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Exact evaluation of the Kubo formula for boundary resistance
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The Kubo formula for the thermal resistance at the boundary between two dissimilar harmonic
solids is evaluated exactly. Little's result is then recovered in a more rigorous manner, without
resorting to the neglect of phases. The formalism illustrates how dissipation arises in a quantum
system and in particular emphasizes the role of coarse graining.

I. INTRODUCTION

It has long been known that the boundary between
two dissimilar materials presents a thermal resistance to
the flow of phonons. ' At low temperatures T, the um-
klapp contribution vanishes exponentially, so that the
boundary resistance, going roughly as T, is often an
important source of resistance, e,g. , for the contact be-
tween liquid helium and a solid sample, for semicrystal-
line materials, for composites, and for samples of finite
size. A theory was first developed by Little, who con-
sidered the scattering and transmission of phonons at the
interface.

In this paper we evaluate the boundary resistance
from the Kubo formula; both the formula itself and the
evaluation are exact. Such a calculation is interesting
from several points of view: (a) the theory of boundary
resistance itself, or of thermal conductivity in general,
(b) the Kubo formula as an exact, nonperturbative ex-
pression, and (c) in the wider perspective of dissipation
in a quantum system.

Little's theory is based on the scattering of plane
waves (or implicitly, wave packets), which are eigen-
states only for a uniform medium. However, for two
harmonic solids in contact, certain linear combinations
of plane waves form exact eigenstates of the whole sys-
tem and hence do not undergo scattering. Thus the con-
cept of boundary scattering is basis dependent and best
avoided. Secondly, the heat current J(r) at point r is not
diagonal in the phonon-number representation (although
for a uniform medium its integral over all space is diago-
nal). Therefore thermal conduction should involve off'-

diagonal quantities such as (a; a& ), where a;,a; are the
phonon creation and annihilation operators for mode i.
[For example, see (26) below. ] In Little's theory, only
the phonon number n; = ( a; a; ) is considered, which
corresponds to the neglect of interference between
different modes, or equivalently, a random-phase approx-
imation (RPA). While the RPA is physically sensible, it
does not expose clearly how dissipation creeps into a
Hamiltonian system, which is a generic problem; even
the usual proofs of the Boltzmann M theorem rely on
the assumption of randomness before each collision —a
clear example of inserting irreversibility by hand.

Quantum-mechanical master equations or transport
equations are often derived "intuitively" or through the
RPA, although recent works have exercised greater
care. ' Nevertheless, for a system described by a quad-
ratic Hamiltonian, the boundary resistance can be evalu-
ated without approximations, so that the origin of dissi-
pation becomes unambiguous. In this sense this paper
resembles the exact solution for the relaxation of a cen-
tral harmonic oscillator coupled to a bath of other oscil-
lators, " which answers a similar question about the ori-
gin of irre~. ersibility.

The Kubo formula expresses the surface conductance
K exactly as an integral over the correlation function
(J;(r, t)J~(r', t')), for the heat current. However, it is
known that the formula does not make sense if evaluated
perturbatively to finite order. Nonperturbative (but nev-
ertheless approximate) evaluations for thermal or electri-
cal conductivity include summing an infinite subset of di-
agrams' or proving equivalence to a master equation. '

The exact evaluation of the Kubo formula for a nontrivi-
al model system is therefore interesting.

The use of master equations for dissipative systems
emphasizes the evolution of the expectation value of the
number operator, or quantities such as q (t) and p (t),
where q and p are the coordinates and momenta. A
large body of works, starting with Ullersma, " discuss a
central system coupled to a bath of oscillators, either by
solving an integrable model explicitly, " through the use
of influence functionals' or response functions, ' or by
going to a Markovian description, ' and have enjoyed
renewed attention in the context of macroscopic quan-
tum tunneling. ' These works emphasize the relaxation
of quantities such as q (t), which by linear-response
theory is related to correlation functions such as
(q(t)q(t')). In contrast, the heat current is of the form
J-qp, and its evolution is governed by a slightly more
complicated quantity of the form (J(t)J(t'))
—((q(t)p(t)q(t')p(t') ).

The rest of the paper is organized as follows. Section
II outlines the derivation of the Kubo formula for the
case of response to a temperature step in a medium con-
sisting of two dissimilar solids. Section III presents the
exact evaluation of the formula, first of all in a one-
dimensional case, and then generalizing to three dimen-
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sions. The treatment refers to an infinite medium (so
that outgoing waves are not reflected) and standard
finite-temperature Green's-function techniques' will be
used. In Section IV we consider a finite medium, from
which the origin of dissipation is most clearly seen.

II. KUBO FORMULA FOR BOUNDARY RESISTANCE

Consider an infinite medium consisting of two solids:
solid 1 (2) in the region z &0 (z &0). It will be useful to
calculate the average heat flux 8 at time t and position
z2 in response to an initial temperature step 6T imposed
at position zi. We define the ratio

K(z&,z 2t)=8(z2, t)/AT(z&) .

The surface conductance E (the inverse of the surface
resistance R) is obtained by setting z, =z2 ——0 and
t~ oo. In other words, the temperature step is imposed
across the interface, and the heat flux is also measured
across the interface when steady state is reached.

The temperature step at t =0 is described by an initial
density matrix

p(0) =N ' exp —f d r P(r)&(r)

where A is the Hamiltonian density and N a normaliza-
tion constant. The local inverse temperature P
represents a small step at z, : P(r)=[T+ATs(r, z, )]
where E(r,z&)=+ —,

'
( ——,') for z &z, (z &z, ). The densi-

ty matrix p(t) for later times is obtained by solving
ap/at = i [H,p(t)], w—here H is the Hamiltonian. Now
the average energy current is given by

cP(z2, t) = — f d r[trJ(r)p(t)] Ve(r, z2 ),A
in which Vs(r, z2)= —n5(z —z2) and n is the normal to
the interface, A is the transverse area of the sample, and
the energy-current operator J(r) satisfies aA'/at
+V.J'=0, where the prime denotes the corresponding
Heisenberg operators.

It is then straightforward to show, as in the usual case
of response to a temperature gradient, that

K(z, z', t)= f der f d r~d r~AT 0

+ & J3(r r)J3(r 0) )odd

(4)

where we have changed the notation z i,z2 ~z,z',
r=(rz, z), etc. , and only the part of the correlation func-
tion odd in ~ is to be taken. For values of t so large that
steady state prevails, energy conservation implies
aP(z', t)/az'=0, so (4) can be evaluated at any z'.
Moreover, because of symmetry under z~z', z is like-
wise arbitrary. This freedom will be exploited to simpli-
fy by averaging over z and z'. The only condition for
the Kubo formula (4) is that terms of more than first or-
der in AT have been discarded; this restriction is intrin-
sic to the definition of thermal conductivity.

X = —,'p(z) ay
2

——'M (z) ay
2 az

2

Eventually we want p(z)=p& (p2), M(z)=M~ (M3) for
z &0 (z &0). It is straightforward to evaluate the Ham-
iltonian density and the energy current

2
2

(6)
2p(z) ' az

M(z), , ay (7)
p(z) az

where +=pe is the conjugate momentum and normal or-
dering is everywhere understood. When (7) is inserted
into (4), the correlation involves four operators at two
different times, schematically

& J(z', r)J(z, O) ) —& g(z', r)P(z', r)m(z, O)P(z, O) )

—& rr(z', r)m(z, O) ) & P(z', r)P(z, O) )

+ & n(z', r)P(z, O) ) & P(z', r )~(z, o) ),
by Wick's theorem. The other contraction does not con-
tribute, since each J is normal ordered and there is no
connected four-point function since the Hamiltonian is
quadratic. All results can thus be expressed in terms of
the correlation function F(z,z', t) = & P(z, t)P(z', 0) ) and
some algebra leads to

2iM(z)M— (z') a F a F
dt t

T 0 Qt BZBZ

$2F ()2F+ ataz ataz .„ (8)

Since we wish to calculate d in (3) when steady state is
achieved, the time integral has been extended to infinity
and for one dimension, A has been set to l.

The freedom to choose z and z' allows us to average
over these positions, e.g. , by ( I/L) f 0 dz. For conveni-
ence we shall restrict z & 0 and z' & 0, so M (z) =M2,
M(z')=M~ are constants in the average. Since z, z',
and t are now all under the integral sign, we may freely
integrate by parts; a little arithmetic then shows that the
second term in (8) makes the same contribution as the
first.

Secondly we introduce the Fourier transform

F(z,z', t) = F(z,z', co)e
277

(9)

which is related to the retarded Green's function

G (z, z', t) = i e(t) & [P—(z, t), P(z', 0)] )

b 18

(IO)

III. EVALUATION OF KUBO FORMULA

A. One-dimensional system

We first consider a one-dimensional system (a
"string") with coordinate P(z) and a position-dependent
density p(z) and modulus M(z), described by the La-
grangian density
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F(z,z', to) = ImG(z, z', cv) .
1 —e -~"

BQ; Bzl;
X= —,'p(r) —,'c—;,k, (r)B,u; t}1uk,

c}t at

Inserting these into (8) then gives

where

8M)Mi
H(tv ),

7 ~ o 2m' (1 —e ~~)2
(12)

H(tv) = Im G(z, z', co) Im, G(z, z', co),
az az' (13)

and the right-hand side is understood to be averaged
over z,z'. Note that in (13), the two factors of G are
forced to the same frequency by the infinite time integral
in (8).

The Green*s function can be evaluated from the
defining equation, written in the frequency domain as

—p(z)cv — M(z) G(z, z', co) = —5(z —z') .2 a
az az

(14)

1 1 —r (15)

The factor 1 —r is just the energy transmission
coefficient 'T. We then obtain

1 dao co e

7 0 2~ (1 e ~~)2
(16)

which gives (in units with kz fi= 1)——

K = 'TT, —
6

(17)

linear in the temperature T and agreeing with Little's
theory for such a one-dimensional system. Since bound-
ary resistance is important only for low temperatures,
there is no need for a Debye cutoff.

The one-dimensional case is sufficiently simple that
there is in fact no need to average over z and z'. In this
way we have verified explicitly that (4) is indeed indepen-
dent of z and z'.

B. Three-dimensional solid

A three-dimensional solid with displacement field
u(r, t) is described by the Lagrangian density

The function 6 has the interpretation of being a wave
produced by a harmonic point source at z' ( & 0) and ob-
served at the point z ( &0). The solution to (14) is just
plane waves in each region with a gradient discontinuity
at z =z'. The wave vectors for the plane waves are
k;=co/v; in the two regions i =1,2, and v; =+M;/p;.
The retarded nature selects outgoing waves at infinity.
The amplitudes of the plane waves are obtained by
matching G across the three regions (z &z', z'&z&0,
0&z) and the result is best expressed in terms of the im-
pedances Z; =p; v; and the amplitude reflection
coefficient r=(Z, —Z2)/(Z&+Z2). Then it is easily
shown that

where the stiffness tensor is

c(j kl X5ljSki +P ( 5ik 5jl + ill 5jk ) (19)

and A, =A,
~ (A2), p=p~ (p2) for z &0 (z &0). The calcu-

lation now involves the correlation Fz. (r, r', t )

= (u;(r, t)u~(r', 0) ) and the corresponding retarded
Green's functions. While the details of the calculation
are in general complicated (but rendered manageable by
the freedom to average over z and z'), the result is sim-
ple and easily made plausible. First let p& ——p2 ——0, so
that there are only compressional waves. Since the sys-
tem retains translational invariance in the x and y direc-
tions, one of the transverse integrals in (4), say d ri, is
trivial and cancels the factor A, while the other, say
d r j, can be written in terms of the corresponding trans-
verse wave vector q. Since q is a good quantum number,
different q's contribute to the heat flux independently. It
is then not surprising to find, in analogy to (16), that

1 des co'e ~" d q
p 2~ ( 1 e ~~)~ (2~)&

(20)

Z i cosOi
X

Z2 cosO2

2Z i cosOi
+

Z2 cosO2

where 0~ (Oq) are the angles of incidence (refraction) in
the two media, related by Snell's law in the usual way,
and in (21) we have assumed c

~ & c2.
When the shear modulus is not zero, a similar calcula-

tion shows that V(cv, q) in (20) is replaced by

V(tv, q)~ gV' ~(cv, q),
a, P

where Y & is the energy transmission coefficient for po-

where the energy transmission coefficient T is now
dependent on frequency and transverse wave number.

Moreover, T is still given by the same formulas as be-
fore, since at fixed cu and q, wave propagation is a one-
dimensional phenomenon along z. However, the wave
velocity in each medium is c; = QA, ; /p;, but the remain-
ing wave number in the z direction is given by
k; =(cv /c; —q )'~, so the phase velocity in the z direc-
tion, namely v; =co/k;, is now no longer a constant. The
q integral in (20) is restricted to values such that k, and
k2 are both real. Physically imaginary k represents total
internal reflection and hence zero energy transmission.
Mathematically this restriction may be seen from the
freedom to choose z and z' arbitrarily: if they are far
from the interface and on opposite sides, waves with
imaginary k will not propagate from r and r' and hence
the Green's function vanishes.

When the integrals in (20) are evaluated, we find that
K agrees with the result given by Little, in particular
K~T:

4 2 T 7)/23

K= —„~ d O2 sinO2 cosO22 p2
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IV. FINITE SOLID

The origin of dissipation becomes even clearer if we
consider a finite solid and express the calculation in
terms of normal modes. It suffices to illustrate the idea
by the one-dimensional model defined by (5), whose nor-
mal modes satisfy

—co„p(z)P„(z)= M (z) (t „(z)
az az

(22)

with normalization

f dz p(z)p„(z)p (z)=5„

Introduce normal coordinates q„by

P(z, t) =g q„(t)ct„(z)

(23)

(24)

and the corresponding momenta p„=BL /Bq„where
L = f dzX with X given in (5). Then the Hamiltonian

and the energy current are

larization a striking the interface and transmitted to the
other side as polarization P. For the same physical
reason, the different transverse momenta contribute in-
dependently to K. Again K ~ T and the result agrees
with Little. Our expressions [e.g. , (20)], written in
terms of the conserved quantity q rather than angles 0&

and 02, are more physically obvious by virtue of the
analogy to (16) and moreover exhibit manifest symmetry
between the two solids.

co' (q q„)=(p p„)=co N(co )5 „,
(q p„)=—(p q„)=—'6 „

(30)

and N(co)=[ exp(Pco) —1] ' is the Bose-Einstein occu-
pation number. When these are put into (28), the r in-
tegral leads to

g „—Q „Q„[N(co„) N(—cu )]
m, n ~n

X &, (~ —co„),
COm

(31)

where b, , (a) =(1/m) sin(at )/a may be thought of as a 5
function given a width of —1/t.

Now on account of the first two factors in the summa-
tion in (31), the m =n term clearly does not contribute,
so

~

co —co„~ & c/L, where L is the size of the solid and
c is a typical phonon speed. On the other hand,
b, , (co —co„)~0 if

~
co~ —co„~ & 1/t. (An exception will

be noted below. ) Thus K~O if t &&L/c, so that the
literal interpretation of (4) with t ~ oo is incorrect. The
physical reason is obvious: phonons are reflected at the
ends of the finite solid after a time -L/c, so that the
heat flow caused by the original temperature step
quenches itself. (In a more realistic model with three-
phonon scattering, phonons should diffuse rather than
propagate, and the heat flow quenches on a time scale
proportional to L rather than to L.)

Thus we are led to consider (31) with finite t, in partic-
Ular

H =g —,
' (p„+co„q„),

J(z)=gp q„g „(z),

(25)

(26)

L 1

c T (32)

Q „(z)=—P (z)M(z) P„(z),a
()Z

which is continuous across the interface.
When these are put into (4), we find

(27)

g „g„,f «r(p (r)q. (r)p„(0)q, (0) ).dd .
0

m, n, r, s

(28)

In (28) we have kept t finite; without the assumption of
steady state, z and z' are no longer arbitrary, so Q „and
Q„, must be evaluated at the origin (say z =0 ). The
correlation in (28) can be broken into

m, n

where normal ordering is implied, and the c-number
function Q „ is

By virtue of these inequalities, the large parentheses in
(31) can be averaged over several neighboring modes,
and moreover co /co„= l. This is just the process of en-
ergy coarse graining' known to be necessary for deriv-
ing dissipative behavior. For example, a similar step is
necessary in the work of Ullersma" to convert poles in
the frequency plane into a cut, thereby endowing the
relevant Green's function with an imaginary part.
Coarse graining is here justified mathematically by re-
stricting attention to the time domain (32). Secondly,
since cu and ~„are restricted to —1/t of each other
and N (co) varies slowly on this scale,

N(cu„) N(co ) =(co„—c—o ) N(co ) .
a

Bco

We then obtain

(p (r)p„)(q„(v)q, )+(p (r)q, )(q„(r)p„), K= — f dcoo'1(co) (~),2T Bco
(33)

where p„=p„(0), etc. , are the Schrodinger operators.
The ~ dependence is now explicit, e.g. ,

q (r) =q cos(co r)+ p sin(co
~m

(29)

The ensemble averages over the Schrodinger operators
are

where co ~co, co„~co', the sums have been converted
to integrals using the density of states o. ,
= f demo(co), and

r(~)=g.'„—g „g„., (34)

in which the long overbar denotes averaging over several
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COI (co)=
4X

(36)

where 'T=4Z, Z2/(Z&+Z2) is the energy transmission
coefficient as before. The density of states in this case is
o. =2X/m and (33) finally gives

1 dco q t)N

T 277 dco
(37)

in agreement with (16).
The present choice of LI and L2 causes the eigenfre-

neighboring modes and the co' integral has been canceled
against h„which can now be regarded as a 6 function.
Only when (32) is satisfied can we eliminate off-diagonal
terms and hence justify RPA. In particular, one would
not expect RPA to hold for the heat current at short
times.

In order to evaluate I (co), consider a "string" extend-
ing from —L& to +L2, with L&/c] ——L2/c2 ——X; this
choice merely simplifies the arithmetic and is not essen-
tial. The mth eigenfunction is

(z) = A sin[k, (L, +z)], z & 0

=B sin[k2 (z L2)]—, z &0,
where k; =co /c;, i =1,2. Matching the two solutions
gives

A =B =2(p,L, +p,L2) ', m odd

Z, A =ZzB =2(p,L,Z, +p2LzZ& ) ', m even

and

M)
to„A A„sin(mm/2) cos(nm /2), (35)

C]

which is zero unless m is odd and n is even. These re-
sults lead to

quencies to be evenly spaced by 6~=1/o. , a condition
which will not be true in general. In this case
b., (co —co„) and hence K in (31) becomes periodic in t
with period- 2m.0.=4X. This is a trivial example of Poin-
care recurrence and clearly in the Kubo formula one
must send the size of the system to infinity before t ~ oo

in order to avoid such recurrence.

V. DISCUSSION

It is generally believed that dissipation (or irreversibil-
ity) requires, first of all, that suitable initial conditions
(as opposed to final conditions) are chosen, thus intro-
ducing an arrow of time. However, finite systems will
recur over a long but finite time. If the system is har-
monic and the frequency spacing Ace is uniform, then
this time is simply 2m /b, to; otherwise the recurrence
time could be extremely long, but still finite. When the
state of the system recurs, i.e., when the initial state is
recovered (or nearly recovered), there will be "antidissi-
pation, " and to avoid this requires that attention be re-
stricted to a suitable time interval. This in turn permits
coarse graining in the frequency domain, which is
mathematically the same as setting Aco~O or consider-
ing an infinite system with only outgoing waves. The
present work then constitutes an explicit demonstration
of this widely held belief in a simple, exactly soluble
model.

In closing it should be remarked that the result for
boundary resistance is unphysical in the limit of two
identical solids, for which one would expect the bound-
ary resistance to vanish. This has already been discussed
by Little, and is attributed to the neglect of three-
phonon scattering in the Hamiltonian —which must be-
come the dominant mechanism when the boundary
mismatch is sufficiently small, and which defines the
mean free path as the scale below which a local tempera-
ture is meaningless.
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