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Calculation of the barrier for oxygen incorporation into metal and metal-oxide surfaces
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Using a simple calculational scheme we investigate the potential barriers for oxygen incorpora-
tion into clean metals and metal-oxide surfaces. It is shown that the magnitude of the barrier de-

pends on both the structure and the ability of the surface atoms to relax during the incorporation
process. We apply the method to the first series of transition metals and their oxides and illustrate
that trends in oxidation resistance depend on the magnitude of this barrier. We also show how de-
fects at surfaces can reduce the barrier.

I. INTRODUCTION

The oxidation of metal surfaces is a very common ex-
perience of daily life, and yet this well-known
phenomenon of surface physics is relatively poorly un-
derstood. The reason for this is that the actual oxida-
tion process of a metal involves several complicated
steps. The oxygen molecules must dissociate, diffuse
through an oxide layer, and finally react with the metal.
These processes often occur at atmospheric pressure of
oxygen. In addition to oxygen, the atmosphere contains
several other types of molecules like water, which can
also react with the metal and complicate the process.
Furthermore, the relevant materials might have a high
concentration of defects and even be noncrystalline. As
a logical step towards the understanding of the corrosion
of metals it was appropriate to study the initial oxidation
of well-characterized metal surfaces in controlled atmo-
spheres. Such systems have been studied experimentally
and very valuable information and understanding has
been extracted from such experiments.

Perhaps the key property of interest in the oxidation
process is the rate with which an oxide layer grows. In
order to relate the growth of the oxide layer to micro-
scopic properties there is a need for kinetic models.
Several models have been proposed and we will review
only the ones that are relevant to this paper. For an ex-
tensive discussion see Ref. l.

Mott's first theory was proposed to explain the for-
mation of protective oxide films on metals exposed to air
near room temperature. According to this theory, for
very thin films, the electrons will pass through the oxide
layer by the quantum-mechanical tunnel effect as fast as
they can be used up on the other side to form 0 ions,
and the rate will be controlled by the rate of ion
diff'usion, i.e., dL /dt cc [L(t)], where L is oxide thick-
ness and t is time. Thus the oxide grows according to a
parabolic growth law (L ~&t ). When the oxide be-
comes thicker, its growth is assumed to be limited by
electron tunneling from the metal to the physisorbed ox-
ygen molecules. The rate equation then takes the form,
dL /dt cc exp( kL ) which resu—lts in a logarithmic
growth of the oxide, L(t) cc1 g(to) Restrict. ions on this
theory are that the temperature must be low enough to

eliminate thermionic emission of electrons, but large
enough to allow the thermal motion of ions.

In order to overcome the restrictions of the first
theory, Mott proposed a second theory which was re-
peated and expanded in what came to be known as the
Cabrera-Mott theory. According to this theory an
equilibration of the metal Fermi level and the adsorbed
oxygen level by electron transfer from metal to oxygen
results in the establishment of a large positive uniform
electric field across the oxide. This field is considered to
lower the energy barrier Ez for ion incorporation into
the oxide. This theory gives an approximately inverse
logarithmic rate law, 1 /L (t) cc log[t /L (t) ].

While it is difficult to distinguish between logarithmic
and inverse logarithmic growth laws, it seems, that only
a few transition metals, (such as Ta, Cr, and Ni) obey
Cabrera-Mott kinetics, while others (such as, for exam-
ple, Cu) do not.

We showed in a previous work that the field develops
only if there is a barrier to oxygen penetration on the
surface, i.e., the oxygen ions must stay on the oxide sur-
face to create a field. Since it is this barrier-induced field
upon which the validity of the Cabrera-Mott theory de-
pends, we estimated the magnitude of the barrier to oxy-
gen penetration on metal and oxide surfaces using
effective-medium theory and showed that the metals
which oxidize by the Cabrera-Mott mechanism do have,
or develop, a barrier on the surface to oxygen penetra-
tion, while the metals which do not oxidize by the
Cabrera-Mott mechanism do not have a barrier to oxy-
gen penetration on the surface to begin with or after the
oxide has formed. We showed that the formation of
NbO on an Nb surface dramatically increases the
potential-energy barrier for oxygen incorporation, there-
by evoking Cabrera-Mott kinetics. On the other hand,
the formation of Cu20 on a Cu surface reduces the bar-
rier to oxygen penetration. The lack of a surface barrier
on oxidized copper then leads to parabolic kinetics. On
Cr and Ni, both the metals and the oxides present a siz-
able barrier to oxygen penetration, thus the Cabrera-
Mott mechanism is justified. We also showed how the
height of the barrier is reduced by the relaxation of sur-
face atoms, and related this relaxation to the second
shear moduli of the metals and their respective oxides.
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In this paper we present the details of the method we
used and discuss its limitations. We further apply the
method to the complete first series of transition metals
and their oxides and illustrate the importance of oxide
structure for the magnitude of barrier heights. We
confirm the role of the shear modulus in determining the
magnitude of the relaxed barrier, and show how defects
at surfaces can reduce the barrier. Finally, we will illus-
trate that trends in oxidation resistance depend on the
magnitude of this barrier.

II. THEORY

Even in the highly idealized situation, when a single
oxygen molecule is considered outside a perfect metal, or
metal oxide surface, it is not possible at present to model
it exactly. Therefore we have used a simple approximate
scheme, effective-medium theory, to calculate the ener-

gy of an oxygen atom in the vicinity of a surface.
Effective-medium theory has previously been used to

study equilibrium properties of hydrogen and oxygen
chemisorption on transition metals. ' It has been
shown to provide quantitatively accurate results for
chemisorption energies, heats of solution, bond lengths,
adsorbate-adsorbate interaction effects, and adsorbate-
vibrational properties for both hydrogen and oxygen on
clean metal substrates. The incorporation of oxygen into
Ni(111) has also been studied using effective-medium
theory. The authors showed that it was crucial to in-
clude lattice relaxation when calculating the potential
barriers separating the chemisorption site from a subsur-
face site. The Ni lattice was modeled by a nearest-
neighbor force model. Such a simple model does, how-
ever, not incorporate the proper elastic anisotropy of the
substrate, and for a general description of barriers to ox-
ygen incorporation on transition metals, it is necessary
to describe the metal lattices in a better way. In the
present calculation we will model the elastic response of
the substrate using a lattice Green's-function technique,
which properly accounts for the elastic properties of the
substrate. In the present application we will consider
oxygen on both clean metals and on oxides. The latter
system represents a new type of application, and we will
perform certain approximations that limit the accuracy
of the approach. Since the starting point in our calcula-
tion will be an oxygen atom on a clean metal, we will
start by reviewing effective-medium theory for the
oxygen-metal system.

The embedding energy of an oxygen atom into an in-
homogeneous electron host of electron density no(R)
can be written as

bE(R)=DE",P(no(R))+DE"" (R)+DE„(R)+DE,(R) .

The term AE",f't (no(R )) gives the dominant contribu-
tion to the interaction energy and describes the interac-
tion between the oxygen and the valence electrons of the
substrate. This term only depends on the average sub-
strate valence-electron density, no(R), in the vicinity of
the oxygen at the position R. The theory prescribes that
the averaging should be performed using the atom-

induced electrostatic potential as a sampling function. "
Due to the good screening properties of valence elec-
trons, this is a localized quantity and the averaging is
confined to a region within 2.5 a.u. around the oxygen
atom. AE",f'f (n) is essentially equal to the embedding
energy of an oxygen atom into a homogeneous electron
gas of density n. Since this term is dominant in Eq. (1),
it is proper to discuss the general features of this term.
As a function of density hE",ff has a shape characteris-
tic of many reactive adsorbates. At low densities the en-
ergy goes down fairly steeply (we discuss an embedding
energy so a negative value of AE means positive binding
energy). This decrease in b,E is due to the fact that the
oxygen affinity is positive so it becomes energetically
favorable for an electron to bind to the oxygen. At high
densities on the other hand, the energy increases rapidly.
This increase is due to the fact that the oxygen atom
forms a negative ion with an almost inert electronic
shell. The substrate electrons have to orthogonalize
against this ion with a corresponding increase in kinetic
energy. For this reason the phenomena is often referred
to as kinetic energy repulsion. " Between these two re-
gions there exists an optimum electron density for which
the oxygen binds with a maximum energy. The terms
b,E,(R)+ hE "~ (R) represent the first- and higher-order
change in hybridization interaction between the oxygen
and the one-electron states of the substrate. For a metal
the dominant contribution comes from the interaction
between the oxygen and the metal d electrons. The term
b,E,(R) is a short-range potential that describes the
repulsive interaction between the oxygen atom and the
substrate atom cores. The last three terms in Eq. (1) are
relatively small correction terms to the hE",z term.
While the correction terms are crucial for the under-
standing of trends in chemisorption energy, it has been
found that many properties are well described by only
retaining the hE",f'f term. For instance, the vibrational
frequencies and the equilibrium bond distances of adsor-
bates at surfaces are accurately accounted for by this
term. ' The reason for this is that the correction terms
vary only slowly with the position R of the adsorbate.
The curvature of the potential-energy surface thus fol-
lows the electron density, a quantity which is known rel-
atively accurately. In a calculation of the properties of
hydrogen interstials in transition metals, it was also
found that the trends in the heats of solution of hydro-
gen are very well accounted for by only the effective-
medium term. ' The reason for this is that the intersti-
tial electron densities are so high that the effective-
medium term totally dominates in Eq. (1). This is also
the situation when an oxygen atom passes through a
close-packed substrate layer. The distances between the
oxygen and the substrate atoms get comparatively short
and the substrate electron density around the oxygen
atom becomes large. The interaction is then due to the
kinetic energy repulsion. This repulsion is also the
source of diffusion barriers in solids. For these reasons
we will neglect the last three correction terms in Eq. (1)
and only retain the effective-medium term in our expres-
sion for hE(R). We would like to emphasize that the
above arguments only apply to oxygen incorporation
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through the surface and not for diffusion along the sur-
face. Since the absolute scale of the potential energy for
oxygen atoms will depend on the values of the correction
terms, and we focus on the barrier for oxygen moving
from a chemisorption position into the nearest intersti-
tial bulk position, we will assume that the energy zero is
at the chemisorption position. The magnitude and shape
of the barrier with respect to the chemisorption energy
can then be calculated with the above method in a
straightforward way.

In order to evaluate the AE",f'f term, the substrate
electron density has to be known. We will simply as-
sume that this quantity can be obtained by a linear su-
perposition of atomic electron densities. ' This might
appear as a rather severe approximation, but since the
oxygen atoms sample a substrate electron density within
a region of 2.5 a.u. around its position, the average den-
sity does not depend on details of the valence-electron
density. With this procedure the substrate electron den-
sity will directly depend on the positions IR~ ] of the
substrate atoms. We indicate this dependence by writing
n =n(R, IR, ) ).

When the oxygen passes through a surface in its equi-
librium configuration it will exert strong forces upon the
substrate atoms in its vicinity. These forces will distort
the lattice. The substrate atoms will relax so that the
oxygen-substrate atom distances increase. This has the
effect of reducing the oxygen-sampled electron density
with a concomitant loss in kinetic energy repulsion. As
has been shown in previous calculations, ' it is crucial
to include this relaxation when calculating the potential
energy. The relaxation of substrate atoms requires ener-
gy since it involves a compression of the lattice, where-
upon the distances between the substrate atoms get re-
duced, and the total energy gain is determined as a bal-
ance of the gain in kinetic energy repulsion and the ener-
gy cost of deforming the lattice. It is therefore impor-
tant to model the substrate in a reasonable way. To de-
scribe the lattice deformation, we will use a linear-
response approach that has been used previously to
model the lattice distortions around hydrogen intersti-
tials in transition metals. ' The forces that the oxygen
atom exerts on the substrate atoms can be calculated
directly by differentiating the expression (1) for the total
energy of the oxygen-substrate system with respect to
the substrate atom coordinates:

F(R;)= Va hE",~ (ng(—R, I. . . , R;, . . . J )) .

The response of the lattice can be described by the lat-
tice Green's function, ' G &(R, R') which describes the
displacement, u (R), in direction a of a lattice atom at
position R when a unit force is applied in direction P on
a lattice atom at position R'. For R'=R, the lattice
Green's function 6 describes the displacement of the
same atom to which force is applied. Of all the different
components of the Green's function this has the largest
magnitude. For large separation between R and R', the
Green's function decays only as

~

R —R'
~

', and so for
a proper description of the lattice deformation, it is im-
portant to include G for a relatively large number of sub-
strate atoms. In physical terms this means that the de-

formation energy of the lattice is distributed among a
relatively large number of substrate atoms. The total
displacement of the substrate atoms can be obtained by
summing up all the displacements of substrate atoms
generated by the applied forces. The final expression for
the displacement of the substrate atoms reads

u (R;)= g G p(R;, RJ )F~(RJ+u(RJ )) .
j,p

(3)

The energy stored in the lattice upon such a deformation
is given by' '

4E~„———,
' g F(R;+u(R; ) )u(R; ) . (4)

K o ~ @0K Kpn —n~ 1+yo g K;n;

and

K =(1+m )

(C12 +C44 )
Vo

&44

(c» —c,2
—2c~)

~44

Here n are the direction cosines of k. The integration
has to be done numerically over the first Brillouin zone.
We assume the Debye model which has a spherical Bril-
louin zone with a wave-vector cutoff equal to
kD ——(6m' n )

' where n is the number of atoms per
volume. The continuum model describes the lattice
response fairly well. By comparing the calculated com-
ponents of the continuum Green's function with the ex-
act discrete lattice Green's function, we have found that
the continuum model typically underestimates 6 by up
to 20'Fo. Such a small discrepancy is certainly within tke
limits of the accuracy of the method. The calculated
atomic distortions are fairly large, up to 15% for certain
surfaces, so another source of error could be anharmonic
effects in the lattice response. Such effects are expected
to further increase the ability of the substrate to relax.
We have also neglected chemical effects of the oxygen on
the lattice, i.e., assumed that the substrate force con-
stants are unaffected by the presence of the oxygen.
This certainly is an approximation, since it is known
that oxygen can modify surface force constants. For Ni,

Ideally, one should use the exact lattice Green's function
in Eq. (3), but unfortunately these quantities are general-
ly not available. The lattice Green's function for the
substrate is obtained using the continuum approximation
for the lattice and can be expressed in terms of the elas-
tic constants c», c&z, and c44. ' ' In this model the
Green's function G(R, R') only depends on the relative
distance, R —R', and can be expressed as

G ~(R)= f g &(k) exp(ik R), .
BZ

where

g p(k)=
3 (c44k )

dk
(2m )
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for instance, it has been found, that the presence of an
oxygen atom on the surface can reduce certain Ni-Ni
force constants by up to 30%%uo.

' As will be shown
below, however, the calculated barriers show very large
variations for different substrates and structures. The
trends and qualitative conclusions that we will present
do not therefore depend on the details of our model for
the substrate relaxation.

Using Eqs. (l) —(4), the lattice distortions and the po-
tential energy for an oxygen outside the relaxed sub-
strate can be calculated. Since the forces entering Eqs.
(3) and (4) depend on the relaxations of the substrate
atoms, the equations have to be iterated to self-
consistency in the substrate atom displacements. To il-
lustrate the effects of lattice relaxation we also perform
calculations using only Eq. (l), and assume the lattice to
be in its unrelaxed configuration. We have calculated
the barriers by choosing minimal energy paths. The en-
ergy barrier presented is thus the lowest-energy barrier
that separates a site outside the surface and a stable site
inside the material. The paths connecting two such sites
do, in general, turn in different directions to avoid cer-
tain substrate atoms. In the present paper we will focus
our attention only on the magnitude of the potential bar-
rier and will not present details about the diffusion
paths.

In the schematic Fig. 1 we illustrate some basic con-
cepts of the potential energy for an oxygen outside a
metal. Far outside the surface, the energy starts at zero.
As the surface is approached, the energy decreases. At a
distance on the order of 2 a.u. outside the surface, there
is a deep minimum in the potential energy. This
minimum is the chemisorption position and we denote it
as E,h, . As the oxygen moves further inwards, it en-
counters a potential barrier. This is the surface-
incorporation barrier, and we denote it by Ez. Further
inwards in the metal there is a minimum in the potential
energy. This site corresponds to an interstitial site. The
energy of an interstitial oxygen is denoted by E„,~. The
next barrier inwards is the diffusion barrier, which we
denote by ED. Provided the tops of the hills are at the
same height, these energy barriers are related by a sim-
ple relation

Es =ED + (Echem
—E~()~p )

If lattice relaxation is included, this relation has to be
modified to include the difference in relaxation ability
between the surface layer and the bulk layers. If the sur-
face layer has a different structure from the bulk layers,
the relation also has to be modified. The chemisorption
energy is in general larger than the sorption energy be-
cause the electron density at an interstitial position is
much larger than the optimal density, while at the sur-
face the oxygen atom sits at the optimal density, '

where the binding energy is maximal. This means that
the barrier for surface incorporation is in general larger
than the diffusion barrier. Note in Fig. 1 that the bar-
rier height is given relative to the chemisorption well.
All the barrier energies which we present were calculat-
ed relative to the chemisorption well.

C9
K
LLJ
R
LLI

O

DISTANCE FROM SURFAG E

FIG. 1. Schematic illustration of the potential energy of an
oxygen outside a metal. E,&, is the energy at the chemisorp-
tion position, Ez is the surface-incorporation barrier, E„,„ is
the energy at an interstitial site, and ED is the diffusion barrier.

III. RESULTS AND DISCUSSION

It is our purpose in this paper to emphasize the im-
portance of substrate structure and stiffness on the mag-
nitude of the barrier to oxygen penetration. The closer
packed the substrate atoms are, the larger is the electron
gas density and thus the energy, bE",f'f of the oxygen
embedded in the substrate, resulting in a larger barrier.
Once a close-packed structure exists, however, whether
the oxygen can penetrate or not, depends on the ability
of the lattice to relax, and thus on its shear modulus.
These points can be illustrated very well on the first
series of the transition metals and on some of their ox-
ides, because these materials represent a rich variety of
structures and strengths. Table I gives the structure, lat-
tice parameter, and elastic constants of the first series of
transition metals, while Table II gives the same data for
some of their oxides.

As was mentioned in the Theory section, the main
physical property that determines the height of the ener-
gy barrier is the substrate electron density. This elec-
tron density depends directly on the distances between
the oxygen atom and the substrate atoms at the crossing
point. As will be shown below, those distances depend
directly on the structure of the substrate. In order to il-
lustrate the simplest possible aspect of the importance of
structure —the interatomic distances in the substrate-
we will consider one type of structure and plot the cal-
culated unrelaxed energy barriers for different materials
versus the lattice constant. Since the rocksalt structure
is a common structure among transition-metal monox-
ides, we show in Fig. 2 how the barrier energy changes
with lattice constant in this series of transition-metal ox-
ides. We can see in the figure that there is a strong
correlation between the magnitude of the barrier and the
lattice constant. A 10% increase in lattice constant
reduces the unrelaxed barrier by a factor of almost 3.
This is a very strong effect, and it implies that structural
effects are truly important. As we see from Fig. 2, it is
the unrelaxed barrier which correlates most with the
structure; the relaxed barrier seems to change less with
the lattice constant.

The electron density at the crossing point is substan-
tially reduced by the relaxation of the substrate atoms in
the vicinity of the oxygen. Figure 3 shows the amount
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TABLE I. Crystal structure, lattice constant, elastic constants, and the unrelaxed and relaxed barrier for the first series of transi-
tion metals. The elastic constants are given in units of 10' dyn/cm and with the exception of Mn were taken from Point Defects
in Metals I, edited by G. Leibfried and N. Breuer (Springer, Berlin, 1980). The authors have not been able to find values for the
elastic constants of Mn in the literature but estimated those simply by multiplying the elastic constants for Fe by the ratio of the
bulk modulus for Mn and Fe. The lattice constants are given in A.

Sc
Tl
V
Cr
Mn
Fe
Co
Ni
Cu

Structure

hcp
hcp
bcc
bcc

cubic
bcc
hcp
fcc
fcc

3.31
2.95
3.02
2.88
8.89
2.87
2.51
3.52
3.61

5.27
4.69

4.07

0.81
1.62
2.29
3.46
0.80
2.33
3.07
2.51
1.69

C12

0.46
0.92
1.19
0.66
0.45
1.35
1.65
1.50
1.22

c44

0.24
0.47
0.43
1.00
0.40
1.18
0.76
1.24
0.75

Eo

0.00
0.26
1.47
2.80
2.70
2.87
4.22
4.12
2.80

E rel
B

0.00
0.18
0.91
1.78
0.85
1.46
1.74
1.69
0.88

of relaxation (unrelaxed barrier minus relaxed barrier as
a percentage of the unrelaxed barrier) for the same
transition-metal monoxides as a function of the second
shear modulus —,

' (c ~ ~
—c ~2 ). The amount of relaxation

decreases as the shear modulus increases. MnO shows
relatively less relaxation than CoO in spite of the simi-
larity of shear moduli; the reason for this is that MnO is
a fairly open structure, as reflected by the large lattice
constant. The forces between the oxygen atom and the
MnO are therefore smaller, causing less relaxation of the
substrate. We see that the amount of lattice relaxation
varies between 50% and 70% of the magnitude of the
unrelaxed barrier even within the same crystal structure.
This is a significant effect, and immediately shows us,
that in order to calculate the energy barriers for oxygen,

we need to describe both the structure of the substrate
and its elastic properties.

In Fig. 4(a) we show the unrelaxed and relaxed bar-
riers for the first series of transition metals. The in-
crease in the magnitude of the unrelaxed barrier towards
the right of the Periodic Table is due to an increase of
the interstitial electron density. This increase is due to
both getting more electrons per atom and also to smaller
lattice constants for the elements towards the noble met-
als. The relaxed barriers, however, show a much smaller
variation along the 3d series. This is because the metals
to the right are generally softer than the metals to the
left, and can therefore relax more. As suggested in our
previous work, the magnitude of the relaxed barrier
correlated best with the second shear modulus,

TABLE II. Crystal structure, lattice constant, elastic constants, and the unrelaxed and relaxed barrier for some oxides of the
0

first series of transition metals. The lattice constants a and c are given in A. The elastic constants are given in units of 10'
dyn/cm .

Sc203
TiO
Ti02
VO
Cr203
Mno
Mn203
FeO
Fe304
CoO
Co304
NiO
Cu20

Structure

bixbyite
rocksalt

rutile
rocksalt

corundum
rocksalt
bixbyite
rocksalt

spinel
rock salt

spinel
rocksalt

Cu20

9.84
4.18
4.59
4.06
4.96
4.44
9.41
4.31
8.39
4.27
8.09
4.17
3.61

2.96

13.59

2.27'
4.00b

2.66'
4.00b

3 74
2.27'
2.27"
2.17'
2.17g

2.60'
2.60h

2.25'
1.21'

C12

1.38'
1.00b

1.73'
1.00'
1.48d

1.16'

1.21'
1.21g

1.45'
1.45"
0.95'
1.05'

0.69'
1.00
1.24'
1.00b

1.59
0.78'
0.78'
0.46'
0.46~

0.80'
0.80"
1.10'

0.12'

Eo

0.00
4.78
0.16
7.01
4.84
2.58
0.05
3.99
0.49
4.62
1.21
5.58
0.16

E rel
8

0.00
2.35
0.07
3.28
1.49
0.97
0.01
1.18
0.21
1.51
0.60
1.79
0.03

'Values for Y203 were used.
Values for NbO were used. See Ref. 7.

'From J. B. Wachtman, Jr. , W. E. Tefft, and D. G. Lam, Jr., J. Res. Natl. Bur. Stand 66a, 465 (1962).
From H. L. Alberts and J. C. A. Boeyens, J. Magn. Magn. Mater. 2, 327 (1976).

'From Landolt-Bornstein (Springer, Berlin, 1984), Vol. III/18, pp. 14 and 15.
'Values for MnO were used.
Values for FeO were used.

"Values for CoO were assumed.
From Landolt-Bornstein (Springer, Berlin, 1979), Vol. III/11, p. 28.
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FIG. 2. The change of barrier energy with lattice constant
on transition-metal oxides with the rocksalt structure. The top
curve shows the unrelaxed barrier, the bottom curve the re-
laxed barrier.
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FIG. 3. The amount of relaxation as a function of the
second shear modulus for transition-metal oxides with the
rocksalt structure.

—,'(c» —c,2). We show this in Fig. 4(b) for the 3d series
excepting Ni and Cu, where the relevant quantity is
—,'(c~r c~q+c44), ' and it is clear, that the trend in the
magnitude of the relaxed barrier follows the trend of the
shear moduli. This correlation indicates that for metals
the stiffness is more important than the structure in
determining the energy barriers. The reason for this is
that in metals the structure varies less than the elastic
constants, which vary more than a factor of 4 among the
3d metals.

Figure 5 shows the unrelaxed and relaxed barriers on,
what we believe —arguably —are the oxides which form
on the surface of the first series of transition metals,
when oxidation takes place near room temperature, and
under low partial pressures of oxygen. While it is not
only the barrier to oxygen penetration which can pro-
vide the rate limiting step in oxidation, on some very
neutral oxides such as Ti02, the rate limiting step may
be the dissociation of oxygen molecules; in the case of
other oxides, which are very good insulators, such as
Alz03, the rate-limiting step may be electron tunneling.
Nevertheless we shall see that the barrier to oxygen
penetration does determine the trend in oxidation resis-
tance. Figure 5 shows how penetrable the oxides on
these transition metals are to oxygen, and this seems to

0.0

Sc ti V Cr Mn Fe Co Ni Cu

FIG. 4. (a) The unrelaxed and relaxed barriers for the first
series of transition metals; (b) the magnitude of the second
shear modulus for the first series of transition metals. Shear
modulus is in 10' dyn/cm . For further details see the text.

give the same trend as oxidation resistance determined
by experiment. The minima in the curve show negligible
barriers to oxygen penetration on the oxide and this
coincides with little resistance to oxidation in the metal.
Scandium oxidizes very easily. Oxygen incorporation
into manganese is extensive already at 78 K actually
manganese oxidizes so readily, that manganese films are
used as corrosion indicators. ' On an iron surface, un-
der the oxidation conditions of interest here, the struc-
ture of the oxide on the surface appears to lie between
that for y-Fe203 and Fe304. ' Since y-Fe203 can be
conceived as a spinel structure with vacant positions in
the metal lattice, and Fe304 is that very spinel, for sake
of simplicity we calculated the barrier for Fe304. The
relatively low barrier is in agreement with the well-
known propensity of iron to oxidation. The high points
on the curve represent a great resistance to oxygen
penetration in the oxide and thus we expect a good resis-
tance to oxidation. The oxidation resistance of titanium,
chromium, and nickel are well known. Perhaps it is a
less-known fact, that vanadium is also extremely resis-
tant to oxidation at room temperature. ' What these re-

8

) 7 gX
g l

\6— I
w
lK

5- X\
I g

lK I
cg 4-

g

3 —
g

g ~ i
~ ar iX

ip

Sc~O~ VQ Mnp0~ Co~0+ Cu&Q
TIO Crp0~ FepO~ NIO

FIG. 5. The unrelaxed and relaxed barriers on the oxides of
the first series of transition metals. The magnitude of the re-
laxed barrier indicates the trend in oxidation resistance.
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FIG. 6. The barrier on (a) a perfect NbO(111) surface, and,
(b) on an NbO(111) surface with a vacancy in the third layer.

suits confirm is that oxidation resistance requires protec-
tive oxide films, protective not in the sense emphasized
before, that for one reason or another they stop growing,
but protective in the sense that they are difficult to
penetrate by oxygen. It can also be seen in Fig. 5 that
the variation in the magnitude of the relaxed barriers
closely follows the variation of the unrelaxed barriers.
This means, that for oxides the main physical quantity
that determines the oxidation resistance is the structure
of the oxide. Even though lattice relaxation reduces the
energy barriers by as much as 70%, the trend in oxida-
tion resistance that emerges from Fig. 5 is the result of
structural effects. This is in contrast with the behavior
of the clean metals. The reason for this difterence is that
in the oxides there is an enormous variation in structure,
while the elastic constants vary considerably less, only
by a factor of 2.

As has been mentioned above, the structure of the ox-
ide surface plays an absolutely crucial role in the magni-
tude of the barriers. This is perhaps best exemplified by
a comparison of the energy barrier for oxides of the
same transition metals which form a variety of struc-
tures. As seen from Table II, the relaxed barrier for
TiO& is 0.07 eV, while for TiO it is 2.35 eV. For Mnz03
the barrier is 0.01 eV, but for MnO the barrier is 0.97
eV. For Co304 the barrier is only 0.60 eV, while for
CoO the barrier is 1.51 eV. These variations in barrier
energy are due to structural effects. The rocksalt struc-
ture is very homogeneous and closepacked, but in the ru-
tile, bixbyite, and spinel structures there are open chan-
nels, through which the oxygen can diffuse easily. The
bixbyite structure for example can be envisioned as a
fluorite structure with ordered vacancies. The oxygen
atom can migrate through these vacancies without hav-
ing to penetrate the high electron density regions of the
substrate. It is such ordered vacancies which open up
the "channels. "

To further illustrate the importance of defects and in-
homogeneities in the oxide structure, we have calculated
the potential energy for an oxygen atom outside a per-
fect NbO(111) and an NbO(111) with a vacancy in the
third layer. The result is shown in Fig. 6. There is a
very large difference between the two barriers. For the

perfect (111) surface, the barrier is 4 eV, while in the
presence of a vacancy, it is only 1.2 eV. The vacancy
thus reduces the barrier dramatically.

IV. CONCLUSIONS

Using a simple calculational scheme we have calculat-
ed the potential energy for an oxygen atom in the vicini-
ty of a metal and metal oxide surface. We have shown,
that in general there is a large potential energy barrier
separating the chemisorbed state from a subsurface posi-
tion. The physical mechanisms underlying the existence
of this barrier have been elucidated and it has been
shown that the energy barrier results from the repulsive
forces due to kinetic energy orthogonalization between
the penetrating oxygen atom and the substrate valence
electrons. We have demonstrated that these repulsive
forces can be significantly reduced by a local distortion
of the substrate atoms around the oxygen atom. The
magnitude of the barrier is thus obtained as a balance in
energy due to the decrease in kinetic energy repulsion
when the lattice relaxes, and the energy cost of deform-
ing the lattice. The model contains no adjustable param-
eters and expresses the potential energy of the oxygen-
substrate system in terms of the electronic structure and
the elastic constants of the substrate.

In an application to the oxidation of transition metals,
the model has been shown to provide results that com-
pare very well with experimental findings. We have
demonstrated that the energy barriers for oxygen on a
transition-metal oxide surface can be very different from
the barrier on the corresponding clean metal surface.
This has the important consequence that a metal's resis-
tance to oxidation can be improved dramatically by the
formation of an oxide layer. For transition-metal oxides
we have found that the barrier for oxygen penetration
depends very much on the structure and the
stoichiornetry of the oxide. We have shown that, for in-
stance, the monoxides, which crystallize in the rocksalt
structure, show very large energy barriers for oxygen in-
corporation. The experimentally observed trends in oxi-
dation resistance of transition metals are well accounted
for in terms of the structures of the oxides. We have
shown that defects in the oxide structures can open up
diffusion paths with much lower activation energies than
the perfect oxide structures.

We have further demonstrated that the energy bar-
riers are significantly reduced by lattice relaxation, and
that if this effect is not properly taken into account,
there is no hope for even a rough quantitative under-
standing of the barriers for oxygen penetration through
surfaces. In particular for clean metals, where the lat-
tices are comparatively soft, and lattice relaxation is
therefore large, the trends in the magnitude of the bar-
rier to oxygen incorporation can be directly correlated to
the stiffness of the metal lattice.

The proposed calculational scheme is easily generaliz-
able to other important incorporation phenomena, like
Cl and F etching of metallic substrates, and we can ex-
pect the same qualitative conclusions about the impor-
tance of the substrate structure and stiffness to apply
also in these situations.
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