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A renormalization formalism for the calculation of electronic states in nontrivial superlattices is
discussed for the first time. Starting from a microscopic tight-binding description of the crystal
electron Hamiltonian using localized orbitals, we show how the renormalization techniques are
implemented and easily applied to the study of superlattices of arbitrary width. As an example of
the renormalization procedure, we consider silicon crystals in the presence of an additional super-
lattice potential in the [001] direction. We study the dependence of the energy gap upon superlat-
tice width, and describe how relevant parameters drive the change from an indirect- to direct-
band-gap material. Moreover, a peculiar effect due to zone folding of inequivalent valleys in the
conduction band is found. The advantages of the present procedure relative to other computation-
al tools available from the literature are discussed.

I. INTRODUCTION

Methods for the calculation of electronic states in
crystals having three-dimensional translational symmetry
have a long and well established tradition. The basic
framework of these methods' was established early but
significant improvements have been made. With the in-
creasing availability of powerful computer facilities, a
high degree of sophistication can be achieved in calculat-
ing physical quantities of interest without the limitations
of restrictive assumptions. In principle all of the tradi-
tional methods can be applied to superlattices; in prac-
tice, however, they rapidly become impractical as the su-
perlattice width increases. Only for ultrathin superlat-
tices where the layer' width is a few atomic planes do we
find theoretical calculations based upon traditional
methods. Among these are calculations using the empir-
ical pseudopotential method and the empirical tight-
binding method.

Significant advances have been made in the past few
years toward finding alternative and workable pro-
cedures for calculating the electronic structure of super-
lattices of arbitrary width. Not surprisingly, parallel
progress has occurred in the closely related problem of
finding efficient computational procedures for the elec-
tronic structure of surfaces and interfaces. In these sys-
tems there is only two-dimensional translational symme-

try because of symmetry breaking due to the presence of
a surface or heterostructure. In the case of superlattices
the translational symmetry remains in the growth direc-
tion but the number of atoms in the supercell is general-
ly high. This makes the applicable computational tech-
niques closer to those of surfaces and heterostructures
than to standard three-dimensional crystals.

Presently two of the more common methods dealing
with superlattices of arbitrarily large width are the en-
velope function method and the tight-binding method
combined with a complex-lr. procedure ' (also referred
to as the energy-dependent tight-binding method). More
recently the pseudopotential method, limited in earlier
work to ultrathin superlattices, has been applied to the
study of medium-size superlattices. This was made pos-
sible by considering the presence of one constituent as a
"perturbation" on an otherwise perfect material.

The principle purpose of this paper is the presentation
of a new approach to the problem of superlattices based
upon powerful renormalization techniques. We present
the first discussion and application of a renormalization
formalism to the study of the electronic structure of
realistic superlattices. As an example of the method, we
study a prototype silicon superlattice. This simplest of
the elemental group-IV superlattices has both an intrin-
sic interest, and serves as a reasonable test of our new
procedure prior to its adaptation to more complicated
systems.
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II. THE RENORMALIZATION APPROACH
FOR SILICON SUPERLATTICES

Before presenting the new method and applying it to
silicon, we briefly summarize some relevant aspects of
the envelope-function approach and the complex-k pro-
cedure for superlattices. This discussion is relevant since
these are the only methods leading to secular equations
whose order is independent of the superlattice width.

The envelope function method" is based upon an aver-
aged description of the two constituent crystals of the
superlattice system. The underlying strategy is to avoid
a detailed microscopic description of the component
crystals. In a small region of the Brillouin zone the
band structure is approximated using a k p matrix, of
reasonably small order, whose parameters are deter-
mined semiempirically from the bulk effective masses,
momentum matrix elements, and band edges of the com-
ponent materials. An effective generalized Schrodinger
equation, with appropriate boundary conditions, is then
constructed for the envelope function. Of course, such a
procedure has a limited range of validity, being confined
to energies in close proximity to the band edges and to
materials with similar electronic structure. There is the
additional difhculty of nonrigorous boundary conditions
and the inability to treat compounds with a multivalley
band structure. Despite these drawbacks, the envelope
function procedure is useful in a number of cases for a
qualitative determination of the electronic states, and in
selected other cases, a quantitative description can be
obtained.

A second method capable of treating superlattices
with arbitrary width is the semiempirical tight-binding
method in conjunction with the complex-k-vector pro-
cedure. In applications of the standard tight-binding
method to three-dimensional crystals, one selects a real k
vector and determines the corresponding eigen values
E„(k). In the complex-k-vector method the energy E is
fixed and the corresponding complex k vectors are found
that satisfy the determinantal tight-binding equation.
The decaying and growing waves of the component crys-
tals in the direction of the superlattice are thereby deter-
mined. These energy-dependent wave functions are used
to expand the superlattice states, and the eigenvalues are
found by imposing boundary conditions at the interface
and at the border of the superlattice unit cell. The pro-
cedure is not routine, involving the evaluation of
energy-dependent basis functions, complicated expres-

sions of the matrix elements, and a trial-and-error search
for eigenvalues. The method is closely related to the
transfer matrix method.

The renormalization formalism was originally pro-
posed in condensed-matter physics in connection with
the problem of phase transitions and critical phenome-
na. Among applications fostering further extensions,
we mention its surprising success in the numerical evalu-
ation of the critical properties of the two-dimensional Is-
ing model. ' Subsequently, renormalization techniques
were applied to a wide range of electronic problems" in-
cluding disordered systems, surfaces, and interfaces. A
step toward systematic application of the renormaliza-
tion techniques (and the closely related recursion' and
moment methods' ) is contained in review articles. ' ''
The only superlattice application of the renormalization
method to appear in the literature was confined to a very
simple one-dimensional lattice. '

To illustrate the renormalization procedure we consid-
er the case of an ideal silicon crystal with a superim-
posed superlattice potential in the [001] direction. We
study this case because of its importance as a prototype
of the class of group-IV superlattices. Recently, experi-
mental results' have been accumulating on Si-Si& Ge„
superlattices, and the potential of graded elemental
group-IV superlattices could become of experimental in-
terest as in the case of III-V compound concentration-
graded superlattices. Furthermore, silicon superlattice
selection simplifies the testing procedure since other cal-
culations are available in the literature.

The starting point is a tight-binding Hamiltonian for
the bulk silicon crystal. We adopt a well-known parame-
trization' using five orbitals per site (s,p„p~,p„s*); the
introduction of an excited s' state into the minimum
basis set with nearest-neighbor interactions provides a
reasonably good description of all valence bands, and
also of the lowest conduction band with its six
equivalent minima. We consider a superlattice with a
superperiodic external potential in the z direction. For
simplicity this potential is approximated by a finite-
depth rectangular well of height V, . For each localized
orbital we construct a corresponding two-dimensional
Bloch sum with a fixed vector parallel (k~~) to the planes
comprising the superlattice. The one-electron Hamil-
tonian is then expressed in the basis of the two-
dimensional Bloch sums. For any k~~ vector we have a
multisite linear "ring" Hamiltonian with only nearest-
neighbor interactions. The Hamiltonian can be written
in the form

X N —1 N —1

H= g (~...).ply. .&&4.pl+ g (&.,. i).pl%..&&4. i pl+ g (&. i,.) ply" +i, &&0.pl
n =1
a,P

n =1
a, jg

n =1
a, P

+&( i, ~)-p~&i-&&&~p~+&(~~, i)-p~&~-&&& p~
a,P

In the above expressions we have used latin let ters
(n = I, . . . ,N~ or N~ —1) for the site indices and greek
letters (a or P, ranging from 1 to 5) for the on-site orbit-
al indices. The A's and B's are matrices of order 5&(5.

I

The A's are diagonal and the B's can be easily expressed
in terms of k~~ and the few independent parameters re-
ported in Ref. 18. The additional superlattice potential
is accounted for by introducing a shift V, in all of the di-
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FIG. 1. The dependence of the energy gap upon the super-
lattice potential V, for superlattices of three different widths.
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An eScient FQRTRAN program has been implemented
that simultaneously eliminates all equivalent sites. Sup-

agonal matrix elements for half of the sites of the super-
cell. For sake of simplicity the total number of sites N~
in the supercell is taken to be a multiple of 4 so that the
stacking in the [001] direction is an even number of lay-
ers, each layer having two planes. The wave vector k,
of the superlattice Brillouin zone has the bounds
—K/'T (k (~/~ where ~=0.25a 0N~, a 0 being the lat-
tice parameter of silicon.

A particular feature of a Hamiltonian such as (1) is
the presence of corner matrices Bi~ and B&1 containing
interactions between adjacent planes and a multiplicative
phase factor exp( —ik, r). Without these matrices, the
problem of finding the Green's function of the Hamil-
tonian (1) would lead to a matrix continued fraction. '

The corner blocks mathematically account for the essen-
tial differences between a finite slab of material and a su-
perlattice.

To this point, only group theory has been used to
reduce the three-dimensional superlattice problem to a
one-dimensional ring Hamiltonian in block form. We
now show how to systematically renormalize the Hamil-
tonian and obtain the Green's function. Suppose for
simplicity that a single site is eliminated; site 2 for exam-
ple. A renormalized Hamiltonian is obtained with re-
normalized matrix elements

1~ 1, 1 ~ 1, 1 +B1,2 E —A2~

pose Nz planes of silicon are in part A with superim-
posed potential V„and Nz planes are in part B. As an
added simplification, we assume that N, and Nb are even
and equal. In part A we eliminate all even-numbered
equivalent sites except the one numbered N, . Most of
the remaining sites are equivalent and the few ine-
quivalent sites at the border are stored away. We again
eliminate the even numbered sites and save inequivalent
sites. This renormalization procedure is repeated until
no equivalent sites remain. Not more than
1+int[ log2(N„)] inequivalent sites will remain. The
same procedure is repeated for part 8 again generating
no more than 1+int[log2(X~)] inequivalent sites. The
small number of remaining sites are then individually el-
iminated until only a 2 & 2 site Hamiltonian remains
which yields the Green's-function matrix elements upon
inversion. For a superlattice with N~ =N, +Nb planes,
the number of renormalizations to be performed to ob-
tain the Green's function at a given energy E is on the
order of 21og2(X~). Note that each renormalization re-
quires a simple inversion of a 5&(5 matrix and a few re-
lated products of matrices of the same order. Thus for a
superlattice of 1000 atomic planes, approximately 20 re-
normalizations can reduce the initial Hamiltonian to a
single-site renormalized matrix.

We now present some results obtained with this pro-
cedure. Figure 1 shows the dependence of the energy
gap upon the applied bias V, for various superlattice
widths. The case of Nz ——Nz tending toward infinity
(not shown) is a straight line with a slope of negative one
connecting the points (0.0, 1.171) and (1.171, 0.0); how-
ever, level quantization effects introduce an upward
bending that is larger for small superlattice widths. This
effect was first pointed out by Krishnamurthy et al. ,
who used a minimal basis set with first- and second-
nearest-neighbor interaction, and a complex-k-vector
procedure. It would be of interest to examine more
carefully the region near V, =EG and to explore the pos-
sibility of a semiconductor-metal transition of the silicon
superlat tice.

Another interesting feature is the transition from an
indirect gap to a direct gap material as the width and
the value of V, is changed. Figure 2 shows a portion of
the folded dispersion curves of an ideal perfect crystal
with N~ =40. Notice the presence of the degeneracies in
the conduction band. The valence band associated with
the p and p~ orbitals is doubly degenerate. At I and at
the edge of the Brillouin zone (in the [001] direction)
where the band was folded, there is a fourth-order de-
generacy. Figures 3(a) and 3(b) show dispersion curves
with V, =0.50 and N~ =40. We see that the superlat-
tice has nearly become a direct-band-gap material. The
doublet of levels arising from the conduction band is a
peculiar effect due to zone folding of inequivalent valleys
in the [001] and [001] directions. The ground state is
also an almost-degenerate doublet, a fact verified by con-
sidering the gradual deformation of the folded conduc-
tion bands with increasing superlattice potential [see
Figs. 4(a) and 4(b)]. This effect, though small, bears a
resemblance to inter valley effects arising in impurity
problems. '
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Figure 4(c) shows the quantum-well doublets of the
heavy-hole valence band (p„,p~) resulting from the re-
duced degeneracy. These results show the convenience
of the renormalization procedure to deal not only with
materials with minima (or maxima) at I, but also to
treat complicated multivalley semiconductors.

III. CONCLUSIONS

In conclusion, the renormalization procedure has been
shown to successfully describe the electronic states in su-

perlattices of arbitrary size. The required number of re-
normalizations increases logarithmically with superlat-
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FICx. 2. Dispersion curves for conduction (a) and valence (b) states along k, and k directions for the perfect crystal. N~ =40
such that the unit cell has a length 10ao in the z direction. (ao is the lattice parameter of silicon, and is scaled to be 4.)
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FIG. 3. Dispersion curves for conduction (a) and valence (b) states with X~ =40 and superlattice potential V„=0.50. In (a) the
spacing of the doublet levels starting with the lowest one is approximately 0.0035, 0.0055, and 0.008 eV. A portion of the disper-
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36 RENORMALIZATIONTION FORMALISM IN THE THEORY GGF THE. . . 4787

1.39 1.28 '

1.34 1.23

)
CD

C3)

CD

UJ

1.29 1.18— V, = 0.140, N„= 20

1.24 1.13

1.19 1.08

(Double line: E-, = 1.064 ; E2=1.063 at k, =0

1.14
0.5

I

1.0 1.5
k,T

I

2.0
I

2.5
l s

3.0 n

1.03
0.5

V, =0.20

P„„

I

1.0 1.5
k, T

I

2.0 2.5
I

30 ll

—0.10—

—0.20 ——
V, =0.20, N„=20

CD

U)

~ —0.30—

—0.40—

—0.50
0 2.52.01.00.5

FIG. '
o gur

1.
I

. 4. This set of figures

.5
I

g

k,T

3.0

Th o d tio b d
= 20...h..'. (

y t e gradual def

in c.
e ormation of th

. 14 ar 'nare shown in ( )

e fold
'n a and (b) while

ded bands a ths e
w ile the heavy-hole



4788 GRAFT, LOHRMANN, PARRAVICINI, AND RESCA 36

tice size. The parametrization of the silicon energy
bands was taken from the literature and included
nearest-neighbor interactions only. However, the
method can be adapted to include spin-orbit interaction
and/or more distant neighbor interactions. A more ac-
curate par ametrization could be useful to look for
semiconductor-metal transitions in silicon superlattices.
We are presently applying this technique to other ele-

mental group-IV superlattices including silicon-
germanium alloys and superlattices.
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