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We discuss the nonuniform high-field collective states of a multivalley electron gas. We consid-
er specifically a model where there are two different orientations for the principal axes of the
effective-mass tensor in the various valleys, and the magnetic field is applied along a direction that
is symmetric with respect to these orientations. The onset of various instabilities is found within
the Hartree-Fock approximation for the electron-hole correlations, as a function of the carrier
density and magnetic field strength, the effective-mass anisotropy, the electronic g factor, and the
number of degenerate valleys. Depending on the parameters, we find that the ground state may
contain spin-density waves or valley-density waves —i.e., a state in which there are out-of-phase
charge-density waves in various valleys. We discuss how the disorder that is present in most ex-
perimentally relevant systems may affect various collective transitions.

I. INTRODUCTION

Over the years there has been considerable interest in
the properties of an interacting three-dimensional elec-
tron gas, in strong magnetic field, at low temperatures.
In an early paper, Celli and Mermin' proposed that the
ground state of this system shou1d contain a spin-density
wave with a wave vector oriented paralle1 to the magnet-
ic field, provided that both spin states remain occupied.
More recent discussions have concentrated on the strong
field limit where all electron spins are parallel to the
magnetic field; in this case the most prevalent finding is
a ground state with charge-density waves of several
different orientations, such as a Wigner crystaI, or an ar-
ray of charged rods, first considered by Kleppmann and
Elliot. Most of the analyses have been carried out using
Hartree-Fock and related approximations or parquet
equations.

In the present paper, we extend this work to a situa-
tion where the electrons occur in two or more degen-
erate valleys. We consider the effects of effective-mass
anisotropy in the valleys, and we consider the situation
where the principal axes may have different orientations
for different valleys.

Within our model we consider the possibility of
several types of ground states, including spin-density
wave (SDW) states and states we describe as valley-
density wave (VDW) states. Depending on the parame-
ters of the system, the SDW or VDW may have lower
energy. The SDW we consider have separate spin-
density waves for electrons in each valley. The wave
vector of the SDW may have different directions in vari-
ous valleys as a consequence of the different orientations
of the effective-mass tensors in the valleys. In the sim-
plest type of VDW state, there are separate charge-
density wave states formed in each valley and each spin
state. For each spin state the charge-density waves from
two different valleys must lie in the same direction, and
be 180' out of phase, in order that there be no inhomo-
geneity in the net charge density of the system, to lowest

order in the VDW amplitude. Because there are
different densities of spin-up and spin-down electrons,
their charge-density waves will have different wave-
lengths, and there cannot be cancelation of the CDW's
between spin-up and spin-down electrons of the same or
different valleys. We note that in a weak-coupling situa-
tion, where the gap due to the order parameter is small
compared to the field-dependent Fermi energy, the ener-
gy cost of the first-order charge-density inhomogeneity is
sufficiently great, that the system will generally avoid
such a state. When the magnetic field becomes
sufficiently strong, however, an inhomogeneous state,
such as a Wigner crystal, may occur.

In addition to the type of VDW state described above,
there are related VDW states in which electrons near the
Fermi energy are placed in a linear combination of states
from two different valleys. If the valley is indexed by an
"isospin variable" ~=+1, this second type of VDW has
an oscillating isospin polarization in the x -y plane, while
the VDW described earlier is polarized in the z direction
of isospin space. Within the approximations of our
model, the two types of VDW states are exactly degen-
erate as long as the principal axes of all the valleys are
identical. If this is not the case, however, the two polar-
izations of the VDW may have diff'erent energies. (We
will discuss these questions further in Sec. IV and Ap-
pendix B.)

In general the VDW state will result in a modulation
of the electron density and/or a modulation in the orbit-
al magnetic moment at large wave vectors, comparable
to the separation between valleys in the Brillouin zone.
To lowest order in the VDW amplitude, however, there
is no charge-density inhomogeneity at the smaller wave
vectors which correspond to a wave vector difference be-
tween two points in the same electron valley. Thus, in
weak coupling at least, we expect the VDW states to
have lower energy than a simple CDW state.

Our calculations are carried out in the Fukuyama ap-
proximation to the Hartree-Fock equations, in which
the nonlocal exchange potential is replaced by an aver-
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age over momentum components parallel to the magnet-
ic field. In general, we do not actually solve the problem
of the ground-state energy, but rather look for the tran-
sition temperature at which the uniform electron gas be-
comes unstable to a broken symmetry of the various
types considered. At least in the weak-coupling limit,
the form of the ground state can be inferred from this
analysis.

It should be mentioned that the present model cannot
be applied directly to actual semiconductors or semimet-
als. In doped semiconductors, the random potential of
impurities is a big perturbation, which may have a dras-
tic effect on the ground state. In the weak-coupling re-
gime, where the electron-electron interaction is small
compared to the kinetic energy, the impurity potential
will destroy the predicted phase transition, and eliminate
the ordering completely. In the strong-coupling regime,
however, near the metal-insulator transition at zero mag-
netic field, it is possible that local ordering persists, and
perhaps even a phase transition under certain cir-
cumstances. Although a Hartree-Fock calculation can-
not be trusted in this regime, the analysis of the present
paper may still be useful in suggesting the types of states
that could occur.

Our analysis may be more applicable to a semimetal,
such as graphite, where a phase transition has already
been observed in strong magnetic fields. A proper
analysis of the semimetal case must allow for two kinds
of carriers, electrons and holes, in different parts of the
Brillouin zone, or a nonparabolic band structure, if the
electrons and holes are in the adjacent regions of the
zone. Also, at high carrier densities, one must take into
account electron-electron scattering between different
valleys, which has not been included in our model. The
"charge-density wave" state proposed by Yoshioka and
Fukuyama for the case of graphite in a strong magnetic
field is actually a VDW state, in our notation, since there
are CDW's for two different valleys which are 180' out
of phase.

II. DESCRIPTION OF THE MODEL

We assume that the effective-mass tensor in each elec-
tron valley has axial symmetry, with a doubly degenerate
transverse eigenvalue m„and a single longitudinal eigen-
value m& (we assume m, &m&). The important dimen-
sionless parameters which characterize the band struc-
ture of the system are then the number of degenerate
valleys N„ the mass anisotropy ratio m, /m&, and the an-
gles between the longitudinal axes of the various valleys.

In the presence of an applied magnetic field there are
additional dimensionless parameters which describe the
orientation of field relative to the symmetry axes of the
valleys. Another important dimensionless parameter is
given by g

*=m, g, where m, is given in units of the bare
electron mass, and g/2 is the spin magnetic moment of
the carriers, in units of the free electron Bohr magneton
(for simplicity we assume that the g factor is isotropic;
more generally the g factor should be represented by a
tensor with longitudinal and transverse components in
each valley). If the magnetic field is applied along the

symmetry axis of some valley, then the ratio of the Zee-
man energy to the cyclotron energy is equal to g" /2 for
carriers in that valley.

It should be remarked the dimensionless material pa-
rameters defined above vary considerably from one ma-
terial to another, and they may differ greatly from the
free electron values. For example, in n-type Vie there
are four electron valleys, the mass ratio m, /m& is =0.05,
and the parameter g* is also of order 0.05.

When a finite density of carriers is present in the sys-
tem, two more dimensionless parameters come into play:
One parameter is the ratio of the Fermi energy to an en-
ergy, such as Zeeman energy, which measures the
strength of the magnetic field; the second is a quantity r,
which measures the relative importance of the electron-
electron interaction and the kinetic energy of the system.
In doped semiconductors these are experimental parame-
ters which can be varied by altering the doping concen-
tration and the external magnetic field. In a semimetal
the carrier concentration is determined by the band
structure of the material, but some variation may still be
obtained by application of pressure or by adding impuri-
ties to the material.

It is clearly not practical to explore all regions of pa-
rameter space for a model where the number of impor-
tant parameters is large. However, we can hope to gain
some insight by looking at some illustrative examples,
where a representative value is chosen for each of the
various parameters, except for the field strength which
we vary continuously in an interesting range. One case
which is easy to discuss is the isotropic situation, where
m, =. m~. Also relatively simple is the case when all oc-
cupied electron valleys are oriented in the same direc-
tion. In order to illustrate the situation for valleys of
different orientations, we shall choose a model where
there are valleys of two different orientations, and an
equal number of valleys X, /2 for each orientation. The
magnetic field in this case will be taken along a direction
which bisects the angle between the axes of the two val-
leys.

To define the model further, we shall take the z direc-
tion to be the direction of the applied magnetic field B.
The symmetry axis of each occupied valley o;
(a= 1, . . . , N, ) is assumed to lie in the y-z plane at an
angle 0 with z direction. For the case of two different
valley orientations, this means that there are two classes
of valleys, "left valleys" and "right valleys, " for which
0 is chosen to be, respectively, —0 and 0, where 20 is
the angle between the two valley axes. This situation is
shown in Fig. 1.

We choose to work in the Landau gauge with vector
potential A=( —By, 0,0). Then the one-electron eigen-
states for an electron in valley a are described, in the
effective mass approximation, by the envelope function

b
4'„k J, (r)= —exp ik, z+ik x —i k, (y+. 1 k )n a a

XC&„(y+1 k ),
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and L is the linear size of the system. The energy corre-
sponding to this state is

(For derivation of the above single-particle eigenfunc-
tions and energy eigenvalues, see Appendix A. ) From
now on we restrict ourselves to the case when only the
lowest Landau level is occupied, i.e., n =0.

Within our model, the Hamiltonian for the electron
gas in a magnetic field can be written as follows:

8 g g gk ack„k saCk„k, sa+gPBSzB
k, k s, a

+ —' g &(q)g p (q)pp( —q) —exp
q a, P

qq

2 p (O)& p (2.1)

g (2
m, mt

J

B

"(9R

y
/

1/2 N~ left valleys 1/2 N~ right valleys

FICs. 1. The model of the multivalley Fermi surface. All
valleys are identical except for the orientation of the principal
axis, which is directed either at the angle 8= 0& or —0= OL

with respect to the magnetic field B. There are 2N, "left" and

2 N, "right" valleys.

where gk =Ek —p, s is a spin index, pz is the Bohr
Z Z

magneton, p (q) is density operator for electrons in val-
ley a, restricted to the lowest Landau level (explicit form
for the density operator is given in Appendix B),
q~= (q„,q ), and we are considering the long-range form
of the Coulomb potential V(q)=(4me feoL q ), L be-
ing the total volume of the system. We have assumed
here that the quantum limit has been attained in which
only the lowest Landau level with both spin levels is oc-
cupied, implying

2 1/2cos 0 sin t9

2 +
mr

where m, and ml are given in units of the bare electron
mass m, . In practice this can be accomplished with
moderately strong fields in several degenerate semicon-
ductors. The case with several Landau levels occupied
can be treated along similar lines. We also ignore the in-
tervalley scattering which is very small and can be
neglected to a good approximation in most semiconduc-
tors. '

In the quantum limit the spectrum of single particle
excitations appears e6'ectively one dimensional, leading
to an anomalous increase in the response functions at
the wave vector q, =k, +k &, , where I, is the Fermi
momentum in the direction of the field for valley e and
the spin state s. This makes the system susceptible to
various instabilities. In this paper we calculate the
response functions in the uniform system, within the
Hartree-Fock approximation for the mutual Coulomb
interaction, and look for the temperature where the ap-
propriate response function diverges.

In the noninteracting electron gas, the response func-
tion is proportional to the particle-hole bubble, i.e., the
Lindhard function. In the quantum limit, the particle-
hole excitation spectrum is quasi-one-dimensional, and
the Lindhard function D ~.. . (q, co) depends only on the
z component of the wave vector q; indices u and s1 refer
to the particle propagator while P and s2 correspond to
the hole. For our purposes only the static (i.e., co=0)
Lindhard function is needed which is given by

dkz f kk„as& f (kk +q, Ps&)

(2~I) 2rr kk, as& kk +q, ps&
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where f is the Fermi function. D ti, s, s2(q, ) exhibits a
well-known "one-dimensional" logarithmic singularity at
T =0 when q, =kF +kg; if we consider the finite tem-

Sl $2

perature case, this singularity is cut off by T. We will be
typically interested in the value of the Lindhard function
at the wave vectors where the zero temperature singular-
ity occurs. In the weak-coupling regime, the transition
temperature T„at which the response of an interacting
system diverges, satisfies T, «E, for each a and s,
where E,=(k, ) /2m is the Fermi energy in a given
valley and spin state. Then the Lindhard function

has the following form:

2L (m~mti)'~
D p, , (2~I)~(kF

In searching for the various instabilities we are in-
terested in the spin, valley, and charge-density responses
of the interacting system. The general form for these
response functions can be written as"

Pz(q, cu)= —i f dt e' '([A (q, t), 2 (q, o)]),
0

(2.2)

where ( ) denotes quantum mechanical and thermal
averaging and A (q, t) refers to the single-particle opera-
tors like the particle-density operator p(q, t), the spin-
density operators tr(q, t), and the "valley-density" opera-
tors r(q, t). The explicit forms for these operators are
given in Appendix B.

In the noninteracting case, the response function is
given by

7"(q,co)=+ M "t3, , (q)D tt, , (q, co)
a, p

XM "p, , (q), (2.3)
k, kp,

&ln 1.14
2(m m~)'"T, where M &(q) contains the matrix elements of various

density operators

2 lap 2 lap ba bp 2 lap ba bp
M t3, (q)=exp q qp + q + + q qz (as&

l
Bw lPs2~

4l p
" 4 16 a ap

' 4 a ap

with I ti
= —,

' (I + I ti ). The matrix elements

(asi
l ez l Ps&) are given explicitly in Appendix B. In

the interacting system, it is convenient to work with the
function P tt, , (q, co), which is defined by

Furthermore, as a direct consequence of anisotropy,
there are additional f (k„,k„q) factors that contribute
to the bare electron-electron vertex as shown in Fig. 2(b).
They are given by

P"(q, co)=+M "&, , (q)P "&, , (q, co) .
a,p

(2.4) f (k„,k„q)=exp i I—k, q,
b

aa

V ti(q)= V(q)exp
l4 l4

4l2 4l2
E

l lp+ qy

To find the temperature and wave vectors at which
P "tt, , (q) diverges (we now consider only the static

response), we need an explicit form for the interacting
response function. Here we use the Hartree-Fock ap-
proximation to determine P tt, , (q). This approxima-

tion consists of summing the electron-hole bubbles for a
direct interaction and the self-consistent vertex correc-
tion for an exchange part. The diagrams included in
the Hartree-Fock approximation are depicted in Fig.
2(a). The bare interaction V(q) defined earlier is scaled
down by familiar gaussian factors; we define

lb lb
+2 q%-

a 4a

These factors can be included in the definition of the
electron-hole correlation functions without affecting
their pole structure. (The above expressions for V and

f are derived in Appendix C. There is some arbitrari-
ness associated with this particular factorization. We
have chosen to define V in a way that naturally extends
the notation of Ref. 7.)

Summation of Hartree-Fock diagrams leads to a com-
plicated integral equation for the response function
which is difficult to treat exactly. Here we can use the
fact that we are working in the strong field limit
(kFI && I) and use Fukuyama's approximation for the
exchange integral. In this approximation one replaces
the exchange part by its average over the relevant
momentum range in the z direction (this range extends
typically from k, to k p, ). In this way we obtain

P t3, , (q)=M*~", , (q)Dttt, , (q, )+fi p5, , D~I3, , (q, ) V(q)TrP "(q) D tt, , (q, )W tt, ,—(q)P "~, , (q) . (2.5)

In (2.5) D tt, , is defined as f (q)ftt(q)D t3, , In the Fukuyama approximation, the exchange interaction W is
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given by
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and

Bo 8
[1—-'t —(1 —g)'"]

2
a g

3Bo
B2 ——4

dag

(2.8)

(2.9)

where Bo ——a+on /16N„, No being the elementary flux
quantum and n the total density of the system,
a= aaa ~ t

mag=
d

(2.10)

Subscripts L and R denote valleys at angles —0 and 0
with respect to B, respectively, while OL

———0 and
OR

——0 in accordance with Fig. 1. 8'Lz, , and

WLR, , are found from (2.6) and (2.7) by replacing 0~
with OL, while 8LR, ~, is not needed for our purposes.
In (2.7) we specified Hz

———Oz, if this is not the case, the
expression for 8'RL and O'LR is quite a bit more compli-
cated. This is a closed system of equations for the
response functions.

In the following two sections, we calculate the transi-
tion temperatures for SDW and VDW states for various
values of parameters of our model, discussing separately
isotropic and anisotropic cases. Transition temperatures
will be evaluated as functions of the magnetic field which
is allowed to vary in the interval from B~, the field above
which only the lowest Landau level with both spin states
is occupied to B2, where the spin-down band is com-
pletely empty. For the general anisotropic case, when
0&0 and m, &mi, these two limiting fields are given by
the following expressions:

possesses a full SU(N, ) valley symmetry (we therefore
drop the valley index throughout this section). If we
now consider solutions of (2.5) we immediately see that,
for large N, , the charge density response P (q) does
not have a singularity at all. In this case 6& is a unit
matrix, and the positive second term on the right-hand
side of (2.5) (i.e., the "direct term") is enhanced by
TrP ~N, . Actually, for isotropic valleys the CDW
is never a favored state in the Hartree-Fock approxima-
tion. This is easy to see: In the absence of valley degen-
eracy, SDW can take advantage of the exchange energy
without coupling to the direct part, but it is eventually
destabilized by the Zeeman energy, which causes de-
population of the up-spin band. For valleys, there is no
Zeeman energy; therefore, the VDW can always take the
full advantage of the exchange part resulting in the tran-
sition temperature higher than that of CDW. It is, how-
ever, interesting to consider the relative stability of SDW
and VDW states.

In the weak-coupling limit that we are considering,
the temperature at which P diverges has the following
generic form:

T,"(qi ) = l. 14E e (3.1)

where we have set q =k +k since we expect that jn

the weak-coupling regime, this value of q, corresponds
to highest T, by virtue of the logarithmic singularity in
D t3, , (q, ). For spin-density waves which are formed
independently in each valley, the "cutoff" E& is provid-
ed by E, , = (k, k, /2m) (Here t and t stand for the + 1

and —1 eigen values of the spin angular momentum
operator o, They denote the up- and down-spin bands,
respectively). The coupling constant A, ~ is given in this
case as

III. ISOTROPIC CASE

To see a qualitative effect of the valley degeneracy, let
us further simplify (2.5) by assuming m, =m&. ' In this
case we have N, identical valleys and Hamiltonian (2. 1)

3
gsDw( )

2L m ~sDw
(2vrl) (k, +k, )

F F
q~, q, =k, +k,

where
(3.2)
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F 4'rre l ~y2 Jp( «q J. ) p~ p~
arctan +arctane+3 p pal+pi X

Jp(lxq) ) being the Bessel function and p, (, )
=—lk „(,). The

variable of integration is x—:Ipz. Similarly, for valley-
density waves which are formed as out-of-phase charge
density waves in left and right valleys Ez is given by
E,(, )

——(k, („) ) /2m for the up(down)-spin band and

gVDW(() )( )
~VDW(() ) 2k FL m

(27rl) k
ql~qz t(l)

where

W ""'(q,, q, =2k„, )

4vre212 - 2 2 Jp(«q) )
dx e++3 p P1( l)

p~(&)
)& arctan

k+ — a2'

k- —PQ

2 7

k+ — (y
q
2'

v(q)

k+-q

(3.3) It is easy to see that in both cases the highest transi-
tion temperature is obtained for q =q~ =0. Both
SDW's and VDW's in up- and down-spin bands will be
along the direction of the magnetic field. Let us now as-
sume that we can replace the integrands in the exchange
interaction by a constant in the momentum space so that
the exchange interaction does not depend on p and p„
we will justify this later. Then we have k =2~/
(p, +p, ) and iP ""=a/p, („), where v is some dimen-
sionless parameter (independent of p„and p, ) measuring
the interaction strength. Combining this with (3.1) and
expressions for Ez in the spin- and valley-density wave
cases we obtain the following simple relation for transi-
tion temperatures:

(TVDW(TVDWJ)1/2 TSDW
C C C 7 (3.4)

(b)
k+ — a2 7

k+ — o
2 )

qk+—
2 '

q
k ——

2 7

q
k ~ 2-q, a

v(q )

qk- 2+q, p

v (q)

k- — P2 )
where &(l) denotes an up- (down)-spin band. Equation
(3.4) holds for any magnetic field, any number of valleys
and arbitrary electron g factor. Thus one of the VDW
states always has higher transition temperature than
SDW.

To see whether this conclusion remains correct for the
exchange interaction appearing in (3.2) and (3.3) we cal-
culate transition temperatures performing the integra-
tion over pj numerically. The electronic density n is set
to 10' cm and the effective mass is taken to be
m =0.1m„' these numbers we consider to be representa-
tive values for semiconductors. The electron gas interac-
tion parameter r„which is defined as

1/3

34~aH n

f~(k, -q) f& (k, q)

aq
2 '

k = (k„, kz)
k- — Pq

2p

FIG. 2. (a) Diagrams entering the Hartree-Fock form of the
particle-hole correlation function. (b) The renormalization of
the bare vertex due to the anisotropy which is ultimately ab-
sorbed in particle-hole loops. Latin alphabet letters with ar-
rows denote three-dimensional vectors while those without ar-
rows stand for x and z components only.

Br, =

Note that

1/3
3 U

4~ aH( n

aH being the effective Bohr radius ep/me, where ep is
the static dielectric constant of the system, is then sim-

ply r, =25/E'p. For most materials of interest Ep& 10 so
that r, is of order unity. For example, 6p is 15.8 in Ge
and 11.7 in Si. We have actually set ep ——16 in our calcu-
lation. A more appropriate measure of the interaction
strength in strong magnetic field is, however, the ratio of
the average potential energy and the kinetic energy in
the z direction. We define this new ratio r, as
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r Ir =(1 n ) '-N, (lk )

Since in the strong field limit the dimensionless quantity
IkF can become quite small, we see that interactions are
strong and that our Hartree-Fock results should only be
used as a qualitative guidance.

The results are shown in Fig. 3 as a function of mag-
netic field, for several values of X, and electronic g fac-
tor. Indeed, the VDW state in the down-spin band has
always higher T, than SDW, indicating that VDW may
be the preferred ground state of the system. In fact, Eq.
(3.4) is satisfied everywhere to within 5%, providing
a posteriori justification for our assumption. As temper-
ature is lowered below T, ' we may ask whether the

(
TVDwi )2

C

F +
( TVDwi )2

C

E F

in the former case, while it is (T, ) /(E, E, )'~ in the
latter (the proportionality constant is the same for both
cases). Using (3.4) it follows that VDW's have higher
condensation energy.

ground state developing is simply separate VDW's in
spin up- and down-bands or some more complicated
configuration involving the SDW too. It is easy to show
that, in the weak-coupling limit, VDW s in two spin
bands are energetically favored over SDW. The conden-
sation energy equals

O
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If the coupling is strong the question of the nature of
the ground state becomes more complicated since there
will be mixing of higher harmonics between VDW and
SDW. The mismatch between periods of VDW's in two
spin bands may favor SDW and the fully self-consistent
solution of the Hartree-Fock equations is necessary to
find the true ground state.

IV. ANISOTROPIC CASE

We now consider the effects of valley anisotropy. As
long as the magnetic field is in a direction of one of the
principal axes of a valley, the effect is simply to properly
rescale various quantities with m, /m~.

The situation is only slightly more complicated if B is
in an arbitrary direction as long as the orientations of all
valleys are identical. For our model this is achieved if
we assume there are only "right" valleys, with
8+ ——8&8. Then similar conclusions follow as in the iso-
tropic case: In particular, VDW is the favored state and
relation (3.4) is still valid within few percent. The
changes are in the values of the "coupling constants"
and transition temperatures for various instabilities and
the fact that anisotropy changes the basic wave vector at
which the instability sets in. For SDW and VDW this
wave vector is q =0, q~ =(bR /a~ )q„where q, remains
as before.

In a typical case, however, the valleys will have
different orientations. We investigate this possibility by
setting Oz ———Ol ——O. Let us first assume that there are
only two valleys (N„=2). The SDW state is formed as
before containing up- and down-spin bands from each
valley with the coupling constant given essentially by
(2.6). For a given spin state, we can form two VDW's
with different polarization, the one which has an oscillat-
ing isospin polarization in the x-y plane, and the one po-
larized in the z direction of the isospin space; we expect
that the most favored direction for the wave vector of
the VDW is along the magnetic field, i.e., q =q~ =0.
Within our model and Fukuyama approximation we find
that the VDW polarized along the z direction in the iso-
spin space has somewhat lower transition temperature
than the one with polarization in the x-y plane. There-
fore, we will discuss only the x-y plane polarized VDW
which includes mixing of I and R valleys. The corre-
sponding coupling constant is proportional to O'Lz. An
oscillatory term in (2.7), which is due to anisotropy,
reduces W«relative to W«[«] and, if the anisotropy
is strong enough, may result in a region of the phase dia-
gram in which SDW is the preferred state. In Fig. 4 we

plot transition temperatures of VDW and SDW for
several values of 6 and m, /mI. Again, the density is
fixed at 10' cm, and the dielectric constant is set to
16, m, =0. 1m, . It is natural to define interaction
strength parameters r, and r, in the anisotropic case by
replacing the effective mass in aH by (m, m~)' . In this
way a simple formula

r, = 16(m, mr)'

can be used to calculate r, for various situations shown
in Fig. 4. From this expression one can easily obtain r, .

Note that, when the anisotropy is strong enough,
there is a region of low B where SDW has highest transi-
tion temperature. However, VDW ultimately wins as
the magnetic field is increased toward B2. Figure 5
represents the qualitative dependence of dominant insta-
bilities found in our model on anisotropy and g factor.
We should mention that the above situation occurs in
our model only if X„=2. As soon as there are more
than one left (right) valley a VDW state becomes possi-
ble with O'LL or Wzz as a coupling constant which is
again always favored relative to SDW and CDW. From
here we conclude that in real systems, when m, /m& is
not particularly small, VDW is the most probable candi-
date for the high-field collective state of the electron gas.

We expect that large valley degeneracy in a material
like Si will further enhance the VDW instability; a large
number of valleys leads to an increase in the number of
possible VDW's, some of which are likely to have high
transition temperature. It is important to note at this
point that in Ge (g = 1.6, g'—:m, g =0.09) the ratio
m, /ml is as small as 0.057 implying strong valley anisot-
ropy, and consequently the window of stability of SDW
can be quite wide, extending over most of the experi-
mentally accessible region of magnetic fields. The possi-
bility of SDW ground state and its properties in Ge has
been discussed in Ref. 9.

In Figs. 6(a) and 6(b) we present the results of the cal-
culation of different transition temperatures in our mod-
el, for the case of two valleys, with angles
Oz ———OL ——0. 196~. This situation can be realized in Ge
by applying 8 along the [110]axis and by applying stress
along the same axis, so that only [111]and [111]valleys
remain occupied. The g factor is set to 1.6, its value for
Ge, and the transverse and longitudina1 effective masses
are also taken to represent the band structure of Ge,
m, =0.082 and m& ——1.64 in units of m, . We find transi-
tion temperatures at two different carrier densities,
6)& 10' cm and the density at the metal-insulator
transition 2 &( 10' cm . These densities correspond to
r, equal to 1.9 and 2.7, respectively. For Figs. 6(c) and
6(d) we have repeated the calculation for the case when
all four Ge valleys are occupied (unstressed sample),
with magnetic field directly along the [100] axis. Here
we consider only the case when the direction of VDW is
along the magnetic field, which is the situation that can
be represented within our model. It is quite possible
that other VDW's, with the wave vectors in some other
directions, have higher T, . The results we obtain for
these two cases indicate that in Ge the SDW may be
stable over significant range of the external magnetic
field. We should stress here that the effects of the ran-
dom impurity potential have been omitted from our
model.

V. TRANSPORT PROPERTIES

We expect the transport properties of the SDW and
VDW states to be quite remarkable. Due to the forma-
tion of the gap at the Fermi energy, the diagonal ele-
ments of the conductivity tensor vanish as T~O. In the
isotropic case, only o.

~~ and o.» are different from zero,
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at some particular values of B appears to be caused by the systematic error in the routine used to numerica11y evaluate a two-
dimensional integral appearing in A, . We expect that the exact result does not have any sharp structures.
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and are given by their classical values, i.e.,
tr „~= —tr~ = ne—c /B. Inverting conductivity tensor,
we find that the system is an insulator for electric field
parallel to B(pi~ac ), but a perfect conductor in the
perpendicular direction (pi~0) as T~O.

The situation is slightly different for the anisotropic
case. Let us first consider a single valley rotated with
respect to the magnetic field by some angle 8 (this corre-
sponds to the case of a single "right" or "left" valley of
our model when the axis of rotation is along the x direc-
tion). As we have shown in Sec. IV, SDW, or VDW for
several such valleys, will not be along the direction of
the magnetic field; the angle P between the field and the
direction of the SDW (VDW) is found from
tang =b /a . It is easy to show that in this situation,
the conductivity tensor has the following form:

SDW is a layer which contains an integral number of
electrons per quantum of magnetic fIux, and its transport
properties are just what one finds in the quantized Hall
effect. If the period of VDW&(J) is m. /k, ~, ~, then the
product of the number of layers per unit length times
the quantized Hall conductance per layer (%,e /h) is
equal to the classical Hall conductance of the carriers
with spin &(&). Similar argument holds for SDW. If
there is pinning of the VDW or SDW period due to im-
purities or defects, we might expect the wave vector to
deviate slightly from its value in the clean system, and
some hysteresis might be expected as the magnetic field
is varied at low temperatures. This should lead to a hys-
teresis in the Hall effect at low temperatures, which may
be observable. For further discussion of transport prop-
erties see Ref. 9.

0' = —(cosf~ )rJH

(sing )crH

( cosP )o 0 —( sing }c7H

gc~]

sine, = sln8, =O

go~1

sin8R=-sin8L- 1

B)

VDW

Bp Bi

SDW VDW

l

B2

where o.H is the Hall conductivity. Inverting this tensor
one finds that both p~~(=p„) and p~~ go to infinity when
T~O. p,~ and p~, diverge too. Thus the system is an
insulator for electric fields applied along the axis given
by the unit vector (O, sing, cosg ); it remains a perfect
conductor in the plane perpendicular to this axis.

When there are several valleys, one must add the con-
ductivity tensors for the various valleys. If there is a
"left-right" symmetry, as in our model for the Fermi
surface topology with two valleys, Oz ——OL, the o.~, and
o.,~ components of the conductivity tensor from different
valleys cancel out, and once again one finds that the only
nonzero components are o.» ———o.

~~ = —nec /B.
We may remark that each period of the VDW or

VI. CONCLUSIONS

In this paper we have investigated the instabilities of
the multivalley electron gas in strong magnetic field. We
propose that the ground state of this system, for a wide
range of parameters, is the valley-density wave (VDW),
as described in the text, but that spin-density wave
(SDW) can also occur.

In application of our model to real materials there are
several complications that must be kept in mind. Possi-
bly the most serious one concerns the strong impurity
scattering due to dopant atoms in degenerate semicon-
ductors. The impurity potential may destroy the collec-
tive effects discussed above, resulting in the "magnetic
freezeout" of the electron gas. Still, there is a possibility
that some of the collective effects will remain, probably
in the form of coherent domains of size much larger
than the period of VDW (or SDW) or a collection of
dislocation lines extending through a sample. The
effects of disorder on SDW have been discussed in Ref. 9
and similar conclusions hold for the VDW. We also
have to be careful about extending the Hartree-Fock re-
sults into the strong-coupling regime of the low-density
experimental systems. ' We expect that, while we can-
not rely on Hartree-Fock approximation for quantitative
answers, it is still illuminating to use its predictions as a
qualitative guidance. '

Bi

SDW

g 1

sin8„= -sin8L--1

VDW

I

Bp

SDW

g-1
~lTI

t:Os8R= cos8L- +~ -1

VDW

i

Bp
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Fl&. 5. Qualitative form of the weak-coupling zero temper-

ature phase diagram as a function of the magnetic field, the

valley anisotropy, and the effective electronic g factor g. The
VDW involves combined valley-density waves in up- and

down-spin bands up to the magnetic field strength B2, after
which point only the down-spin band remains occupied. The
last case corresponds to the extreme anisotropy situation in our
model.

APPENDIX A: SINGLE PARTICLE
EIGENFUNCTIONS AND EIGENVALUES

In this appendix we calculate single-particle eigenfunc-
tions and energy eigenvalues of an electron with an an-
isotropic efFective-mass tensor in the constant magnetic
field directed along the z axis. Let us assume that the
effective-mass tensor in its principal frame of reference
has the form
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m, 0 0

Mp —— 0 m, 0

0 0 m(

where we assume m, & mI.

(A 1)

As shown in Fig. 1 the principal axes of M are rotated
with respect to the laboratory frame (defined by the
direction of magnetic field B) by some angle 8 about the
x axis. En the laboratory coordinate system the inverse
effective-mass tensor (the inverse is needed in
Schrodinger equation) is found from

M '=R (8)M~ 'R '(8)=
m

—'

0

0

0

m, 'cos 0+m~ 'sin 0

cos8sin8(m, ' —m& ')

0

cos8sin8(m, ' —m, ')

m, 'sin 8+m~ 'cos 0

(A2)

with R (8) being the corresponding rotation matrix.
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The Schrodinger equation can be written as

8, ——A, 8 ——A. 'P(r) =E%'(r),
c ' c

(A3)

2m m,ml

where i,j=x,y, z, A is the vector potential and summation over repeated indices is implied. We choose to work in
the Landau gauge with A=( —By, 0,0). Equation (A3) assumes then the following form:

2
1 ie 1 cos 0 sin 0 2 1 sin 0 cos 08„+—By —— + B~ —— +

c 2 mt V

1—(cos8)(sin8)
m,

1
B»B, 4(r) =E+(r) .

m)
(A4)

In order to find the solution of this equation we first
make an ansatz

%(r) =exp(ik„x +ik, z)N(y)

and define E = —,'a'k, +E, where

a'—:m, 'sin 0+mI 'cos 0 .
N(y+l k„)= e ' ' 'f p ——k

2& a
(A6)

case, there is additional term coupling k, and Bv. This
term simply introduces translation in the momentum
space, i.e., p»~p+»(b/a)k, . Therefore, we can write
the solution as

1

2m

with

a =m, 'cos 0+mr 'sin 0,

Then we can rewrite (A4) as an equation for 4(y):
r 2

k„+ y ——,'aB» ibk, d»—N(y) =EN(y),
c

(A5)

where Y[p (bla)k,—] is the momentum space eigen-
function of the Schrodinger equation without the term
coupling Bv and k, . These eigenfunctions are just the
standard solution of the Schrodinger equation for elec-
tron in constant magnetic field and after some straight-
forward manipulations we can finally write the eigen-
functions and eigenvalues in the form given in the text.

APPENDIX B: THE SINGLE-PARTICLE
OPERATORS A (q, t)

b =—cos8sin8(m, ' —m& ') .

Equation (A5) has a familiar form of the linear har-
monic oscillator equation with minimum of the potential
shifted to yo ———ck, /eB. However, unlike the standard

In this appendix we give an explicit second-
quantization form of various single-particle operators
that appear in the response functions we will be consid-
ering. The particle-density operator can be written as

P(q~t) g g Ck —I/2q„, k —I/2q, as(t) k +1/2q, k +I/2q, as(t)
k„,k a, s

Xexp[ —iu l (k, q„+k„q, )+il (q»+u q, )k„]exp — q — (q +u q, )2
41'. 4

(Bl)

where ck k, (t) is the electron creation operator in the Heisenberg representation, and u:b la—
The spin-density operator we can write as

~(q t) g g g ck —1/2q„k —1/2q, , as~ (t)ck„+1/2q„, k +1/2q, as (t)(2S)s s
k„,k a s)s2

)&exp[ iu 1 (k, q—„+k„q,)+il (q»+u q, )k, ]exp — q„— (q»+u q, )4I.' 4
(B2)

where S is the spin angular momentum operator. In the spin space its components are just the ordinary Pauli ma-
trices, i.e., 2S=(y, y», y, ) where:

T T

0 1 0 1r.=10, r, =i O, r, =o 0

The "valley-density" operator can be defined for the case when there are "right" and "left" valleys using the analo-
gy with the spin degree of freedom
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r(q, t)= g g get, I, , (t)ct, +~ t +~ p, (t)(2I) pk, k aP s

X exp[i (u —u p )l k„k, i—u pl (k, q„+k„q, ) i—u pq„q, ]

14 I 2

&& exp — q
' — [q + u pq, —(u —u p )k, ]'

4

+il [q»+upq —(u —up)k ](k„+—'q„) (B3)

where we have used the fact that in our model lz ——lL =—l and I is the "isospin" operator. The components of I are
Pauli matrices in the isospin space: 2I=(y, y», y, ).

The matrix elements (as~ e„~/3s2) are then given explicitly as 6 p5, , for 3 =p (e~ =1), 6 py, , for 3 =cr
(e& ——2S), and y p5, , , for A =r (0„=2I). We note that the "isospin" operators commute with the Hamiltonian of
our model in the case where the two valleys have identical orientation.

In general if there is a nonzero expectation value ( r, (q) ), or (r»(q) ), then there are nonzero expectation values of
the form (ct, q, ct, +~ I, +~ p, ) for a&P. This may lead in turn to nonzero expectation values of the electron den-

sity or of the transverse electron current, at a wave vector Q+G+q, where Q is the difFerence between the positions
of valleys P and a in the Brillouin zone of the crystal, and G is an arbitrary reciprocal lattice vector. (The appearance
of a modulated electron current may be alternatively described as a type of orbital antiferromagnetism. ) Similar
modulations may also occur in the case where (r, )&0. The precise forms of the possible modulations will depend on
the symmetries of the system in question.

APPENDIX C: EVALUATION OF MATRIX ELEMENTS

The interaction term in Hamiltonian (2.1) can be written as (since the interaction is spin independent we can drop
spin indices in what follows):

H;„,= —,
' g c„- c„-y„- pc-„I (k), k2, k3, k4),aP

kl, k2, k3, k4

where k:—(k, k, ) and

(Cl)

I (k&, k2, k3, k4)=g f d r, J d rze' " "+z (r~)*+& p(r2)*ql& p(r2)O& (r&),
q

(C2)

where %z (r) are the electron eigenfunctions defined in the text; we here consider only the electrons in the lowest Lan-
dau level.

To evaluate (C2) we first perform the integration over z and x coordinates. If we write %'-„(r ) as
I/L exp(ik, z+ik„x)yt, (y) the result of the integration is

I (k„k2,k3, k4)=g 5-„-„5-„„- y (k4, q)yp(k3, —q),
q

with q—= (q, q, ) and

y.(k4 q) = f dy e "'q-,*+ .b)q;.(y) . (C3)

The function y (k4, q) is found by integrating over y using the explicit form for pz (y) given in the text. After

some algebra we find

Ia 6a 2 ba 2 la&a
y (k, q)=exp — q — q»+il k„q»+ —l q q» exp i l q, q, i— i k, q„—— q»q, —I b

2
9'z

4a
(C4)

where a and b have been defined previously. Going back to (Cl) and changing k&~k4 ——,'q and k3~k3+ —,'q we ob-
tain the final form for the interaction term in the Hamiltonian
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—il (k —k )4
—

3 6'y

q g f ( 4, q fp( 3, —q) k +1/2q k 1/2q p k +1/2q pCk 1/2q,
q, a, P k3, k4

(C5)

where

V p(q) = V(q)exp
l l

41&
+ 4I2

I /p+ gy
2

1~6~ I ~b ~ 2
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