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Change of the density of electron states caused by the surface of a layered crystal structure
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Starting from the notion of the "k~~-resolved local density of states, " the properties of the "k~~-

resolved integrated density of states" are analyzed. While this quantity remains finite when in-

tegrated over films or crystal slabs of bounded thickness (leading to the well-known representation

of the density of states via Careen's functions), it will diverge when the range of integration is ex-

tended across a semi-infinite layered structure. It is shown that this divergency can be separated

in a suggestive way by introducing the concept of the "change in the density of states, " which

moreover turns out to be of essential importance in the formulation of a criterion ensuring overall

charge neutrality. Explicit expressions for each of the above quantities are derived, which are easy

to be evaluated in terms of the dispersion of surface states, the bulk band structure (and the associ-

ated Bloch waves) of the substrate material, and the reflection coefficients of the bulk states at the

surface.

I. INTRODUCTION

Theoretical understanding and interpretation of exper-
imental data obtained from experiments which affect
electron states only in the vicinity of the crystal surface
(e.g. , scanning tunneling microscopy' ), or which allow
discrimination between surface and bulk effects (e.g. ,
angle-resolved photoemission ' or angle-resolved inverse
photoemission ) require concepts such as the "k~~-

resolved local density of states" (KRLDOS), the "k~~-

resolved integrated density of states" (KRIDOS), or the
"k~~-resolved change in the density of states"
(KRCDOS). The latter quantity characterizes the
modification of the bulk density of states due to the ex-
istence of the crystal boundary; furthermore, it proves to
be of central importance for the self-consistent calcula-
tion of the electronic structure of a semi-infinite crystal
with a (possibly reconstructed and relaxed) real surface,
because it enables the formulation of a simple sum rule
ensuring overall charge neutrality. In Sec. II the rela-
tion between the above notions shall be clarified, and the
derivation of a charge neutrality criterion will be given.

As far as consideration is restricted to films or crystal
slabs of bounded thickness, the KRCDOS is related to
the total density of states in a one-to-one way, and could
therefore be calculated from the imaginary part of the
Green's operator G (E) of the system; hence, the infor-
mation contained in the total density of states is only
rewritten in a different way. In the case of a semi-
infinite layered structure, however, the usual definition
of the total density of states (via Green's function) be-
comes ambiguous, because it can be applied only if the
Green's operator G(E) is the resolvent (H E) ' of a-
self adjoint operator -H, being the Hamiltonian of the
system considered. Unfortunately, for a semi-infinite
medium, there does not exist a properly defined Hamil-
tonian H, which could simultaneously describe both the
surface adapted bulk states and the surface states, and
thus the commonly used notion of a Green's function

makes no sense here. The inherent problem in defining
the density of states is that the attempt of retaining the
surface contributions causes the bulk contributions to
diverge; if, on the other hand, one tries to normalize the
bulk contributions, a certain arbitrariness is unavoidable
(so, for example, in averaging the local density of states
along a sequence of periodically repeated bulk mono-
layers as in the recursive process proposed by Zhang
et al. ), involving doubts whether it has properly been
accounted for the surface effects. In this situation, sepa-
ration of the divergent bulk terms by introducing the
difference between the total density of states of a se-

quence of infinitely repeated ideal bulk monolayers and
that of the physical system actually under consideration
is suggested. Elaborating this idea leads to the concept
of the KRCDOS, which indeed provides a mathemati-
cally rigorous way to overcome the above difhculties.

A rather formal approach to KRIDOS and KRCDOS
has been suggested by Garci'a-Moliner and his co-
workers, ' which represent the density of states in
terms of surface Green functions. The way they proceed
is not very intuitive, and some formal operations seem to
lack mathematical rigor: So, for instance, certain
abstract scattering-theoretic arguments, which apply to
the case of a perturbation localized in space (such as a
vacancy, for instance"), are likely to fail when extended
to a delocalized perturbation (such as a missing half-
crystal). Hence, in the course of a concrete calculation
(see, e.g., Louis and Verges' ), quantities may appear
which prove to be not uniquely defined and, therefore,
have to be fixed arbitrarily by means of ad hoc assump-
tions.

In this paper, analytical expressions for the KRLDOS,
KRIDOS, and KRCDOS of a semi-infinite real crystal
are derived, which are based upon a representation of
the electron wave functions being characteristic of the
"assembly of boundary-controlled monolayers" (ABCM)
formalism ' however, the resulting formulas are easily
evaluated in terms of invariant quantities such as the
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dispersion of surface states, the bulk band structure and
the associated Bloch waves of the substrate material, and
the asymptotic form of the wave functions deep inside
the bulk. In contrast to the surface Green's-functions
approach, where all of the contributions to the
KRCDOS are lumped together, the analysis developed
here allows a clear distinction between the influence of
the bulk substrate and that of the surface. When applied
to the special case of simple model systems (jellium,
nearly free electrons), the results of Garcia-Moliner and
Flores are straightforwardly verified. The detailed con-
siderations of Sec. III deal with the practical calculation
of the KRIDOS and KRCDOS; in some respects, they
generalize, correct, or give a precise meaning to the
analysis which has been presented by Appelbaum and
Blount. '

an (absolute) surface state. Of course, this situation is al-
lowed to occur only at discrete values of energy,
E =E "J(k~~); j=1,2, 3, . . . . Consequently, surface states

can be normalized as

d ~ll dz =1,
hence yielding the relation of orthonormality

f

�/*.
, „.g, i, 1 r= 5' 5(kt~ —k~),

(2ir )

R3 J', kll J
ll g J J (3)

where 5;, and 5(k~' —
k~~) are the Kronecker 5 symbol

and the Dirac 5 function, respectively (A denotes the
area of the unit cell Z). In consequence of (3), the k~~-

resolved density of surface states (with respect to the
column Z )& R) is given by

II. THE CONCEPTS OF KRLDOS, KRIDOS,
AND KRCDOS IN THE CASE OF A
SEMI-INFINITE REAL CRYSTAL

A semi-infinite crystal with real surface is mathemati-
cally represented by an infinite column Z)&lR together
with an electronic potential w(r~~, z) defined on Z XR.
Here, Z denotes a two-dimensional unit cell being
characteristic of the planar translational symmetry of
any plane parallel to the crystal surface; the potential
w(r~~, z) is supposed to be asymptotically constant for
z ~—oo (vacuum region), and to exhibit the three-
dimensional translational symmetry of the substrate
crystal for z~ co (bulk region). It is well known that
the bound single-electron states g of such a half-crystal
are completely determined by the following properties:

(i) it is a (weak) solution to the single-particle
Schrodinger equation within the column Z &1R.

(ii) P satisfies a planar Bloch condition characterized
by a two-dimensional propagation vector kll belonging to
BZi, the (planar) first Brillouin zone in a plane parallel
to the crystal surface.

(iii) For any z0EIR, it is square integrable within the
half-column Z &&( —oc,z0) including the vacuum side of
the crystal.

(iv) Deep inside the bulk region (i.e., for z~ oo ), P
tends to resemble a finite linear combination of 2o. prop-
agating Bloch waves

N"(E, kl~ z g 5(E Ej"(k~~))—.
(2ir )

(4)

It may also happen that, within a relative band gap [i.e. ,

cr(E, k~~~) &0] and at discrete energies, bound states exist
with a„(E,k~~)=0 for all @=1,2, . . . , 2cr. These "rela-
tive" surface states also have to be included in the right-
hand side of (4).

In the case of positive o(E,k~), there exists, in addi-
tion, a o.-dimensional space of bound states which do not
vanish asymptotically (i.e. , Qadi, &0). These are known

as "surface-adapted bulk states, " if their probability den-
sity near the surface is not significantly difterent from
that deep inside the bulk, and as "surface resonances, "
if„compared to the bulk region, the amplitude of the
wave function is enhanced in the surface region. Within
the framework of the ABCM formalism, it can be shown
that both types of bound states are spanned by a set of o.

basis functions {itj~ z i, ,
' j= 1,2, . . . , cr(E, k~~~)] which, ac-

cording to (1), are represented sufficiently deep inside the
bulk region as

where the o. &o matrix

1&j P &~l

may be chosen arbitrarily (if only it is regular), provided
the Bloch waves Pg~'i, are linearly independent and

enumerated in such a way that

Here, E denotes the energy of the electron, and
o =o(E, k~~) counts how many times, at fixed k~~, the
one-dimensional real band structure of the substrate
crystal, kit E„(k~~,ki ), is intersected by the line
E =const, with the group velocity ( Ec„)/ c)k)(i~~,kk)cbe-
ing positive' (see Bross and Wachutka' ). The func-
tions gg~'l, are the Bloch waves associated with the

points =kk
~~

~+zk"'e„E=E„(
~~,

kk 'i) in (k, E) space.
Accordingly, the bound states of a semi-infinite crys-

tal, Pz i, , are to be classified as follows: In the case

o (E, k~~~ ) =0 (i.e., within an absolute band gap),

tends to zero in the bulk region; this is characteristic of

&0 for p=1,2, . . . , o. ,

gE ' &0 for p=o. + l, o. +2, . . . , 2o. ,
(k~(~(, E) '

holds. The row vectors of the o. &o. matrix

a (E,k~ ):= [a „(E,kl); 1&j &cr, cr+ 1 &p&2o]

(8)

depend linearly on the row vectors of a+(E, k
~

) by
means of a linear transformation L (E,

k~~~~
):

g =g+L T

In this context, the following theorem proves to be
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useful (first stated by Bross, generalized and rigorously
proved by Wachutka' ):

Let the Hermitean form I be defined as

I(X,q ):= f (X'a, q a,X—"q )d'.„. (10)

holds, where I„ is the probability current of P'"' passing

Suppose cr(E, kll) &0 and (BE/Bki)(kll, ki"')&0, there
exists a set of linearly independent Bloch waves [gg'k,

II'

p, =1,2, . . . , 2cr j such that

gk (p)
I(g'"', g' ')=I„5„= N„—d

through the unit cell Z in negative z direction, and X„ is
the normalization factor

(12)
7

(d is the interlayer distance in the bulk). The number of
positive currents I & 0 equals that of negative currents
Iz & 0 (and, therefore, is given by the integer number o ).

Hence, we shall suppose in the sequel that all Bloch
waves considered satisfy Eqs. (11) and (7).

Now let a coordinate zz be chosen such that the half-
column Z X(zing, oo ) only consists of periodically repeat-
ed bulk unit cells. Going to the limit

Z X (z~,z~» ) ~Z X (zji, ~ ),
gt can be shown that

f, p~*, F. , z. pj ~l d r = g a~'„(E', kjl a, „(E,kll) f f, @'z"''„)*,gz'k d rll d
p, v=1

The orthogonality of the Bloch waves [see Bross, Eq. (4.11)]
2f z(@E",'& ) t/iE'~ d rll dz =N& 5(kjl —kll)

—5(k j."'(E',kll) —k' i'(E, k )l)l5&~

(13)

(14)

and the transformation rule for the 5 measure

x5(E' —E) (15)

(with V being the volume of a three-dimensional unit cell
in the bulk). This relation indicates how to orthonor-
malize the basis functions i)'j, z z, hence, we arrive at the
following representation of the kII-resolved local density
of states (KRLDOS)

suggest that the most convenient normalization of the
Bloch waves is

N„(E,kll) = (E,kll ) (16)

a:= (a+,a )=(a+,a+L ), (17)

implying that, apart from the sign, each of the Bloch
waves carries the same amount of probability current.
AVith the exception of the maxima and minima of the
one-dimensional band structure kit-+E„(kll, ki), which
have to be considered separately, the normalization to
unit current can be achieved without any further restric-
tion.

Furthermore, since the o. &(cr matrix ]+I. L is Her-
mitean and positive definite, it has o. orthonormal eigen-
vectors x~ EC with strictly positive eigenvalues
Choosing Az

'
x~ as rows of the matrix ca+ yields a

a. &2a. matrix

X I &j,E,kll(r) I

' .(2~)',

The explicit evaluation of this expression requires
some further considerations: For z~ —~ the value of
I(gj ~ q, P, z q ) tends to zero; as a consequence of the
conservation of probability current, this is also true deep
inside the bulk. Hence, because of (11) and (16), it can
be concluded that

X a'p 'kll)ajar(E'kll X aj'p(E'kII jp E'kll) '

@=1 p=(r+ 1

(20)

On the other hand, the row vectors of a are orthonor-
mal per constructionem; therefore both matrices, &2a+
and &2a, must be unitary. Consequently, the a. Xo.
matrix

(21)g (E kll) .= 2[a+(E kll)] a (E kll)

is also unitary; this matrix is useful to express the
KRLDOS deep inside the crystal only by means of prop-
agating Bloch waves:

the o. rows of which prove to be orthonormal vectors of
Cz . Thus, Eq. (13) is reduced to

f , „,f, Eq d r= 5(kjl —kll)5(E' E)5,'J-(2n. )
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N (E,k)~, r)=
2' CT

I'+ g lA', i„( l*,.Wz, ~+,I'( )
7T p= I p, v=1

(22)

Note that A remains invariant with respect to a unitary transformation of the basis functions I Pj z „,.II'

j=1,2, . . . , o I. In particular, by using &2a+(E, k~~) as transformation matrix, the following asymptotic form of the
basis functions is achieved

(23)

which allows an intuitive interpretation of the matrix elements A,„as refiection coefficients of the Bloch wave Pgi,
II

due to scattering at the surface region of the crystal. '

When integrating N (E,k~~, r) along a sufficiently large column of periodically repeated unit cells of the bulk region,
the contribution of the second term' of the right-hand side of (22) turns out to be zero; so the relation

zo+Id y 2o.

f f N'(E, ki, r)d'r„dz=l y '
(E,k„)BE (24)

is obtained. Since the measure

BE„
dX~ ——g o(E E„(k))d k—= g Bk

do „(k)

[with do„denoting the Lebesgue surface measure on the manifold Ik; E„(k)=E I] concentrated on the equienergy
surface in k space

X(E)=Ik=(kii ki (E kii)) I kiiEBZ&' @=1 2 . . . 2o'(E kii)] = U Ik E (k)=E] (26)

may also be expressed as

2o.

dXE ——g d k~~BE
(27)

by the use of the parametrization kij kI"'(E, k~~), it becomes obvious that the "total density of states, " within the
column Z X(zo,zo+ld), is just given by the number of involved bulk unit cells, l, multiplied by the total density of
states (per unit cell) of an infinitely extended three-dimensional crystal

N""(E)= fdX
(2' )

which, of course, is expected by physical intuition:

(28)

f f ' f N'(E, kl, r) d'r„dzd'k„i=lN""(E)
I

(29)

Although there is no direct way to compare the density of surface states (being proportional to the area A of the
two-dimensional unit cell Z) with that of surface-adapted bulk states or resonances (being proportional to lAd =lV,
with l ~ ao ), the following concept proves to be useful: Let the "k~~-resolved integrated density of states" (KRIDOS)
be defined as

so+ ld

N;„,(E, k~~, z, l):= f f N (E,k~~, r) d~ri dz .
oo z

By separating the asymptotic part being proportional to the bulk density of states

hN,"«(E,kll'zo l N;«(E, k~), zp, l ) —l
3 g (E,k(()(2~)

(3O)

(31)

it makes sense to define the limit

EN(E, k~, ,z, ):= lim AN,'„,(E,k„,z„l)+N"(E,k„) (32)l~~
as "kII-resolved change in the density of states"

(KRCDOS). Here, the plane of reference, z =zo, may be
situated anywhere, if only within the bulk region, ' how-
ever, it proves to be convenient to put it in the vicinity
of the surface region. Then, the KRCDOS describes the
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E
Q', i

—2e f f N"(E, kii)d kiidE (33)
BZ

(Ez denotes the Fermi level) and, according to (28)—(31),
the charge of the surface-adapted bulk states is given by

Q, i =2e f f bE,'„,(E k„,zo, l ) d'k„dE
BZ)

+I f N""(E)dE (34)

It is reasonable to suppose that, for z )zo, the charge
density of the ion cores, when integrated across Z, may
be partitioned into three terms

p;,„(z)=p;,„+p';,'„'(z)+p,",„(z) (35)

in such a way that p;,„ is the mean value of p;,„(z), taken
along the interval (z,z+d) in the limit z —+ oo, and that
the contribution of p;'„' is vanishing, when integrated
along any interval of length d, and that, for any z, the
integral value of p,",„(z) over the interval (z, oo ) remains

modification of the density of states of an infinitely ex-
tended crystal due to cutting it along the plane z =zo
and replacing the "left" half by the vacuum and surface
regions. Moreover, the plane z =zo serves as a reference
surface in order to adjust the arbitrary phase factors of
the individual Bloch waves involved in the practical cal-
culation of the KRCDOS (see Sec. III).

The arbitrariness in the choice of zo manifests in the
fact that a change of zo by an amount of hzo corre-
sponds to an additional term on the right-hand side of
(32) being just Mo/d multiplied by the bulk density of
states. This property is useful for the formulation of a
"charge neutrality condition" expressing that the elec-
tronic charge contained in the column Z X ( —oo, zo
+ld) (including charge relaxation resulting from the
surface states and the adaption of the bulk states to the
boundary conditions at the crystal surface) and the fixed
charge of the ion cores (including excess or deficit
charges near the surface) must compensate each other in
the limit I ~ ~: The charge of the surface states
amounts to

finite. Because of the charge neutrality of the three-
dimensional perfect crystal, it can be concluded that

po„= N''EdE . (36)

Thus, by requiring the difference between the ionic
charge contained in Z && ( —co,zo+ld ),

Z0 Zo+ Id

Q; „=f p;,„(z)dz-+Ip; „d+ f p,',"„(z)dz,
oo 0

(37)

and the respective electronic charge Q„+Q,", tending to
zero in the limit l ~ oo, the condition

2e hN E, kll o "
ll
dE

Z0= f p;,„(z)dz+ f "p,'"„(z)dz (38)

III. THE PRACTICAL CALCULATION
OF KRIDOS AND KRCDOS

Suppose the matrix of reliection coefficients, A(E, k~~),
has been made available by means of an appropriate
method, ' the explicit calculation of the integrated densi-
ty of states may be performed in the following way:
Starting from the relation

is implied. However, apart from simple models (e.g., the
jellium model with infinite potential barrier at the vacu-
um side ), one cannot expect this (strong) criterion to be
exactly satisfied for any choice of the plane z =zo.
Therefore it seems favorable to assure for "charge neu-
trality in the (microscopic) mean, " which means that Eq.
(38) holds only after having been averaged with respect
to zo (along one or some layers of the bulk region).

In the case of a self-consistent calculation of the elec-
tronic and ionic charge density, the condition of charge
neutrality must be satisfied by itself in the end; but in the
course of a non-self-consistent calculation, condition (38)
may serve as a useful criterion for adjusting the ionic
part to the electronic part of the total charge density.

Z/ f l@, k„~'d' ~~d = f, , (39)

(with z& ——zo+ld; 1 &N), which is based upon Schrodinger s equation and the continuity of probability current, it can
straightforwardly be shown that

(2m. ) CT

X;„,(E,k~~, zo 1)= g D„„(E,k~~, zi)+2 Re g A„,(E,k~~)D„+,(E, k~~, zi)
@=1 p, v=1

—
d

t [~(E k~~) ~ ~(E k~~)] (40)

where

D„.(E,k„,z):= ~~, (@~g,' )*a,q,"„—a, a, (q~g„' )*11~'„]d"„. (41)

Because the Bloch waves 11tg'„' are subject to Bloch's boundary condition (characterized by the wave vector
k=ki+kI"'e, ), it is possible to refer D„(E,ki, z&) to D„(E,k~~, zo) by
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i(k —k
J )Id ak,~(p)

Dp (E,kll'z()=De (E,kll'zp)e
'

+5m l (42)

(43)

holds; hence, the KRIDOS may be written in the form

This formula indicates explicitly that, indeed, the bulk density of states (24) can be separated from the KRIDOS in
the way postulated above. Furthermore, as a consequence of the unitariness of A (E,kll),

tr[A(E, k(l~) B A(E, k(l)]=i argj det[A(E, k(()]jaE

bN, „,(E,k((, zo, l) =AN;'„", (E,k((, z 0)+6N;„((E,kl(, z,ol )

with

(44)

and

a 2&T

arg[ det[&(E, k()]j+ g D„„(E,kl, zo)
(27r)~ 2n BE I 2.n PP

L

(45)

bN „,'(E, k((,z, l ):= 2 Re g A„,(E,kll)D„(E, kl(, z()
(2m )

(46)

(47)

[where the real phases p("'(E, k(() are supposed to be
smooth functions of E] induces the transformation rule
for A(E, k(()

3 (E,kll) = U+ (E,kll) A (E,kll)[ U (E,kll)]" (4g)

Note that AN „t' does not depend on the length of in-
tegration zi. An interpretation of this quantity is easily
obtained in the case that only two propagating Bloch
waves exist in the bulk region: Then, by necessity, the
directions of probability current are opposite [i.e.,
cr(E, kl()=1], and the unitary matrix A(E, k(l~) degen-
erates into a phase factor exp[i2ri(E, kl~()], with r)(E, kl~()

being the phase shift between the two Bloch waves in-
volved [see Eq. (23)]. Therefore we arrive at the well-
known result that the "continuous part" of the
KRCDOS is given by the energy derivative of the phase
shift, provided the gauge of the phase factors of the indi-
vid [al Bloch waves has been chosen such that D»+D22
var. shes at z =zo. ' ' For an arbitrary gauge, the
seco.xd term of the right-hand side of (45) just compen-
sates the resulting change in the energy dependence of
the phase shift; thus, AX,'„'t' proves to be invariant under
gauge transformations.

The generalization of this is to the case a(E, kll) & 1 is
expressed by Eq. (45): Transforming the Bloch waves
according to

a
arg[ det( A )]= arg[ det( A )]as '

rr BP(v)

+ &, BE

BP(sr+ ~l

aE
(50)

is satisfied, with the result that 8»(E, k(l, zo) vanishes,
and that AX,'„'t' can be determined only by the energy
derivative of arg I det[ A (E,kl() ]j.

By arguments similar to those above, it can also be
concluded that the products A„D„+ do not depend
on the choice of the phases p'"'(E, kl(), so AN, '„,' proxies
to be gauge invariant also. With respect to the variable
z(, this quantity shows a rapidly oscillating behavior [see
Eq. (42)]. Since, for (M&v, the equality

On the other hand, normalizing the Bloch waves to unit
current [see Eq. (16)] ensures the relation

BP(~'
z) ——sgn(I„) {Ek

aE

(51)

and, therefore, hN, '„'t' does not change under gauge
transformations also in the general case o. ~ l.

Differentiating Eq. (11) with respect to energy shows
that, because of the normalization (16), D»(E, kll, z) is
real valued. Hence, it is possible to choose the real
phases P'"'(E, k(() in such a way that

BP(IM (

(E,kll ) =d sgn(I& )D» (E,kll, zo ) (52)

with

(1) - (2) )

U = diag(e'~, e'~ . . . , e'~ ),
~p(&r+1) p(o +2) .p(2o )U:=diag(e', e' . . . , e' ) .

i(k —k ~ )dD„„(E,kll zo)=(e ' —1)

&& f J (gg'k )'ll"~ I d rll d
0 Z

(53)

Consequently, we have
holds, it is obvious that the amplitudes of the oscillations
are more enhanced the closer E approaches one of those
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energy values E"(k~)) where two branches, kg (E k)~)
and k) + '(E, k), ), of the (one-dimensional) band struc-
ture k) I [E„(k)), k~ )]„~„join each other:

k') + '(E"„(k))),k~~)) =k)"'(E"„(k~~)), k~~))

:=k" (k)~) mod(2'/d) . (54)

Note that intersections of energy bands with different
symmetry are not to be included here, because in this
case the overlap integral in Eq. (53) is known to be zero;
therefore, in the regular case, the points
(k"„(k~~) ), E",(k~~~)) are to be regarded as the local maxima
and minima of the (one-dimensional) band structure
k) t [E„(k)),k) )]„~z (see Fig. 1).

The integration of bN;„,' over (E,k))) space required
for determining the electronic charge Q,")(z&) [see Eq.
(34)] yields two terms, the one which oscillates with z)
and is proportional to z&

' (Friedel oscillations) and,
hereby, tends to zero in the limit zt ~ oo, while the other
arises from those regions in (E,k)) ) space where

Kp(E, kll):= k( + )(E,kll) —ki(p)(E, kll) (55)

[being defined, with respect to E, within a one-sided
neighborhood of E",(k~))], and to factorize the quantities
D& + according to

exp[is.",(E,k)) )z ]D„(E,k)~, )= II„,(E,k)), ),
2i sin[a~(E, k)))d /2]

(56)

where the function

E=E",(k)~), and approaches a finite nonzero value for
z&~ ap. In what follows, the latter shall be discussed in
detail.

For the investigation of the asymptotic behavior of the
KRIDOS in the vicinity of one of the critical energies
E"(k)~), it proves convenient to consider the diff'erence
function

II„„(E,k„, ):= (gp') )*q~ „P z z, kII E, cII
(57)

is periodic with respect to z, with the period being the
interlayer distance d. Provided both of the branches,
kq"'(E, k))) and k) + '(E, k~)), are smoothly connected at
E =E"

(k)~~ ) [forming a locally parabolic (one-
dimensional) energy band], )r"„may be represented within
a one-sided neighborhood of E",(k)) ) as

B~~
)r",(E,k~))=2 ( E, k)[))E —E"(k

II BE

C„~(k)),z):=
B]c"

lim 2
FP+ O

( —)

II„,(E,k)~~, z) (60)

exists; thus, H„can be written in the form

("+"in the case of an energy minimum, and "—"in
the case of a maximum). Because of the normalization
to unit current (16), the limit

X [1+0((E E",)'")]— (58)
Ba"

II„(E,k)),z) = [—,
' Cv„(kll'z)+b~. (E, k)) z )] BE

(61)

B]c"
lim

E g)" + o BE
( —)

from which it is easy to conclude that
—1 Bk'+']/2 1/2

BE BE
1

2
(59)

with b„ tending to zero as E is approaching E"+ 0.
( —)

As it is sho~n in the Appendix, the quantities C„do
not depend on the variable z, so we can summarize the
results obtained hitherto as

sin[)c"„(zo+.ld ) ]R [3 (E k)))D (E k)) /)]= R [ & [ C +& ( o)]j
2 sin()r", d /2) BE

cos [)r",(z 0 + ld ) ]
Imj A„[—,'C„+6„,(zo)]I

2 sin()r"d /2) pv 2 pv Pv O (62)

Now, the limit I ~ oo can be performed without difficulty. The limit of the first term behaves, with respect to integra-
tion over the energy E, like a 5 function:

sin[~~(E, k), )(z, +id )]
as l~~2s' [ "„(E,k)~)d/2]

The second term is approximated by the expression

(63)
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FIG. 1. Schematic one-dimensional band structure showing the labeling of the maxima and minima where the individual
branches k j"'(E,k~~ j are smoothly connected.

I 2d [E—E"(k~ )] I
' Im[ —,

' A„(E,k,
,

)C„,(k~~ )] (64)

if only E is sufficiently close to E",(k,~) (within a one-sided neighborhood). Allowing for an interpretation as density in
k space necessitates this expression being integrable with respect to energy; hence, for E~E, the numerator
Im( Az„C&, ) must tend to zero sufficiently fast. Using the model of free electrons as guidelines, the assumption that
this quantity behaves like

~

E E", ~, wi—th the exponent k being positive, seems reasonable. Then it can be shown
that in the limit I~ co the contribution of the second term in Eq. (62) to the k-space integral must vanish.

So, finally, the following explicit formula for the KRCDOS results:

aEN(E, kll zo)= z g 6(E —E"(k~~))+ argI det[A (E,k~~)]I + g DI I, (E k

Re[A„,(E",(k~~), k~ )C„(kll ]6(E E",(k~~))— (65)
p, v= 1

[here, C„(k~~) must be set to zero if ki"'(E, kw) and ki '(E, k~ ) do not intersect or exhibit different symmetry;
A, (E"(k~~), k~~) has to be regarded as limit E~E",(k ~) + 0 from the right or from the left, respectively].

The last term in formula (65) originating from AN;'„,I may be explained as follows. It is at energies E =E",(k~~)
where the dimension of the space of propagating Bloch waves, 2cr(E, k ~), and, hereby, the number of linearly indepen-
dent surface-adapted bulk states, o.(E, k~~), is (discontinuously) changing by an integer amount: In the case of a local
minimum of the band structure k ~iE„( k~~, k)i, for instance, the number o(E,k~) jumps from oo to era+ I, while in-
creasing the energy from E &E",(k~~) to E &E",(k~~). The value of o(E, k~~) at E"„(E,k~~) is determined by the number
of (linearly independent) linear combinations of Bloch waves matching the boundary conditions at the surface; this is a
delicate problem whose solution is implicitly given by the expression developed above.

In conclusion, it is illustrative to rewrite the charge neutrality condition (38) by integrating the expression (65) over
the set of k vectors enclosed by the Fermi surface; this yields the following sum rule for the reflection coefficients A„,:

A 1 1 1 oo

NP + z
—

ilF(k~~~~)+ ,'gF(kI )d k~~~+ 613F(z—o) = p;«(z)dz+ p,",„(z)dz(2' )
4 2~ 2e 0

(66)

where the individual terms have been defined as
E

NF = N" E, kii d'kii, dE

gF(kll arg[ det[A(EF k

(67) (equal to the "collective scattering phase shift" at EF)

(6g)

(equal to the number of surface states below the Fermi
level, EF),

gF(k(, ):=
E [~[]]+EF

Re[ A„(E"„(k((),k)))C„(k())] (69)
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(equal to the weight by which the maxima and minima
of the one-dimensional band structure kzt+E-„(kl, kt)
contribute to the number of surface-adapted bulk states),
and

E 2'
hpF(zo):= d J 1 g Dtt (E,kl, 0)

oo BZJ

(70)

("total phase shift correction" for all Bloch waves below
EF). Thus, the sum rule presented by Appelbaum and
Blount' is con6rmed and completed by giving a precise
meaning to each of the terms appearing in their formula,
especially, if more than two Bloch waves are involved in
the calculation.
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APPENDIX

It is to be shown that the quantities C„[see definition
(60)] do not depend on the variable z. The proof of this
is based on the identity

II„„(E,kl, ) —II„„(E,k~~, )

e U„z+ —U„z+ d A1
0

with U„„(z)being defined as an overlap integral

U„(z):= J u'"'(rl, z)*u' +'(r~~, z)d rl,z
where the function u'"'(r):= exp( —ik'"'r)P'"'(r)
denotes that part of the propagating Bloch wave ttj'")

which exhibits the three-dimensional translational sym-
metry of the bulk crystal. By definition, U„ is a period-
ic function of z (with the period being the interlayer dis-
tance d) and, therefore, the mean value of the shifted
function (I—+ U„„(z+g) along the interval [O,d] equals
that of the function g~ U„(z+g). By expanding the
exponential under the integral sign in Eq. (Al), it be-
comes evident that, due to normalization to unit current
[Eq. (16)], the right-hand side behaves like

II„(E,k~~, z) —II„(E,k~~, z )

1/2 + 1/2

=itc"(E) F(z,z,E), (A3)
BE BE

where F(z,z, E) is a bound function. Multiplying this

equation by
~

etc" /t)E
~

', going to the limit
E~E",+ 0, and using Eq. (59) yields

( —)

C&„(kl,z) =Cz„(k~~,z ), (A4)

because tc" tends to zero as E approaches E", [from a
right-sided neighborhood in the case of a minimum, and
from a left-sided neighborhood in the case of a max-
imum of the (one-dimensional) band structure].
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This may be efficiently achieved by the ABCM method, for
instance (see Refs. 13 and 14).
Exceptions of the regular case are at most allowed to occur
at isolated points in k space, or along so-called contact
curves, otherwise only with "vanishing probability" in the
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For a more compact notation, the explicit k~~ dependence will
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