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We present theoretical results for the self-energy shifts due to the interactions in a heavily doped,
polar semiconductor. For the purpose of numerical demonstration we apply the results to n-type
CdS. The density of states for both the majority and minority carriers are calculated in the region
near the band edges. The polar coupling modifies the self-energy shifts, and new structures appear in

the density of states, both above and below the Fermi level. At least some traces of these structures
should be observed in experiments. Furthermore, the doping-induced band-gap narrowing is deter-
mined and we compare the obtained results with those from the much simpler so-called eo approxi-
rnation.

I. INTRODUCTION

In a heavily doped semiconductor the dopant carriers
occupy the states near the band edges of the host semicon-
ductor. For n-type doping the majority carriers are elec-
trons at the bottom of the conduction band (CB) and for
p-type doping they are holes at the top of the valence
band (VB). The correlation between the carriers and also
with the dopant ions gives rise to energy shifts for the
states, and causes, e.g. , band-gap narrowing (BGN). The
energy dispersions of the bands, in particular near the
band edges, are modified, which produces deformations of
the density of states (DOS).

The BGN has attracted an increasing experimental and
theoretical interest in the recent past. We have earlier, in
Refs. 1 —5, addressed the BGN in the technologically very
important semiconductors Si, Ge, and GaAs. The reader
is referred to these references and references therein for a
more general background. Reference 6 gives a review of
the important experimental and theoretical results from
before 1978 and Refs. 7—15 contain some of the key re-
sults of more recent dates. Si and Ge are nonpolar and
the polar coupling in GaAs is so weak that it can be
neglected.

In this work we study the effects from the polar cou-
pling. The theory that we have used before, for nonpolar
semiconductors, is here extended to take the polar cou-
pling into account. We have chosen to present numerical
results for CdS for two reasons. Firstly, this semiconduc-
tor has a strong enough polar coupling to produce detect-
able effects and, secondly, it has a band structure which is
as simple as possible. CdS is a direct-gap semiconductor
and its VB edge is nondegenerate near the I point, where
the valence bands are split by spin-orbit interactions and
crystal-field effects. This simple band structure makes the
calculations easier and the physics more transparent. The
results are not complicated by the coupling between de-
generate valence bands as in, e.g., GaAs. The polar cou-
pling is expected to give rise to structures in the DOS

which might be important enough to be detectable experi-
mentally. The purpose of this work is to investigate this
point and also to find out how good the so-called E'o ap-
proximation is in the calculation of the BGN for polar
semiconductors. In that approximation the semiconduc-
tor is treated as nonpolar and the static dielectric function
is used as a background screening constant.

The details of the effects from the polar coupling on the
self-energy shifts, apart from being of theoretical interest,
are of great technological importance. In one field of
semiconductor applications, heavy doping is a way to
tailor the optical properties of semiconductor films. The
reason is as follows. A large band-gap semiconductor is
transparent for photon energies in the visible region and
below. Heavy doping has two main effects. One is that
the optical band gap is changed. This change depends on
two competing effects. Many-body effects tend to reduce
the gap, where this reduction is counteracted by a band-
gap widening due to the blocking of the lowest states in
the conduction band (for n-type doping). This widening is
known as the Burstein-moss effect. In the extreme high
doping limit, the Burstein-Moss shift wins over the BGN
from many-body effects and the gap increases. This
moves the upper boundary for the optical window up-
wards. The second effect from the doping is to introduce
the free-carrier absorption at the low-energy side, moving
the lower boundary of the window upwards. Thus these
heavily doped semiconductor films have interesting optical
properties. They have the properties of "dirty" metals at
the low-energy side and that of semiconductors on the
high-energy side. They can be used, e.g. , as coatings on
highly energy efficient windows, giving good solar
transmittance and low thermal emittance. ' ' The large
band-gap semiconductors are usually polar; hence it is im-
portant to get the effects from the polar coupling correct.
In a recent work, ' we studied the effects from this cou-
pling on the optical properties near the lower boundary of
the optical window. The treatment here is related more
to the properties near the upper boundary.
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In Sec. II we give a brief description of the energetics of
the dopant system, show how the polar coupling enters
the problem, and derive the expressions for the self-energy
shifts. Numerical results are presented for states in both
the conduction and valence bands of n-type CdS. We
show, further, the obtained DOS for both the majority
and minority carriers and demonstrate the modifications
caused by the polar coupling.

Section III is devoted to the BCzN. We introduce three
different BGN's and present numerical results for CdS
from the full calculation and from the calculation in the
eo approximation. Finally, in Sec. IV we present a brief
summary and conclusions.

II. INTERACTIONS AND SELF-ENERGY
SHIFTS IN A HEAVILY DOPED,

POLAR SEMICONDUCTOR

In this section we study the energy of the dopant sys-
tem in a heavily n-type doped, polar semiconductor and
derive from this the quasiparticle energies and self-
energies. We use the same formalism as in our earlier
publications in this field. ' What is new here is the in-
clusion of the coupling to the optical phonons.

We include in the system the released donor electrons,
occupying the states at the bottom of the host CB, the
donor ions, assumed to be randomly distributed, and the
longitudinal optical phonons. We also include a small
number of holes in the VB. These are included for the
purpose of obtaining the self-energy shifts for the VB
states. We refer to these holes as the "few" holes in
what follows. The interactions with the host valence
electrons (and to a minor extent with the core electrons)
have the effect that all potentials are screened by the
background dielectric constant e . That the dopant sys-
tem, in this way, can be decoupled from the host is be-
cause the regions in the coq plane giving contributions to
the interaction energies are separated and not overlap-
ping for the two systems. For the dopant system the re-
gion is limited to small co ( 4EF /i'�) and small q
( (2kF ) while for the host system, because of the band
gap, it is limited to large ~ ( Eg liii). This is discussed
in more detail in Ref. 4.

The interaction energies are due to particle c:orrelations
in the system. Each electron in the CB is effectively sur-
rounded by a depletion in the electron density, a so-called
exchange and correlation hole. This effect is partly
caused by the Fermi statistics and partly by the electro-
static repulsion between the electrons, and results in a
negative energy contribution. In a similar way, each of
the few holes in the VB is surrounded by an enhancement
in the CB electron density caused by the electrostatic at-
traction between the hole and the electrons. This too pro-
duces a negative energy contribution. The ions are sur-
rounded by enhancements in the electron density for ex-
actly the same reason as are the holes. Furthermore, they
are surrounded by a reduction of the hole density. The
ion positions are fixed. The ions are assumed to be rigidly
connected to the crystal and cannot move. The change in
particle density near the ions comes from the adjustment
of the particle motion to the ionic potentials. These corre-
lations with the ions further reduce the energy.

H =He+Hion+ ph+He-ion+ e-ph+Hion-ph .

We have here divided our system into the three subsys-
tems: carriers, ions, and phonons. The three first terms
in the Hamiltonian describe these subsystems and the
remaining three terms represent the interactions between
them. We have collected the CB electrons and the few
VB holes into one subsystem and could also have includ-
ed the ions in this. However, because of the absence of a
kinetic energy term for the ions the ion-phonon interac-
tion can be taken care of in a particularly simple way and
it is hence better to keep the ions in a separate subsystem.

The six terms in Eq. (2.1) can be expressed as

i' k 1 u(q)H, = g 2
8'),i, + 2~ g [pqpq —(X+Ni, )],

1 U(q)
Hion Hion-ion g (pion, qpion, q20

(2.2)

(2.3)

Hzh ——g ficoqCqCq,
q

(2.4)

In a polar semiconductor there is a slight displacement
of the charge from one of the atom types to the other.
This means that the host atoms are weakly charged. A
moving, charged particle causes a displacement polariza-
tion, which follows the particle in the crystal. An elec-
tron attracts the positively charged atoms and repels the
negatively charged ones. Effectively the electron is sur-
rounded by a charge cloud, of positive charge. In the
same way, a VB hole is surrounded by a charge cloud of
negative charge. The particle and its charge cloud can be
treated as a new particle, a polaron. Also, the ions polar-
ize the crystal. All these correlations between the charged
particles and the host atoms cause negative energy contri-
butions. We mentioned, above, that we could decouple
the dopant system from the host valence electrons, as the
processes describing the interactions occur in nonoverlap-
ping regions in the coq plane. The polarization of the host
atoms involves processes where valence electrons are ex-
cited across the band gap. The displacement polarization,
on the other hand, involves much lower energies, viz. , of
the order of tens of meV's. The decoupling cannot be uti-
lized here except, possibly, at the low doping limit. In the
so-called E'0 approximation one replaces e by E'0 for the
screening of all potentials. This is done to replace the po-
lar coupling. This approximation becomes increasingly
good towards lower doping levels where EF is smaller
than the optical phonon energies. It is quite correct if EF
is much smaller than the phonon energies, in which case a
decoupling can be performed, and the combined effect
from the interactions with the valence electrons and the
phonons is that all potentials are screened by the static
dielectric constant, eo. For most densities this decoupling
cannot be done and the two contributions interfere. Both
have to be calculated as one entity.

We will now derive all the energy contributions men-
tioned above, and we start by discussing the Hamiltonian
for the dopant system. It can be written as
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1 v(q)
He-ion =

II g PqPion, q
q oo

(2.5) g(q)= v (q) eo
L2 6' Ep

1/2

(2.12)

H, „=— —gg(q)(C +C )p„,
q

and

H;,„h——— —g g (q)(Cq+ C q)p;,„q .v'n,

(2.6)

(2.7)

The fact that the Hamiltonian does not contain a kinet-
ic energy term for the ions makes it possible to take care
of the ion-phonon interaction by the following unitary
transformation:

U=exp g f(q)(Cq —C q), f(q)= p;,„q .
q

Equation (2.2) represents the subsystem consisting of
the donor electrons and the few VB holes. The first term
gives the kinetic energy. The index j runs over the two
types of carriers and takes on the values e or h, denoting
electrons and holes, respectively. The masses m, and m&

are the host CB and VB masses, respectively. We have
here assumed isotropic energy dispersions near the band
edges. The operator R' is the particle number operator.
The second term represents the interactions within this
subsystem. The constants N and N~ are the number of
donor electrons (which is equal to the number of donor
ions) and the number of few VB holes, respectively. 0
denotes the total volume of the system and v(q) is the
Fourier transform of the Coulomb potential. The density
operators are here defined as

UCqU =Cq+f(q),

UCqU =Cq+f (q),
and the transformed Hamiltonian takes on the form

(2.14)

H= Q OJg +'g [p~q —(N+NI, )]
fi2k2 1 v (q)
2mj ' 2n, e„

+C —q)Pq+ X PqP o,q&n, Qq Ep

(2.13)

This transformation modifies only terms containing pho-
non operators. The phonon operators are transformed in
the following way:

and

J~ii o i
j,k, cr

pq —~ Zjaj g+q, o j,Q, ~
j,k, o.

(2.8)

(2.9)

1 v(q)+ Q (pipn, qpion, q N) +Q ~qCq q
p q

+ gv(q) —— N .1 1 1

2Q 6p
(2.15)

and

—iq-R
pion, q

=Zion
j= 1

(2.10)

where the Zj is the charge of particle type j, in units of e
(e being a positive number). Here Z, equals —1 and Zh
equals + 1. The operators a and a are creation and de-
struction operators for the particles, respectively.

Equation (2.3) gives the Hamiltonian for the ion subsys-
tem. It is similar to that in Eq. (2.2), but does not contain
a kinetic energy term. Besides, the density operators for
the ions are not q numbers, but c numbers. They are
defined as

The transformation has had the following effects on the
Hamiltonian. The impurity-phonon interaction has been
eliminated, and all impurity potentials are now screened
by ep instead of by e as they were before the transforma-
tion. Apart from these changes a new term, the last in
Eq. (2.15), has appeared. This term gives the change in
the infinite self-energy of the ions from the interaction
with the phonons. It has no effect on the energy of the
electronic states, which is our concern here. This term
also comes from the adjustment of the host atoms to the
ion potentials. It is interesting to note that the phonon
energies are not changed by this adjustment. In obtaining
Eq. (2.15) we have made use of the identity

N iq-R
pion, q

=pion, q
=Zion

j=l
(2.1 1) v(q) 2g (q)

ANL

v (q)
Ep

(2.16)

where Rj is the position vector of ion number j. Z;,„ is
the charge of each ion and is here equal to + 1.

The Hamiltonian for the longitudinal, optical phonons
is given in Eq. (2.4). We will later neglect the phonon
dispersion and replace the phonon frequencies coq by a
constant, coL. The operators C and C are creation and
destruction operators for the phonons, respectively.

The interaction between the particles and ions is given
in Eq. (2.5), where we have approximated the particle-ion
interaction potential by a pure Coulomb potential.

The interactions with the phonons are shown in Eqs.
(2.6) and (2.7), where the coupling constant g(q) is given
by

When one calculates the energy of a system one al-
ways has to decide which energy reference to choose.
Here we have chosen, as the reference energy for each
particle, the energy for each respective particle at the
band edge in the semiconductor in the absence of the po-
lar coupling. Similarly for the ions, the reference energy
has been chosen as the energy of a single ion present in
the semiconductor in the absence of the polar coupling.
Neglecting the last term in Eq. (2.15), which we do
henceforth, corresponds to defining the reference energy
for the ions in the presence of the polar coupling. In the
next section when we treat the BCxN we are interested in
the shifts of the electronic states due to the doping. As
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the polar coupling is present also in the absence of the
doping, the reference energy for the particles should be
defined in the presence of the polar coupling. We return
to this point in the next section.

The term containing particle-phonon interactions in Eq.
(2.15) describes processes where a particle is scattered and
a phonon is absorbed or emitted. It leads to an extra
particle-particle interaction

Vph(q, co) =g (q) D (q, co),

where D ( q, co ) is the phonon propagator

(2.17)

AD (q, cu)=
6) —COq+l'g CO+ COq

—l Yj'

(2.18)

The Coulomb interaction together with the interaction
via the phonons results in an effective particle-particle in-
teraction

V(q, co) = + Vph(q, co) = +U (q) U (q) g (9)2~q

A(cu coq+—i g)

(2.19)

E,,„=—g' [e '(q, 0) —1] .
2 Fp

(2.23)

E;„,= — ' dao e&
'

q, cu —1
p k p 2&l

A, (N +N„)U (q)+
2g

(2.24)

The function eq is the dielectric function of Eq. (2.22)
with v (q) replaced by AU (q), where A. is the coupling con-
stant. The only modification caused by the phonons is
that the background screening constant is now replaced
by the lattice dielectric function in the first term of the in-
tegrand in Eq. (2.24).

We now introduce the dielectric function eo(q, co) and
rewrite the last term of Eq. (2.24) the same way as we did
in Ref. 4, i.e.,

The exchange and correlation energy in Eq. (2.3) of
Ref. 4 is now replaced by a contribution also containing
the effects of the interactions with the phonons. We
denote it by E;„„and it can be expressed as

In our approximation coq=coL and thus

V(q, co) = v (q)
eL (co)

where the lattice dielectric function el is given by

(2.20)
E;„,= — '

dc@ . E~
' q, co —1

E Eo(M —COL )
2 2

eL (co) =
EpCO —6' COL + l 7j

(2.21)

and represents the combined screening from the back-
ground (from valence and core electrons) and from the
optical phonons. For frequencies much higher than the
optical phonon frequencies, the phonons give no contribu-
tions to the screening and el tends to the background
screening constant e„. In the zero-frequency limit eL
tends to ep.

For the following equations it is convenient to define
the following dielectric function:

e(q, ~)= 1 — 7 (q, ~) =1+~(q,~)/~L (~),U (q)
ei (co)

(2.22)

where X (q, co) is the sum of the polarizabilities from the
particles (donor electrons and few VB holes). This is the
same dielectric function as used in our earlier work, '

except that the background dielectric function is now re-
placed by the frequency-dependent lattice dielectric func-
tion. The total dielectric function is the product of the
two in Eqs. (2.21) and (2.22). This total dielectric func-
tion can be extended to include contributions from other
types of coupling like, e.g. , the piezoelectric coupling to
the acoustical phonons. This is described in detail in Ref.
21 and we refer the reader to this reference for more ma-
terial on the polaron problem.

We found in Eq. (2.15) that the ion contribution to the
energy is the same as in a nonpolar semiconductor except
that the background screening-constant is replaced by ep,
i.e. ,

(2.25)
The dielectric function Eo(q, co) is the dielectric function

one would have for the system if the particles were occu-
pying the same states as now, but were noninteracting and
were not obeying the Pauli principle. With the last state-
ment we mean that they are allowed to scatter into states
already occupied. As it stands now it is valid in the ab-
sence of the polar coupling. Written in this way the phys-
ics becomes more transparent. In general, the energy in a
specific approximation can be written as

i dA,
+approx = g d~ i~approx, A(q ~) 1

p A, p 27Tl

(2.26)

where e,pp, „(q,co) is the dielectric function in that par-
ticular approximation. If eo(q, co) is used, one gets the
energy of our reference system, i.e., the energy in the ab-
sence of both interactions and fulfillment of the Pauli
principle. In the next higher order of approximation,
the Hartree-Fock approximation, the particles are still
noninteracting but obey the Pauli principle. The im-
provement in energy by using the Hartree-Fock dielec-
tric function is the exchange energy, and is due to the
fact that the particles are not allowed to scatter into al-
ready occupied states. The further improvement in the
energy by using, e.g. , the RPA dielectric function (as we
do here) is the correlation energy, and it arises from the
fact that the particles are now treated as interacting, i.e.,
they contribute screening in the scattering processes.
The final improvement in Eq. (2.25) is that the phonons
are also contributing to this screening.

The integration of Eq. (2.25) over the coupling constant
gives
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E,„,= —g' f dco . [
—ln[e(q, co)] —[eo '(q, co) —1]I .

q
27Tl

(2.27)

The last expression within the curly brackets can be written as

eo (q, co) —1=——1

where

1 g a$
j,k, cr

v(q)
e iris' j,k, ~

1

co+co'(k, q)+i i) co coJ(k—, q)+i ri
(2.28)

a(k, q) =(e&+, —e&)/W,

i.e., iricoi(k, q) is the change in kinetic energy for a particle of type j in going from state k to state k+q.
In our final expression for E;„,we regroup the terms in the following way:

(2.29)

Eini= g f 1 1—ln[e(q, co)]+ ao(q, co) —ao(q, co)
eL (co) eL (co)

(2.30)

i.e., we introduce the phonon screening in the first step of the improvement of the energy over that of our reference sys-
tem. The last term gives the change in the infinite self-energy of the particles due to the polar coupling.

We now define the quasiparticle energy E~ for a particle in state p according to the following definition:

5E
Ep — —e~+r

5np

where e and Xz are the kinetic energy and self-energy, respectively, for a particle in state p.
The self-energy contribution from E;„, is

(2.31)

Xp"————g'v (q) f dco ~ Gio(p+q, ep'/A'+co)/e(q, co)
1, ~ 1 1

n -- 2~i EL(~)
q

1 1+
co+ co'(p, q) —i' co coj(p—, q)+ii)

1

el (co)

1 1 1

co+ co'(p, q) —i g co —coj(p, q) +i i)
(2.32)

Let us concentrate on the first term. It is exactly the
same as that for a nonpolar semiconductor [see Eq. (2.19)
of Ref. 4] apart from the fact that the background screen-
ing constant is replaced by the lattice dielectric function.
We deform the integration path the same way as in the
case of a nonpolar semiconductor (see Fig. 2 of Ref. 2).
The lattice dielectric function now adds new poles to the
problem, but they all fall outside the integration path and
cause no problems. We obtain one contribution from the
integration along the imaginary co axes, which we call
X];„„and each of the subterms gives a residue contribu-
tion as their poles fall inside the integration path. We
denote the contribution from the second subterm by X„,&,

and that from the first subterm by X„,2.
The contribution from the second term in Eq. (2.32) is

the polaron self-energy and it can either be calculated
directly or it can be obtained after the deformation of the
integration path in the same way as in the treatment of
the first term. If the last method is used it gives rise to
two contributions, a line part and a residue part. We do
not make that separation here, in the presentation of the
results. We name the polaron contribution Xp,].

The remaining self-energy contribution, i.e., the contri-
bution from the interaction with the ions, is the same as

for a nonpolar semiconductor, except that the background
screening-constant is here replaced by eo, i.e. ,

2

pion, j Go(p+ q, e~j /fi) . (2.33)
fiA eoe q, 0

We have now reached a point where we can present nu-
merical results for the self-energy shifts in CdS. For eo,e, AcoL, m„and mh, we used the values 8.58, 5.26, 36.8
meV, 0.184, and 0.8389, respectively. These data have
been obtained from Ref. 22. The masses are in units of
the electron mass and are the bare masses, obtained from
the experimental polaron masses by eliminating the pola-
ron mass enhancement. The VB mass is unfortunately
anisotropic. Here we have used the density-of-states
effective mass and neglected the effects from the anisotro-
py, beyond that.

In Fig. 1 are shown all the different self-energy contri-
butions, introduced above, in the CB of CdS for a donor
density of 5 && 10' cm . The curves labeled a —e
represent X„,&, X 2 X Xp, ] and X];„„respectively.
The total self-energy shift, X„„and the quasiparticle ener-

gy, E„„are also shown. All the contributions are given
as functions of the particle wave number in units of twice
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is due to the plasmon interactions and appears in both of
the treatments. The results are valid for the same donor
density as in Figs. 1 —4. We have also obtained results for
other densities but have not shown them here. For lower
densities the structures move away from the Fermi level
(if the energy unit is EF, as here) and their sizes increase.
For low enough density, the structure below the Fermi
level moves outside the region of nonvanishing DOS, and
disappears. For higher doping levels the structures move
closer to the Fermi level and weaken. We believe that at
least some traces of these structures should be observable
in experiments. Here we have made some idealizations
that make the structures particularly sharp. We have
neglected the phonon dispersions. Any phonon dispersion
would spread out the structures somewhat in energy.
Furthermore, our treatment corresponds to having a
delta-function-like optical absorption at the transverse op-
tical phonon energy. In the real situation there are al-
ways some broadening effects. A more realistic treatment
would reduce the structures further, but not completely
wipe them out.

Finally, in Fig. 6 is displayed the DOS in the VB. The
notation is the same as in Fig. 5, but here the dashed,
vertical line indicates the position of the state with CB
Fermi wave vector. The structure from the coupling to
the phonons is very strong here but outside the figure.
We have chosen to show, instead of the structure, the ex-
tremely strong stretching of the DOS. The energy spread
for the states with wave numbers less than the CB Fermi
wave number has increased by a factor of between 9 and
10. Even though our obtained DOS has a very strong
tailing in the minority-carrier band the band is still
bounded. In this connection it is interesting to mention a

very recent theoretical work on the minority-carrier
states in which one finds that the energy of the states at
the band edge is unbounded. The strong tailing obtained
here means that one has to be very careful when interpret-
ing experimental results. Another point worth discussing
is that the DOS we have presented here is the quasiparti-
cle DOS defined without involving lifetime effects. De-
pending on the experiments other definitions of the DOS
might be more appropriate. Here we have not treated the
imaginary parts of the self-energy shifts, causing the life-
time effects. These are important for the interpretation of
most experiments. As we do not perform comparisons
with experiments in this work we have chosen to leave the
imaginary parts out. We just briefly mention that the po-
lar coupling gives rise to imaginary parts in the regions
outside the two structures in the DOS, but not in the re-
gion in between.

This completes the discussion of the self-energy shifts
and the DOS. In the next section we will discuss the
BGN, and in particular we will study how good the eo ap-
proximation is in this context.

III. BAND-GAP NARROWING

In this section we give a brief presentation of our re-
sults for the BGN. We present results both from the full
calculation and from a calculation in the eo approxima-
tion. We introduce three different band gaps in the doped
semiconductor. The band gap Eg in the undoped CdS is
the gap in energy between the bottom of the CB and the
top of the uppermost VB at the I point. It is the lower
threshold both for luminescence and optical absorption.
In the doped case it is more complicated and different
band gaps enter in different experiments. We name the
band gap defined as the distance in energy between the
band edges Eg &. This is still the lower threshold for
luminescence. In an absorption experiment, on the other
hand, the lower threshold or optical band gap is different.
It is the difference in energy between states in the CB and
the VB, both of which have the Fermi momentum. We
denote this band gap with E~ 3. If the bands were shifted
rigidly, from the interactions, the difference between these
two band gaps would be the sum of the kinetic energies
for the states with Fermi momentum in the CB and in the
VB. One can define a third band gap, AEg 2, as the ener-
gy distance between the VB edge and the Fermi level in
the CB. This would correspond to the lower threshold
for absorption if nonvertical transitions were allowed. It
is also the upper threshold for luminescence from
thermalized holes if nonvertical processes are allowed.
We define the BGN's from the introduced band gaps in
the following way:

AEg, ——Eg, —Eg, i = 1,2, 3 . (3.1)

The various BGN's are easily obtained from the self-
energy shifts derived in the preceding section. However,
one must keep in mind that Eg already contains a self-
energy shift, viz. , the shift caused by the coupling to the
phonons. This means that the polaron ground-state ener-
gy has to be subtracted from the self-energy shifts.

Thus the BGN's are obtained as
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b,E,=X'(0) +X (0)—Ep, t
—Ep,i,

bE 2
——e'(k F)+X'(k F)+X"(0) E—'p, (

—Ep» )

(3.2)

(3.3)

and

b Eg 3 ——e '( kF ) +X'(kz ) +e ( kF )

+X"(kF)—Ep, )
—Ep, ( . (3.4)

Our BGN's obtained for CdS are shown as functions of
the donor concentration in Fig. 7. The solid curves are
the results from the full calculation and the dashed ones
are from the E'o approximation. As can be seen, the eo ap-
proximation produces BGN's which are too small, but the
discrepancies are very small in the low-density region.

The structure in the energy dispersion for a VB hole
due to the coupling to the optical phonons appears at a
fixed particle wave number. As the doping level in-
creases, the wave number for the hole involved in the
definition of DE~3 increases. One might expect to find
some structure in AEg 3 when the hole wave number
passes through the region with the structure in the ener-
gy dispersion. This occurs at the density 2. 5 & 10'
cm . A weak anomaly is found in this region in Fig. 7,
but the effect is much too weak to have an experimental
significance.

Some words of caution are in place here. In the deriva-
tion we approximated the VB with an isotropic band
characterized by the density-of-states effective mass. The
purpose was not to produce results to be compared with
experiments, but to study the effects from the polar cou-

AEg 3,

O

O
O0

~ CV

O
c

UJ

O

CO

O
I

10 10 10
n (cm ')

FICs. 7. The three BGN's, defined in the text, as functions of
the donor concentration in CdS. The solid curves are the results
of the full calculation and the dashed curves are those obtained
by using the eo approximation.

pling. In CdS the VB is anisotropic, which means that
AEg 3 is different for particles moving in different direc-
tions in the crystal. This complicates the comparisons
with experiments. A different complication appears if one
wants to determine AEz& from the lower threshold of the
luminescence from therm alized VB holes. The strong
tailing of the DOS that was found in the preceding section
might make it difficult to separate the effects on the peak
shapes of this tailing from the lifetime effects. This might
make it difficult to extract an experimental AE~ i.

IV. SUMMARY AND CONCLUSION

We have presented a derivation of the self-energy shifts
of the electronic states in a heavily doped, polar semicon-
ductor. We applied the results to n-type doped CdS and
showed numerical results for the energy shifts in both the
conduction and valence bands. We also presented the
density of states obtained for both bands and found in-
teresting new structures. In the conduction band a struc-
ture appears at an energy above the Fermi level equal to
that of a longitudinal optical phonon. This is at the posi-
tion at which a new channel opens up for the decay of an
excited electron, viz. , via the emission of a longitudinal,
optical phonon. A similar structure appears below the
Fermi level. In this case it is at the energy where, in an
analogous way, a new decay channel is opened up for an
excited hole. Below this energy a hole can fall upwards
via the excitation of a phonon. In the valence band a
similar structure (and of the same origin) is present at the
phonon energy below the band edge. The structures were
found to be strong enough to be detected experimentally.
We also found strong tailing of the density of states in the
valence band.

The purpose of this work was to study the effects from
the polar coupling and the modifications, due to this, of
the effects from the doping. The deformation of the den-
sity of states is one effect from the interactions. A second
effect is an overall shift of the bands, leading to band-gap
narrowing. We derived the band-gap narrowing as a
function of donor density and compared the results to
those obtained in the eo approximation. In this approxi-
mation one can use the much simpler formalism derived
for a nonpolar semiconductor. We found important devi-
ations. The eo approximation always gave band-gap nar-
rowings which are too small. The discrepancies were
small in the low-density limit but increased with density
and were severe at the high-density limit. From this we
conclude that it is important to take the full effects of the
polar coupling into account if one wants to make detailed
comparisons with experiments, at least for higher doping
levels.

The numerical results for n-type CdS were presented
for the purpose of numerical demonstration of the effects
from the polar coupling. In an experimental comparison,
the anisotropic valence-band dispersion in CdS would
have to be taken into account more accurately than we
have done here. Furthermore, we have completely
neglected the piezoelectric coupling to the acoustical pho-
nons. CdS is known for having strong piezoelectric cou-



36 SELF-ENERGY SHIFTS IN HEAVILY DOPED, POLAR. . . 4887

pling. ' It is not obvious whether this effect is important
for the band-gap narrowing. This should be investigated.

To our knowledge, there is only one published compar-
ison between theory and experiment for the band-gap nar-
rowing in CdS. In this reference, the shift of the upper
fluorescence threshold with doping level is studied. A
good agreement between the theory and the experiment is
found, but the interpretation relies on the dominance of
nonvertical transitions. This is in contradiction to our re-
sults for GaAs, in Refs. 3—5, where we found that only
vertical transitions were of importance.
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