
PHYSICAL REVIEW B VOLUME 36, NUMBER 9 15 SEPTEMBER 1987-II

Estimate of the barrier to and rate of dissociation of dense nitrogen under shock conditions
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A simple method is introduced to estimate the barrier to dissociation of nitrogen under shock
conditions. A free-energy curve is constructed from quantum-mechanical calculations of the
ground-state potential well for N2, the model exponential-six potential for the dissociated state,
and the additional chemical potential (due to the surrounding dense media) in the hard-sphere ap-
proximation. The curves are adjusted to yield behavior in agreement with equilibrium thermo-
dynamic calculations. The barriers are several electron volts, decreasing with pressure. Estimates
for the prefactor in an Arrhenius rate expression are based on the recent computer simulations of
nitrogen vibrational relaxation [B. Holian, J. Chem. Phys. 84, 3138 (1986)]. Time scales for reac-
tion vary from microseconds to tenths of nanoseconds with increasing shock pressure.

INTRODUCTION

The dissociation of molecular nitrogen under high
densities is an intriguing phenomenon. The evidence for
the dissociation is the observed (unexpected) "softening"
of shock pressures in liquid nitrogen above 30 GPa. '

The purpose of this paper is to present an estimate of
the barrier to this dissociation and hence the rate of dis-
sociation. In doing so we have introduced a simple cal-
culation method which should be of utility in other sys-
tems.

The Hugoniot data for N2 has an unusual kink or
"shoulder" at 30 GPa. This feature is difficult to repro-
duce in an equilibrium calculation that allows dissocia-
tion. ' Our calculation was motivated by the suggestion
that there may be a kinetic effect retarding the dissocia-
tion, and hence it is important to understand the nature
of the thermodynamic barrier to dissociation.

We are also motivated by the desire to understand
chemical kinetics at extremely high densities and tem-
peratures. There are few available detailed experimental
investigations on simple molecular systems under these
conditions from which we can extract dynamic informa-
tion. Understanding simple systems is seen as a prelude
to the study of complex systems, such as explosives.

The N2 bond has a strength over 9 eV. It is the
release of this energy that drives most of the organic
compounds used as explosives. The temperatures at
which the softening in shock pressure begins are less
than 0.6 eV (with densities two to three times higher
than the normal liquid). Such conditions can occur in
the product states of detonating reactive solids. High-
temperature, low-density nitrogen (shocked gas) is
known to show dissociation, but it is still surprising that
the high-density liquid, where excluded-volume effects
would seem to encourage association, should show disso-
ciation.

It has been predicted that the zero-temperature molec-
ular solid should undergo a (possibly) related transition
from a "molecular" solid to an "atomic" solid at pres-
sures on the order of 80 GPa. Experimentally, this is

not observed, and it has been suggested that there may
be a large kinetic barrier to the process. This suggests
that a sizable barrier may be present for the high-
temperature, condensed-phase process also.

A complete determination of the relevant many-body
potential surface for this process is clearly unfeasible.
Although we may define a one-dimensional reaction
coordinate as the separation of the two nitrogen nuclei;
the real energy surface has a very high dimension be-
cause the surrounding atoms and molecules must be
playing an important role. For this reason, we prefer to
call our calculation an "estimate" of the barrier. Our
"estimation" procedure is based on what is known as the
Marcus theory for relating the free-energy change during
the course of a reaction to the barrier. Marcus first pro-
posed this method in the context of electron transfer re-
action, where it has a firmer scientific basis. Other
workers have found the method to be of utility for a
wider range of kinetic processes; it is in the latter spirit
that we use the name here. It is the introduction of this
highly simplified procedure that is the major contribu-
tion of this work.

To connect the barrier to the dissociation rate, a value
—bF~Ik~ T

for the prefactor, A (in k = Ae ) is necessary.
As we explain in greater detail shortly, we have assumed
that this value will be related to the time scale for vibra-
tional relaxation. We then used the results of recent
computer simulations to complete our estimation of the
rate.

METHOD OF CALCULATION

Our calculations for a kinetic barrier make use of the
theoretical Hugoniot computed by the chemical equilib-
rium (CHEQ) code. Namely, the CHEQ code evaluates
thermodynamic properties of N2-N mixtures by minim-
izing the Gibbs free energy G(P, T, [n; I ) with respect to
the compositions [n; ) (i =N and N2) at fixed T and P.
Computation of G(P, T, [n; I ) employs an accurate sta-
tistical mechanical model of mixtures, together with
exponential-6 (exp-6) potentials (Table I) for N-N, Nz-N,
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r (A) c/kg (K)

TABLE I. Exponential-6 parameters for the N~-N2, N-N~,
and N-N interactions. (exponential-6 potential: Pl r)
=e/(a —6)[6e " ~~r ' —a() '!y)']).

the two nitrogen atoms are labeled 1 and 2, the probabil-
ity of finding them at a distance r apart is

p (r) =—f e 6(rt2 r)—d I
Z

N2-Np'
N-Nb

N2-N

4.09
2.496
3.293

101.9
20.0
45.14

13.0
15.0
14.0

where H is the full Hamiltonian of the system, the in-
tegration d I is over all the degrees of freedom, and

'Reference 14.
Preliminary values. Our final result will be reported in the fu-

ture (Ref. 3).

and Nz-Nz molecular interactions. The present model
employs spherical potentials for nonspherical molecules.
This assumption is accurate for shocked fluids in the
pressure and temperature region of interest here. "'

We use a combination rule' to obtain the N-N2 exp-6
parameters from the N2-N2 and N-N parameters. The
N2-N2 exp-6 parameters (Table I) have been shown to
satisfactorily describe the shock data in the undissociat-
ed regime below 30 GPa. ' The N-N parameters (Table
I) are obtained so that their use, together with N2-N&
and N-N2 parameters, in CHEQ will reproduce the
shock-wave data as closely as possible. Details on the
fitting procedure and comparisons with experiment will
be described in a later publication. One characteristic
feature of the N-N interaction in Table I is that its
repulsive range (2.496 A) is much shorter than that (4.09
A) of the N2-N2 repulsion. Therefore, in the presence of
shock pressures (hence, shock compression), N, mole-
cules can dissociate if the net internal energy (including
the bond dissociation energy) exceeds that of dissociated
N atoms. In addition to the aforementioned "pressure"
dissociation, very high temperatures attained by shock
heating further promote dissociation, as in the low-
density gas.

The picture that emerges from the equilibrium calcu-
lation is that of a pressure-induced electronic
transition —a transition from the diatomic (Nq) electron-
ic ground state to a dissociated monatomic electronic
state favored by the interactions (predominantly repul-
sive) between the N nuclei and the surrounding atoms
and molecules. The transition is marked by an increase
in the mean distance between the two nitrogen nuclei.
For this reason, we take the N-N internuclear spacing as
a reasonable reaction coordinate. We then focus, or pro-
ject onto, this coordinate, averaging over the remaining
degrees of freedom. Formally, this yields a (complicat-
ed) one-dimensional equation of motion for the reaction
coordinate, from which a rate constant can be calculat-
ed. The result for the rate will essentially be of the Ar-

—AF'/kB T
rhenius form, k =Ae, where AF~ is the barrier
height and 3 is a very complicated function of environ-
mental parameters. We will focus on AF~ since this
term usually dominates the rate expression. We will re-
turn to the question of the prefactor in the discussion.

Our calculation proceeds by constructing effective N-
N potentials wells for the two electronic states. These
are really "free-energy" wells because they are calculated
by freezing the internuclear spacing and averaging over
the positions of the surrounding atoms and molecules. If

From this we can define an effective potential V„
—V, {rI/l ~ Te'=pr

This can also be written as

V, (r) —= u (r)+p(r),

(3)

(4)

where u (r) is a two-body (nitrogen atom) potential ener-

gy in the absence of the (repulsive) interactions of the
surrounding atoms and molecules, and the chemical po-
tential p( r ), given by

—p(r j/k~ Te—:y(r),
where y (r) is the "cavity distribution function", ' essen-
tially the probability of finding two "holes" at a distance
r apart in the condensed phase. Recent interest in the
frequency shifts and linewidths of molecular vibrations
at high densities have focused attention on the chemical
potential for overlapping hard-sphere cavities. ' We
evaluate the eff'ective diameter of the hard spheres (for
both atoms and molecules) from the chemical equilibri-
um calculations using the Mansoori-Canfield-Rasiah-
Stell-Ross form of perturbation theory. We use that
hard-sphere diameter as the effective hard-sphere diame-
ter for pHs, using the computationally convenient form
of pHs(r) given by Zakin and Herschbach. '

From the equilibrium calculations, we extract two
pieces of information: the degree of dissociation and the
approximate shape of the interaction potential (or well)
between two nitrogen atoms in the dissociated state.
Our model treats the dissociation as the partitioning be-
tween two states. From the degree of dissociation we
calculate the free-energy difference between the associat-
ed and dissociated states

X
reaction ~pit

l —x
(6)

where x is the degree of dissociation. We allow the
CHEQ code to do that part of the calculation, and adjust
relative heights of the minima of the effective-potential-
well depths to be AF„„„,„. This free-energy difference
is taken to be the difference in height of the bottoms of
the two wells. This is not precisely the difference that
would be calculated by using Eq. (I), because the entro-
py along the reaction coordinate has effectively been in-
cluded. As long as the entropy (or curvature) does not
vary rapidly with separation in this region on either
curve, this should be an acceptable approximation.

The N-N potential u (r) in the dissociated state is tak-
en to be the exp-6 potential, with the parameters given
in Table I. This is one of the major assumptions in this
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calculation. In the absence of any detailed calculations
of the structure of the dissociated phase, calculations
which are not currently feasible, we are forced to use the
empirical potential. The potential is realistic in that it
was chosen to reproduce the shock data and the func-
tional form has been used in a variety of other shock ex-
periments, but it is the uncertainty in the use of this po-
tential that has caused us to call our calculation an "esti-
mate" of the barrier.

For the N-N potential u (r) in the diatomic state, we
use the quantum-chemical calculation of Ermler,
McLean, and Mulliken. ' To this we add pHs(r) to ob-
tain V, (r) W.e again use the hard-sphere diameter taken
from the equilibrium calculation. Although this is not
exactly the appropriate diameter, the N-N potential is
sufficiently steep in the region of interest that the change
in V, (r) in that region is small, and hence the error in-
troduced is small.

To construct a reaction surface from these effective
potential wells, we essentially graph the two curves on a
single plot, and adjust the relative height of the well
minima to agree with the equilibrium degree of dissocia-
tion. The location of the curve crossing is identified as
the transition state. At this crossing, real adiabatic po-
tential curves will be "split, " causing an avoided cross-
ing. We assume that the splitting at the curve crossing
is small compared to the height at the barrier crossing,
so that the barrier is not dramatically lowered by the
splitting. Given the height of the barriers, this is prob-
ably a safe assumption. These curves were calculated for
the thermodynamic states listed in Table II. A sample
curve is shown in Fig. 1. Both u(r) and u(r)+pHs(r)
are shown for the associated and dissociated state, for
the highest pressure given in Table II. This clearly
shows the effect of p(r) is smaller on the associated
curve then the dissociated curve. On the relatively more
compressible dissociated state, the curve is pushed in
considerably, with only small modifications on the N2
well. The energy is plotted in units of electron volts, so
the "small" effect of p(r) can actually amount to lower-
ing the transition state by half an electron volt or several
thousand degrees kelvin.

The curves calculated are summarized in Fig. 2. Here
we have plotted the free energy as a function of reaction
coordinate for the various pressures given in Table II.
The lowering of the kinetic barrier can clearly be seen.

The procedure outlined above can be regarded as a

generalization of the Marcus relation. In essence, what
is usually referred to as the Marcus relation estimates
the change in barrier height for a change in free energy
of reaction assuming both wells are harmonic. With
these assumptions, there is a simple quadratic relation
between free energy of reaction and activation free ener-
gy. Our application constructs the relation between free
energy of reaction and activation free energy for anhar-
monic wells. Inspecting hF~ as a function of 4F„„„,„,
a nearly linear dependence is found. It is not unusual,
even within Marcus theory, to find linear behavior over
a range of free energies; it is, in fact, the basis of many
physical-organic-chemical relationships.

DISCUSSION AND CONCLUSIONS

The rate of dissociation, or barrier crossing, will be
—AF~/kB T

the product of a thermodynamic factor e and a
prefactor A. The theoretical analysis of the prefactor
for barrier-crossing problems has been an active area of
research for the last several years; the temperature and
pressure dependence of even simple model processes can
be very complicated. ' Because we are demonstrating a
simple procedure to estimate the rate, and because in
most cases the largest contribution to the temperature
and pressure dependence is in the thermodynamic factor,
we will regard the prefactor as simply the time scale for
the process.

In view of both the approximate nature of our free-
energy surface and the complicated nature of the prefac-
tor, we have chosen to estimate the prefactor using in-
formation from computer simulations of vibrational re-
laxation. In essence, we view the relaxation of vibration-
al excitation as measuring the rate at which energy is be-
ing taken in and out of the reaction coordinate. Holian
has performed classical molecular dynamics for Nz vi-
brational relaxation under conditions of very high pres-
sures and temperatures. At a density of 2.3 g/cm and
a temperature of 4000 K, he finds vibrational relaxation
occurring on the order of 200 psec. Using this informa-
tion, we estimate the prefactor as A = 1/(200
psec)=5X10 sec '. In the absence of any detailed in-
formation on the temperature and pressure dependence
of this factor, we will assume this prefactor is indepen-
dent of environment in the density temperature range we
are probing. The error involved could easily be an order
of magnitude, but this is small compared to the many-

TABLE II ~ The thermodynamic states discussed and the resulting free energies and rates.

P
(CzPa)

20
30
40
50
60
70
80
85

T
(eV)

0.390
0.580
0.752
0.874
0.981
1.080
1.184
1.240

P
(g/cm )

1.859
2.033
2.210
2.407
2.606
2.803
2.996
3.090

N2
(mol %)

99.98
98.95
94.21
87.22
78.95
70.18
60.91
56.18

13~Freactioo

8.38
4.56
2.85
2.06
1.56
1.21
0.94
0.83

9.3
5.2
3.5
3.0
2.5
1.9
1.5
1.4

k reaction

(sec ')

4.57 X 10'
2.76 && 10'
1.51' 10'
2.49 ~ 10'
4.10~ 10'
7.48 X 10
1.12 &( 10
1.23 &( 10
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FIG. 1. The effective free-energy curves for N2 at 8.5 GPa.
The solid curves include pNs, the dashed curves do not.

FIG. 2. The free-energy curves as a function of shock pres-
sure.

order-of-magnitude change due to the change in the bar-
rier height. Using this assumption, we arrive at the
rates given in Table II. These rates are similar to the re-
sults of Ross, who scaled molecular dissociation rates for
gases to liquid densities using hard-sphere collision rate
theory. The combined effects of decreased barrier
heights and increased temperatures cause the very large
changes in the estimated rate. At the lowest shock pres-
sures, the process occurs on a timescale of microseconds.
In a typical shock experiment, the material is observed
over a time on the order of 100 nsec. The presence of
the "shoulder" observed in the Hugoniot data can be ex-
plained by the reaction being too sluggish to occur on
the timescale of the shock experiment for the weaker
shocks. At higher pressures, the reaction becomes much
more rapid and the shock experiment effectively sees an
equilibrium mixture of molecular and atomic nitrogen.
It should also be noted that the fraction of dissociated N
atoms is very small at low pressures, so the thermo-
dynamic properties are essentially identical to those of
Nz without dissociation.

On the basis of the present barrier calculations, we
can comment on the inability to observe the predicted
low-temperature phase change in a diamond-anvil exper-
iment. Under those conditions, nitrogen is in a solid
phase, whereas our results are for a high-temperature
fluid phase, and so the reaction surface may be consider-

ably different. We can argue that the rates in the solid
phase would not be expected to be any faster than in a
fluid phase at that density. This suggests at room tem-
perature at a density of 2.4 g/cm, for example, there
will be a barrier of at least 3 eV, which corresponds to
an Arrhenius factor in a rate expression of 10 . Com-
bining that with any reasonable estimate of the prefac-
tor, the timescale for the process becomes prohibitively
long, and we would not expect to observe dissociation in
a diamond-anvil experiment.

In conclusion, we have presented a simple procedure
for estimating reaction rates for important physical pro-
cesses in regimes that are dificult for traditional physical
chemistry. This procedure was developed by combining
ideas from statistical mechanics and physical organic
chemistry. The results provide a picture consistent with
the experimental observations, and have helped shed
some light on the unusual behavior of nitrogen under ex-
treme conditions.
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