', co) =D„,(x(( —x((,z, z', co)

k

(2' )

V [F(re@)E(res)]=4mp, „,(res) . (4e)

Using Eq. (4c) to eliminate B from Eq. (4d), and writing
the resulting equation in component form

(4d)
where a=@+4~i o /co.

Also, under our assumptions, Eq. (4a) can be rewritten

where xl=(x,y, O) and k~~=
—(k„,k~, O). Here, the func-

tions d„are two-dimensional Fourier transforms of the
D„. When k~~

——xk~~, the d~„(k~~, co
I

z„z') take on a com-
paratively simple form, which we write, following Refs.
1 and 2, as g„,(k~~, cu

I
z, z'). The general d„, may be

written in terms of the g„by making the following rota-
tion of coordinates:

d„(k[~,co
I
z, z')= g g&' '(k~~~co

I
z, z')S&&(k~~)S „(k~~),

+ V 5qq+ 5q„e(r, cu) E„(r,co)
CO

P
c)p'p B7"g C

1
S(kii) =

k

k 0
—k, k. 0

0 0 k
ff

(10)

is the end result. Thus Eqs. (5) and (4e) are the equa-
tions for E. However, they are not independent. Any E
that satisfies Eq. (5) will also satisfy Eq. (4e). The
Green's functions of MM form a tensor D(r, r', co). They
are defined as the solutions of

where k
~~

——
I k~~ I

. Of the g„,
g xy gyx gzy gyz

As in Ref. 2,
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')+E (kll I
)E'(kll

I

')e( ' )l» (12f)

where e(z) is the Heaviside unit step function

1, z)0
e(z)= 0'

WI(kll, co) and Wll(kll, cu) are Wronskians and do not de-
pend on z. They are given by

and then present the form we are using, which was
chosen to be compatible with the notation of MM. First
we note that applying V.E=O to Eq. (17) and requiring
the resulting equation to be true for all z in layer j yields

(18a)

(18b)
WI ( k ll, co ) = W»» ( k ll, co

J

z ),
Wll(kll, cu) = W (kl ~

I
z) —W„(kll, co

I
z),

BE„(kll,
~

)

Wuu(k)l, co
~

z) = " Eu' (k)), co
~

z)
Bz

(13)

(14)
Equation (18) can be used to eliminate (for example) K+,
in each layer j. At each boundary one requires that E~~,

Dz, and 0~I be continuous. On writing these boundary
conditions for the K+„one gets four linear equations for
each interface. They are

K(j) j j+ 1+K(j) j j+ 1

+X —X

BE„(kll, ~

)
Ev~ (k))~co

~

z) . (15)

In the following discussion we often suppress the argu-
ment (k„,co). By E„(k„,co

~
z) we mean plane-wave

solutions of Eq. (5) with J,„,=O which obey boundary
conditions (BC's) such that as z approaches positive
infinity the plane-wave solution represent an outgoing
plane wave [if k, = (ceo /c —k

ll

)' is real] or ap-
proaches zero (if k, is complex). Similarly by

E„(k~coll~z) we mean plane-wave solutions of Eq. (5)
with J,„,=O which obey the analogous BC's as z goes to
negative infinity. We use the convention for taking the
square root of k, such that

K(j + &) j+ & j+& K(j + &) j+ & j+ &

+X —x (19a)

K(j) j j+&+K(j) j j +&
+p ye

(J +/)aj+ lzj+ 1 K(j +/)aj+ lzj+
+p I y 7 (19b)

e (K'J' e»+'+K'J' e ' ' ')
J +Z —Z

i r lj+1) J +1'I+1 i K)J+1)e ~J+) J+)
) (19c)

k'(K'J' e ' '+' KJ' e '—'+')
Z +g —3'

I j+1&K(j + I) J+~ )J+) K 1j+1)e ~J+)~J+)
)

Imk, )0, (16a) (19d)

Imk, =0 - Rek, )0 . (16b)

In Sec. III we introduce the 2&2 transfer matrices
which will be used later to find explicit forms for the
E, the E, and thus 8'~~ and 8'].

III. TRANSFER MATRICES

Wc take kll
——(k, 0,0) SIIIcc wc assuIIIc k to bc 111 tllc

xz plane. We find the explicit values of K+ in Eq. (17)
using the method of 2 & 2 "transfer matrices. " This
method, which we believe was first described by Abeles,
has been presented in numerous slightly different forms.
For the sake of completeness we sketch its derivation

All the homogeneous solutions of Eq. (5) can be con-
structed by Fourier analyzing them into superpositions
of plane-wave solutions. General plane-wave solutions
can be constructed from the plane-wave solutions with k
lying in the (x,z) plane by rotating coordinates. Consid-
er such a plane-wave solution. The electric field in layer
j is given by

a(j)z —ik ( j')zE' '(r)=[K' '(k )e ' +K' '(k )e ' ']e

(17)

where we have used aj =ik, (j ) to s—implify the notation.
Equations (19) were obtained from the continuity of E„,
E», D„and H„, respectively. On inspecting Eqs. (18)
and (19) one notes that the K+» are decoupled from the
K+ and K~, . Thus we can express any solution for the
JC+ as a linear combination of two kinds of solutions,
one having E~x ——K+z ——0 and the other having K~~ ——0.
They are of course the well-known "s-polarized" or
"transverse electric" (TE) and the "p-polarized" or
"transverse magnetic" (TM) solutions, respectively.

Consider the TE solutions having EC+ ——K+, ——0 in all
layers. In any particular layer j, the electric field is com-
pletely determined by the two numbers K'+'~ and E'' ~.
But by solving Eq. (19) one can find K $»+", and, if there
is a layer j —1 one can replace j by j —1 in Eqs. (19b)
and (19d) and solve the resulting equations for Klj»".
Thus the two numbers K'+'„and K'

~ determine the
electric field in all the layers for the TE solutions.

Similarly, for the TM solutions, we can use Eq. (18) to
eliminate Klg) in favor of Kg) in each layer j and also
in the boundary conditions [Eqs. (19a) and (19c)]. Then
again the two equations (19a) and (19c) suffice to deter-
mine Kg+" given K1$), and, if there is a layer j—1, re-
placing j by j —1 lets one find Kg„". Thus, again, re-
peating this process lets one find K'g) in all layers j.

If one represents Kg» as a two-element vector
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K+y(j)

K(j)
where again M „Ii, J~

——(M 1i, )
—1

And if one wishes, one can use Eq. (18) to eliminate
the K'g,' so that instead of Eq. (22) one can use

in each layer j, then since the two equations (19b) and
(19d) are linear and determine a two-element vector as a
function of a two-element vector, it follows that we can
represent their effect by a 2)&2 matrix, so that

+z —z K(j) (23)

K(j+1) K(j)
+y M (j+1,j) +y

K(j+1) —y K(j)
y

and also

(20a)
K(j)
K(j)

P

K(k)
M (j,k) +P

P K(k)
P

Repeated application of these equations lets us write

(24)

where

+y
—y

M (j —1,j) +y
y K (j)—V

(20b)
where

IM'j'"=— ~ M' +' ' if j &l—P LL —Pk=j —1

(25a)

—1M y I j j j) ( M y j J t ) (21)
and

is a 2 & 2 matrix.
We can do the same thing with the K coefficient:

1

M (j')—= ~ M(k 1k) f l—P LL —P
k =j+1

(25b)

K(j+1)
+x
—X

M (j+1 j) -+x—x K(j)—X
(22) We will not explicitly derive the matrices M „'

—' '

here, but will simply state them. They are

(1+Z )e
l(L

(1+Z )eP

(26)

where the quantities Z„are optical impedances and are
given by

I

III. Start with E) and E(. These can be written in the
form analogous to that in Eq. (17)

/(g g1, for p =g

for p=x or z .
+ 1&j

1, p=x
gp= ' a. /aj+1,

ory

and

1, p=x ory
—1, p=z .

The other quantities are given by

z =zi, j =maxI j j+1 j

(27a)

(27b)

(28)

(29a)

(29b)

(30a)
(30b)

E„(z)=K+~„''e ' +K „'J'e ' in layer j, (31)

and similarly for E+ „. The equations in Sec. III hold
also for both the K~) and the Kz(. In Eq. (31) the extra
superscript ) on K'$„' signifies the boundary conditions
these quantities have to satisfy. These conditions are

K"' =K"")=0,—V +I (32a)

which follow from the desired outgoing boundary condi-
tions and Eq. (16). We need to normalize the amplitude
of E&~ (z) and E„~ (z). The particular normalization we
use will not affect the functions g&„because if E„(z)
(say) is multiplied by a constant C, so is the Wronskian
WJ (if p =y ) or W~~ (if p =x or z ). Then by examining
Eq. (12) we see that the g„„and thus the Green's func-
tions D„,. will remain unchanged. Following MM we
choose

IV. TRANSFER MATRIX FORMULATION
OF THE GREEN'S FUNCTIONS

In this section we write the basic quantities E), E
Wii, and Wi, that appear in the Green's functions [Eqs.
(9)—(15)] in terms of the transfer matrices derived in Sec.

Then from Eqs. (18a) and (18b)

) (1)
+X

(32b)

(32c)
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k(n)
~ &(nj (32d)

From Eq. (32) it follows that in layers 1 and n

E~ (k((co I
z) and E~ (k((co

I
z), respectively, have the

forms
Thus, substituting Eq. (32) into Eq. (24) and then Eq.

(24) into Eq. (31) yields

E ( (z)=[(M(j' ) e +(M( '
) e ]Kp p 1, 1 —p 2, 1 +p, )

Ik("Z
E„(k((co I

z)=e ' K+„"', if z is in layer 1

E„(k(~co I
z)=e ' K „'"' if z is in layer n (38b)

(33a)

E'"'(z)=[(M"'"') e ' +(M"'"') e ' ]K""
p p 1, 2 p 2, 2 —P

(33b)

We now evaluate the Wronskians. Substituting Eq. (31)
into Eq. (15), we obtain

Then from Eq. (12) it follows that the g„„(k((,co
I
z, z')

have limiting forms
(1)

gu (kl( ~
I
z, z')=e ' g„' (k((, co

I

z') if z is in layer 1 .

(39a)
(n)

gp (k~~( ~
I
z z') =e ' ' 'g„', (k(~~, co

I
z') if z is in layer n

W' '(z)=2a (K ' 'K (j' —K''j'K ' ')
PP J +P —P —P +P

and after a little more algebra

(M (1,n))

PP J +IJ P
IIM

—(l,j )II

From Eqs. (25) —(30) we have

IM„""I=
E~ CX(

(34)

(35a)
d„(k((,co

I
z,z')= '

Then defining

sa("z
e ' d„' (k(i, co

I

z')

if z is in layer 1

—Ik(")Z
d„'„(k(i,co

I

z')

if z is in layer n .

(40a)

(40b)

(39b)

So the g„' have no z dependence and are implicitly
defined by Eq. (39). In the same way Eq. (10) implies
that in layers 1 and n, d„(k((,co

I
z, z') has the form

Using this together with Eqs. (32) we get

WJ: W»» =2a &(M»'" )z 2

and after some algebra

(35c)

(36a)

(k„,k», k,'") if z is in layer 1

(k„,k», —k, "') if z is in layer n

From Eq. (9) we obtain

2d kII
D„,(r, r', cu) =

(2' )
where

(41)

(42)

2
61(Xg Cc)

W(( —=W —W„=—2 (M „'" )i ~ .
c k

(36b)

Note that W&(k~~~ and W~~ k
z. We have now defined all quantities needed to calcu-
late the electric fields produced everywhere by an oscil-
lating electric dipole in a layered stack of dielectrics.

V. FIELDS DUK TO A RADIATING DIPOLE

What we are interested in is the amount of light radi-
ated into the (8, (t ) direction. By using the fact that the
observation point is far away from the source the formu-
las can be simplified. We do this by using the method of
stationary phase, as did Laks and Mills.

Far away from the source the power Aux is radial,
which can be shown by the method of stationary phase.
Therefore, the power Aux per steradian is

D„(r,r', co) = ik
I
sin8I—e' "d„' (k, 8,$,z')

2&7'
(44)

for radiation into either the top or the bottom layer,
where by d„' (k, 8, (t, ,z'), we mean d„' (k((, co,z') with

k((
——k ( cos8 cosP, cos8 sing, 0 ) .

By substituting Eq. (44) into Eq. (8) we obtain
2

Ez(r, co)=
2 I

sin8
I

e'""g di„(k, 8,$,z')po . (45)
c 2~r

We use Eq. (7.13) of Ref. 11 for a plane wave in a medi-
um of dielectric constant e(co).

r"—:(x —x',y —y', z) .

We now use the method of stationary phase similarly
to Ref. 6 to get

dP 2

dB (37) S= (e/(L(, )'
I
Eo

I
'k,

Sm

where S is the Poynting vector.
If the fields are caused by an oscillating electric dipole

of strength p=poe '"' located at r', then E is given by
Eq. (8) in which D„(r,r', e») is given by Eqs. (9)—(15).
We now simplify the expression for D„(r,r', co).

C Q)k

32 ETC
si 8 g p p*d' d'*„.

k, V, V

(46)

where S is the Poynting vector. Applying this to Eq.
(45) and using Eq. (37) yields

3
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2 2 I I
C gxx +S gyy CS {gxx gyy )

d'(k, O, P,z)= cs(g' —g'y) c g' +s~g„'„

Cgxz

sg„', , (47)

cg« cg« gzz

where we used c for cosP and s for sing
We have suppressed the arguments of the g„' . Define

unit vectors

where we have suppressed the arguments of the d„' . We
can go further than Eq. (46) and obtain separately the
amounts of s- and p-polarized light radiated into the
(O$) direction rather than merely obtaining the total
power, as in Eq. (46). To do so recall that the d„' de-
pend upon the g„' in the same way as the d„depend on
the g„. Thus replacing d„and g& with d& and g„' in
Eq. (10) and carrying out the matrix multiplications ex-
plicitly yields

for s- and p-polarized light with wave vector k=kk, re-
spectively. In terms of O and P we have

s = ( —sing, cosP, 0),
p = (sinO cosP, sinO sin{t, —cosO) . (49b)

ikr ikr
E(r, co) =E;"' s+E'"' p . (50)

By comparison to Eq. (45), we find that

Then the light emitted by a radiating dipole as seen in
layer l or n is

E(r, co) = [E(r,co) s]s+ [E(r,co).p]p+ [E(r,co)-k]k .

But far away from the dipole E(r, co).k=O. We define
quantities E,'"' and EP"' such that, far away from the ra-
diation source,

z&&k

I

~xk
I

—kXs

(48a)

(48b)

E;„"'=
I

sinO
I g d„'„po (s P),

27TC

~ 2

Ey'„"'=
I

sinO
I

gd„' po (p.P),
27TC

(5 la)

which correspond to the directions of the electric field
where p is the unit vector in the p direction. Substitut-
ing in from Eq. (47) one finds, after some algebra, that

2

E,'"' = sinO gyy [ —sing, cos$, 0] po,
27TC

2
Ez""'——

I

sinO
I

[cosg(sinOg
' —cosOg,'„),sin{t (sinOg„' —cosOg,'„),sinOg ', —cosOg, ', ].po .

27TC

(52a)

(52b)

2 ~

Ey'"'=
I
tanO

I [g,
'

cosP, g,
'

sin{{),g,', ] po .
27TC

(52c)

We can write Eqs. (52a) and (52c) in terms of the more
basic quantities E„(z), E„(z), W~~, and 8 i. Recall
from Eqs. (12) that for gyy, g, , and g„when r~r'

g„. (z,z')= + [E ~ (z)E ~ (z')O{z —z')8'
+E„(z)E„(z')O(z'—z)),

By using r.E=O, in Eqs. (45) and (47) one obtains

cosOg', +sinOg, 'z =0,
cosOg' +sinOg, ' =0 .

These can be used to simplify Eq. {52b) by elimination of
g', and g'„. The result is

4~ (f E ~ {z'), in layer 1

g'-"=' 4~f E (z'), in layer n,
W

where 8'= 8'& for gyy and &II for g,
' and g,', .

+ 1 for gyy and gz'~

—? forg, ', .

(53a)

Using Eqs. (53) in Eqs. (52a) and (52c) we get

where 8'=8'z for gy~ and 8'=8'II for g«and g„. The
plus sign applies to gyy and g«and the minus sign to g„.
Recalling the implicit definition (Eq. 39) of the g„', and
the limiting forms (Eq. 38) of E ~ (z) and E„~ (z) in media
1 and n, respectively, it follows that for gyy g,', and g,',
for r&r',

Ey~ (z')
sinO sing

Ey'(z')—sinO cosP
Eollt

s . CO= —2ik]
P C (z')

tanO sing
E„(z' )

tang cosP

for radiation into layer 1 where 0
~

——(co/c)Qe&. And

E;(z )—tanO
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Eout 2
S - CO

Eout n
C

E»~ (z')
sinO sing

E '(z')
tanO cosP

E»~ (z')—sinl9 cosp
Wi

E,~ (z')
tanO sing

0

E,.(z )—tanO

(54b)

for radiation into layer n where k„=(cole)+e„.
Thus we have found the form of the s- and p-polarized

radiation emitted by an oscillating electric dipole into
the (8,$) direction, in terms of the Wronskians and the
functions E„,and E„.

VI. PLANE WAVE INCIDENT ON THE STACK

We now consider the reciprocal problem (in a sense to
be explained below) of calculating the electric fields pro-
duced at the point r' by incoming plane waves of s- and
p-polarized light. Let the incident radiation have

E;(, )=(E,'™E'" )
' "'

where s and p are defined by Eqs. (48). We consider the
incident light to be coming from the (8,$) direction.
Therefore

I I

E (z')=re'&'e '+rC'&l e "'
p +p P

where z' is in layer j.
(a) Let 8&0. Then for P=ir, we have

E„"'(z',co) = [(M „'")i ie '

+(M l~ ")2,e ' ]»& ~
(M (n, l))

p 1, 1

By comparison with Eq. (33a) we see that

E'~'(z', Gf ) =E "'(z')
K ~ (M '"")

+p —p 1, 1

From Eqs. (55) and (56)

E; =( —sinOE»", E,'", co—sO—E»") .

(57)

(59)

k= —k (cosO cosg, cosO sing, sinO) .

E,'" and E»" in Eq. (55) are the amplitudes of the s- and
p-polarized light, respectively. Note, from Fig. 1, that
when 0&0 the light is incident from layer n and when

8&0 it is incident from layer 1. For P=m. , we have,
from Eq. (49)

2

(M '"'") = W—x 1, 1 ll
~

2a1
(60a)

The values of K+~„'" are given by Eq. (32). So to put the
results contained in Eq. (58) in a form similar to Eq.
(54), we need to reexpress (M „'""),,

Using Eqs. (35) and (36), we have

s=(0, —1,0),
p=( —sin8, 0; —cosO) .

The electric field at location r' in the stack is

(56a)

(56b)

(M»l""), i
——

2(X n

And now, making use of Eqs. (26)—(30) we obtain

2

(M "") = W—z 1, 1
2(Xn

(60b)

(60c)

Following Eq. (17) we express the electric field E(z')
due to the incident light in the form

Now using Eqs. (57), (60), and (32) for quantities E„',
(M „)»,and K+'„, respectively, we get (still for P=m )

E„(z')
E»(z')
E,(z')

= —2ik,

sinO sinPE» 'J'(z '
)

Wq

—sinO cosPE»~"'(z')

Wq

tanO cosPE„'~ (z')

tanO sinPE„~'J'(z')

Wll

—tanOE, ~ "'(z' )

Ein
S

E 1Il
(62b)

We obtain the general case when P&m by multiplying by the appropriate rotation matrix.

E„(z' )

E (z')
E, (z')

=2ik„

sinO sinPE»~ 'J'(z')

Wq

—sinO cosPE»~ '~ (z ')

Wq

tanO cosPE„' "'(z' )

tanO sinPE„~ "'(z' )

Wll

—tanOE, lj'(z')

Wll

E 111
S

E 1Il
tt)'

(62a)
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This is the equation for the electric field everywhere produced by a plane-wave incident from the (0,$) direction
with 0 (0 (i.e., from layer n).

(b) Let 0) 0. The derivation is exactly parallel to that in (a) and need not be repeated. The end result is

E (z')
E» (z') = —2ik,
E,(z')

)

sing sinPE~( ~'(z')

Wq

—sin0cosPE~ '~ (z')

tan0 cosPE„('~'(z')

tan0 sinPE„~'(z')

W)

—tan0E (z')

Ein
S

E ln
P

(62b)

Notice that Eqs. (62) state that

E ill I

E(r') = 3 ';„e
P

(63)

I
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APPENDIX: IMPLICATIONS
OF THE LORENTZ RECIPROCITY THEOREM

where 3 is a 3)&2 matrix. On the other hand, Eqs. (54)
can be written

EQUt P —POp
p C

(64)

where 2 is the transpose of A. It is shown in the Ap-
pendix that this relationship between Eq. (63) and Eq.
(64) is a direct consequence of the Lorentz reciprocity
theorem. The theorem implies that in a set of isotropic
and nonmagnetic media, not necessarily layered (as we
assume in this paper),

D„(r,r', co) =D,„(r',r, co) . (65)

Equations (64) and (63) taken together are simply a
variation of the Lorentz reciprocity theorem, as shown
in the Appendix.

We finally note that, given the relationship between
Eq. (64) and (63), one can calculate the light radiated by
a dipole by simply calculating the field induced by the
incoming plane wave at a location of the dipole in a mul-
tilayer stack. This can be done by using Eqs. (54a) and
(54b) or much more simply by using the 2&(2 transfer
matrices, as has been described in numerous papers, in-
cluding Ref. 4.

An example of how the 2&(2 transfer matrices formu-
lation of the Green's functions can be applied to in other
problems, can be found in our recent publication' deal-
ing with roughness induced "mode conversion, " and also
in our forthcoming paper in which we will discuss
enhancement of radiation from the dipole placed on an
optical resonator (Kretschmann geometry).

We now show that the close relation between the field
induced at a point z in a dielectric planar stack by a
plane wave incident from the (0,$) direction [Eq. (62)]
and the light emitted into the (0,$) direction by a radi-
ating dipole (at a location z) [Eq. (54)] can be obtained
directly from the Lorentz reciprocity theorem without
assuming that the media are layered and using only gen-
eral properties of the (possibly hard to calculate) elec-
tromagnetic Green's functions. The Lorentz reciprocity
theorem is one of several related theorems for elec-
tromagnetism. ' ' The theorem is usually stated in the
following terms. Let Ji(r, co) be a current source (not
necessarily a point source) lying inside Vo, and let Ei be
the electric field resulting from Ji (with outgoing wave-
boundary conditions outside V; VOK V). Similarly let E2
be the electric field resulting from a source current
J~(r, co ) inside Vo. Then

~ ~[J,(r, co).E2(r, ~)—Jz(r, co) Ei(r, co)]d r =0, (Al)
V

provided that both the magnetic permeability iu, ( r, co )

and the effective dielectric constant e(r, co ) =e( r, cu )

+ (4vri /co )o ( r, co ) are symmetric tensors. They can,
however, vary in any way in space. For a proof of Eq.
(Al) see Refs. 12—14. The theorem obviously applies to
the problem considered in this paper since we assume all
media to be isotropic (p=pI =1I and F=eI ). The elec-
tric fields produced by a current source are given by Eq.
(7) in terms of the Green's functions D(r, r', co). It fol-
lows that the Green's functions have to possess a sym-
metry property that leads to the condition contained in
Eq. (Al). If we take the currents J, and J2 to be
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Ji„(r,cu ) =x 6(r —r'),

Jz„(r,co) =xii5(r —r") .

Then using Eq. (7) yields

I. CcPE (ri, co)= — D„(r,r', co),
C

D„&(r,r",cu) .
C

(A2a)

(A2b)

(A3a)

(A3b)
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After substituting Eqs. (A2) and (A3) into (Al), and do-
ing the sum over p and the integration, one gets

2

A(0$)=
2

B (O, hatt) .
C

(A 10)

D 13(r, r", tp) —D13 (r",r', tp)=0 . (A4)
That is, A is proportional to the transpose of B. We
first note that for the current distribution assumed
above, Eq. (8) becomes

Equation (A4) is simply another form of the Lorentz re-
ciprocity theorem. In fact, it is also possible to reverse
the proof and get Eq. (Al) from Eq. (A4). It can also be
shown that, as a consequence of their definition, the
Green's functions for layered media of MM [Eqs.
(9)—(15)] necessarily obey Eq. (A4).

Assume the current source associated with the radiat-
ing dipole to be

2
E'"'(r)= D(r, r', ~)pp .

C

But from Eqs. (A6) and (A7) we have

c sinOik jr —r'/
Eout( )

/

r —r'
f

J(r, cp) = —ip35(r —r')pp(tp) . (A 1 1)s sinO A (0$)pp .
—cosO

c
0Assume also that for z ~z, the dielectric constant is real

and does not depend on z; i.e., e(r, co ) = et (co ) and
1m[et(pt)]=0 for z ~z, . For z (z, , the dielectric con-
stant may depend on z and may be complex. We define
0 and P so that

If Eqs. (8) and (All} are true for all values of pp then we
must have for large

~

r —r'
~

c sinO
2 ik /r —r'/

D(r, r', co) =
c ' ' r —r'r = r (cosO cosset, cosO sing, sinO) . s sinO A(0$} .

—cosO0
Assuming that O&0. Let r take the place of k in Eq.
(48), so that r, s, and p are three mutually orthogonal
unit vectors, and s- or p-polarized light incident from or
emitted into the (0,$) direction has its electric field en-
tirely parallel to s or p, respectively. Far from r' in the
(0,$) direction the electric field of the outgoing light
should be, from Eq. (44),

(A12)

(A13)J'(r)= —ito6(r —r")p' .
ik fr —r'

E'"'(r):—[E;"'(0$)s+E~'"'(0$)p]
[r—r' (A5) Then it produces an electric field everywhere of

Now assume that we have an oscillating current source
at r" where r" is located far away in the (0,$) direction.
Define the current source to be

where k =(tp/c)+et.
Defining s and c as before (s =sint}It and c =cosP), we

can write Eq. (A5) as

ik /r —r'/
pout

c sinO

s sinO
—cosO

E out( 0$ )

Eout(Oy) (A6)

Eout(Op) 3 t&(0$) Q tz(0$) p t3(Oljk)

E'"'(0$) &2t(0$) &22(0$) 323(0$)

= ~ (0$)pp(cp) (A7)

Consider now an incoming plane wave from the (0$)
direction in medium 1

E'"(r)=(E,l™s+Ep~p)e'k',

By the principle of superposition, E,'"' and Ez"' depend
linearly on the source current. So we can write

2
E'"(r') = — D (r', r",co )p' .

c2
(A14}

But the electric fields E'"(z) as seen at r' will seem to be
made up only of s- and p-polarized plane waves incident
from the (O, ttt) direction together with the other electric
fields these plane waves give rise to. We want the for-
mula for the electric field of the plane waves radiated by
the dipole p in a medium with dielectric constant Zt(cp),
which is, for large y,

2 ikr
E(r, co) = (r Xp) X r

c 2 y
(A15)

for the dipole located at the origin. If r' is located at
(r, O, ttt), and r is very large, then for the incident electric
field in medium 1 we use Eq. (A5), with r replaced by
—r, which does not change it.

So, using s-r =0
2 ikr

E,'"=s E(r)= s p',
C2 70

where k= —k(cosOcosttp, cosOsinp, sinO). Then, as be-
fore, the electric fields induced at r' must depend linearly
on E,'" and E~" so that

B„( $0) Bt2(0$)
E~"(r') = B2t(0tjt ) B22(0ttt) ';„. (A9)

B„(Oy) B„(Oy)

and similarly
2 ikr

E~"=p E(r)= p.p' .
C

2 y

Thus

E ill
S

E ill

2 ikr 0
I

y c sinO s sinO —cosO (A16)

We will show that Therefore using Eq. (A9)
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02 ik [
r' —r"

[ C
I

c sing s sing —cosg (A17)

For both Eq. (A14) and Eq. (A17) to be true for all p' we must have

0
B gtb (A18)

0
CO

C

B(gtb) c sinO s sinO —cosO

—s c 0
c sinO s cosO —cosO

Multiplying both sides of the above equation on the
right by

Comparing Eq. (A18) and Eq. (A12) with r=r", and us-
ing Eq. (A4) we have

—s c cosO

c s sinO

0 —cosO

we get

2

B=A
C

thus justifying the claims made previously.
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