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Filling three-dimensional space with tetrahedra: A geometric and crystallographic problem
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Exact, nonperiodic, close-packed structures with randomness that can fill three-dimensional space
are found. We find many solutions for distances between atoms that satisfy the necessary conditions
of filling three-dimensional space with tetrahedra formed with two kinds of atoms. Only three solu-
tions that also satisfy the sufhcient condition of filling three-dimensional space are discussed. They
all involve periodic as well as nonperiodic structures resulting from the random stacking of layers.
One solution corresponds to the NaC1 structure. Another solution exhibits both tetragonal and hex-
agonal symmetry, which violates crystallography. A third solution has a unit cell whose surface ex-
hibits distorted pentagonal symmetry and whose elementary unit is a 44-face polyhedron. Sugges-
tions for a possible growth model in three dimensions with tetrahedra are discussed.

I. INTRODUCTION

It is well known that regular tetrahedra cannot fill

three-dimensional space' since the dihedral angle of a
regular tetrahedra is yo=cos '( —,')=70.5', which is not
a submultiple of 2~. This geometric property has impor-
tant crystallographic consequences, for instance, con-
cerning the number and nature of close-packed networks
of identical atoms (or hard spheres). While in two di-
mensions the triangular lattice is the only close-packed
network, in three dimensions there are many close-
packed lattices (periodic or not) which can be obtained
by stacking successive two-dimensional triangular ar-
rays. In all cases each atom not at the surface has
twelve neighbors, and this guarantees that no denser
packing of an infinite number of hard spheres can be
found. Another consequence of the impossibility of
filling space with regular tetrahedra is that the closest
packing (defined here as the packing which minimizes
the number of nearest-neighbor pairs) of a finite number
of hard spheres is not always a piece of an infinite close-
packed lattice. An example is the packing of six hard
spheres. The closest packing is obtained with three reg-
ular tetrahedra and has twelve bonds. The three tetrahe-
dra have two common vertices. If one continues the ad-
dition of hard spheres, then not all of the spheres can
have twelve neighbors. But in a close-packed lattice, a
set of six atoms never forms more than 11 bonds. This
effect has consequences on the growth of crystals (forma-
tion of stacking faults) and aggregates (magic numbers ).

The problem addressed in this paper is whether three-
dimensional space can be filled by tetrahedra, the vertices
of which belong to two classes 3 and B, the three dis-
tances diaz, diaz, and diaz being the same for all tetrahe-
dra. The condition 2d„~ =d~~ +dittt (valid for true hard
spheres) is not imposed but we would like it to be approx-
imately satisfied.

One motivation of our work comes from the existence
of quasicrystalline solutions with a five-fold symmetry
in the analogous two-dimensional problem. In the sim-

pie crystal-growth models such as the Eden model or
the solid on solid (SOS) model, one assumes that each
atom goes to a given predefined place. One way to real-
ize that is to form successive tetrahedra: at least one
tetrahedron for each new atom. A second motivation is
to investigate if the close packing of spheres of two
diferent sizes can fill three-dimensional space. The gaps
or defects found in the packing of regular tetrahedra
may be avoided if we introduce a second species of
"filler" atoms. From a practical point of view, this in-
troduction of a second species of atoms addresses the
structure of alloy. From a theoretical point of view, we
would like to see the positions of atoms in three-
dimensional Euclidean space, rather than in curved
space. This necessitates the introduction of a second
kind of atoms. A third motivation is to look for possible
random structures. This has implication in the studies
of amorphous and quasicrystalline materials.

Our investigation of filling three-dimensional space with
tetrahedra formed from two species of atoms therefore
proceeds with the following sequence of questions. (1)
Can the local arrangement of atoms satisfy the conditions
of filling three-dimensional Euclidean space? (2) Is there
a random space-filling structure? (3) What are all the
possible forms of random space-filling structures? We
will answer all these questions.

To highlight our results, we briefly describe the three
solutions here. First of all, if our problem of filling three-
dimensional space with tetrahedra has solutions, then spe-
cial values of x =d& & /d» and y =d» /d» are expect-
ed. We find several solutions, the simplest one is shown
in Fig. l. It corresponds to y =&2. It is a face-centered
lattice where the B atoms occupy the corners of the cubic
unit cells and the centers of the faces while 3 atoms occu-
py the centers of the unit cells and the middles of the
edges. This is the NaCl structure.

Another solution corresponds to x =&4/7 and
y = &12/7 and has the chemical formula A28 (Fig. 2). It
has hexagonal symmetry and a projection on the hexago-
nal plane is shown by Fig. 2. The B atoms are at heights
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FIG. 1. Unit cell for the y =&2 solution. (Open circles for
A, solid circles for B.)

ny and the A atoms are at heights (n + —,
' )y. Lines joining

two A neighbors are seen to be fourfold axes. Thus, this
solution is both tetragonal and hexagonal. This accidental
violation of crystallography would be corrected by any
perturbation (introducing some elasticity for instance).

More complicated solutions will be found in this pa-
per, which is organized as follows. In Sec. II we write
the necessary conditions to be satisfied in order to put
tetrahedra around the three kinds (AA, BB,AB) of
bonds. In Sec. III it is shown that these conditions have
only a finite number of solutions, at least in the physical-
ly more realistic range 0 & x & 1 &y & &3, and these solu-
tions are enumerated. These necessary conditions
guarantee one can build the surroundings of isolated
pairs, but not that one can assemble them to fill space.
In Sec. IV additional compatibility conditions are used
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and allow one to eliminate most of the solutions found in
Sec. III. In Sec. V the remaining solutions are de-
scribed. They involve periodic structures and non-
periodic structures resulting from the random stackings
of layers. Finally, we discuss possible growth models' '"
associated with these exact solutions.

II. MATCHING CONDITIONS
OF THE DIHEDRAL ANGLES

We consider the following problems: (a) Is it possible
to fill space with tetrahedra, the corners of which belong
to either one of two species A and B, so that the minimal
distances d„between a p atom and v atom have fixed
values? (b) Is it possible to generate nonperiodic structure
in this way? For two types of atoms, there are three dis-
tances d„. Since one of them (d„s) sets the distance
scale, there remain two ratios x —=d» /d &z and

y =—diaz/d~&. There are five types of tetrahedra, A A A A,
A A AB, AB AB, ABBB, and BBBB,two of which are reg-
ular with dihedral angle yo

——arccos( —,'). The remaining
three tetrahedra are shown in Fig. 3, with the seven
dihedral angles expressible in the variables x and y by the
following equations, where t = 1 —x /4 and
t =1—y/4:
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There are three kinds of bonds, A —A, B—B, and A-
B. The necessary condition that a bond be completely
surrounded by tetrahedra of these five types is that the
sum of the dihedral angles around the given bond is 2m,

resulting in the following three "dihedral equations" for
the A —A, B—B, and A —B bonds, respectively:

(a) (c)

FIG. 2. Unit cell for the (x,y) = (&4/7, &12/7) solution.
(Open circles for A, solid circles for BBbonds. )

FIG. 3. Three types of tetrahedra: ABBB, A A AB, and
A ABB, and their dihedral angles. (Open circles for A, solid cir-
cles for B.)
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p &$1+2P2$2+P3lo=2m,

q &0&+2qzOz+q3yo=2~,

r, P, +r, f2+2r3$3 2m,

(2a)

(2b)

(2c)

and in the special case where the A —A bond is absent,
the dihedral equations simplify to

2q2L92+q3po =2~,
r, g, =2~ .

(2d)

(2e)

Equation (2a) expresses the fact that there are p, ABAB
tetrahedra, 2p2 A A AB tetrahedra, and p3 A A A A
tetrahedra around an A —A bond. We denote the set of
integers (pip~3) by P. Similar notation and meaning for
Q—=(q, q2q3) and R:—(r, r2r3) for the B Band—A B—
bonds.

From the definitions of the dihedral angles in Eqs. (1),
we have several restrictions on x and y. In order that
cosgz&1, Eq. (lb) implies x &3. Similarly, Eq. (ld) im-
plies y &3. In order that cosg3&1, Eq. (lg) implies
x +y &4. The dihedral equations (2a) —2(c) should be
satisfied by two unknowns x and y in the physical
domain, and Eqs. (2d) and (2e) should be satisfied by the
single unknown y. Thus if the sets of integer coefficients
P, Q, and R of these equations were randomly chosen, no

and

0&0& &~, 0&02 &yo,

g/3&/i &yo, n/3&$2&a, 0&ttt3&a/2 .

(3b)

(3c)

The last inequality in Eq. (3c) requires some explana-
tion. Since f3——0 only at (x,y)=(1,&3) and that corre-
sponds to P| ~ and Pz

——yo, we can check that Eq. (2a)
cannot be satisfied for all possible P. Therefore $3)0.
These ranges of the dihedral angles can be used to

solution for x and y would be expected. It turns out,
however, that there are many sets of P, Q, and R such
that there are solutions in x and y for the dihedral equa-
tions. We do not want to enumerate them all, as many of
them do not fi11 space or are topologically impossible solu-
tions, as discussed in the next two sections.

We focus our attention to those solutions shown in
Table I that lie in the range 0&x &1&y &&3. This is
the range of x and y that allows us to interpret A as a
small atom and B as a big one. The hard-sphere con-
straint, x+y =2, is not imposed on our solutions, al-
though solutions close to the hard-sphere solution are
found.

For the range 0 & x & 1 &y & &3 we can deduce the fol-
lowing ranges for the dihedral angles using Eqs. (1):

~/3 & Pi & ~ yo & $2 & ~/2; (3a)

TABLE I. Solutions to dihedral equations for 0&x & 1 &y & &3.

Fills three-
dimensional space?

Unspecified

&4/7 &12/7

None 022

600
410
220

040

012

Yes (Sec. VA),
no A —A bond
Yes (Sec. VB)

&8/11 &12/11 310
211
112

102 Yes (Sec. VC)

210 022
211
400
022

211
400
022
211
400

040
040
040
121

121
121
202
202
202

No

&8/11

[ 7
(

3 )1/2]1/2
4 2

&8/11 &32/11

013

112

013
111

022

311

113

040

121

302
211

No

No

2
&2—1

3&2+1

1/2

' I/2 [/2
&2+1'
3~2+1

&5/2 202 420

211
102

021

No

No
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p i4»+2p242l+p31 0 & 2~

rifi„+rzi(z„+2r3$3 &2m,

(4b)

r i Wl l + rz Pz/ +2r3 f31 & 2~ '

Here the indices u and l on the dihedral angles indicate
the upper and lower limits.

For a given set of P and R, we look for solutions x
and y of the dihedral equations (2a) and (2c). For a
given solution (x,y) of Eqs. (2a) and (2c) we work out
the dihedral angles 8, and Oz in Eq. (2b), as well as
max(qz) =[2ir/8, ] and max(q& ) =[~/Oz]. Then we test
if there is a set of Q =(qi, qz, q3) for 0(q, &max(q~),
0&qz &max(qz), and 0&q3 &5 that satisfies also Eq.
{2b). In this way we obtain a simultaneous solution of
all three dihedral equations (2a) —(2c). The method of
solving Eqs. (2d) and (2e) is similar, and in Appendix A
we briefly describe the trick of finding simultaneous solu-
tions to Eqs. (2a) and (2c) for a given set of P and R.

These numerical procedures of solving the dihedral
equation give approximate values of x and y. But once
the integers P, Q, and R are known, one can work out x
and y analytically. In this way we find many exact solu-
tions (of the order of hundreds). We also find that as the
number of intervals N for the binary search of roots of
the dihedral equations increases, the number of solutions

(4d)

deduce upper limits on the p's and r's, so that there is
only a finite number of sets of P and R. This is the sub-
ject of the next section.

III. NUMBER OF SOLUTIONS
OF THE DIHEDRAL EQUATIONS

We argue in this section that the number of solutions in

the range 0&x (1&y &i 3 is finite. The argument for
the other values of x and y is similar. First we show that
the number of sets of P and R is finite. From Eqs. (3) we
can immediately write down the upper limit of P] as

[2nlg, i], where [z] denotes the integer part of z and P, ~

is the lower limit of P&, which is w/3 in Eq. (3a). [This is

because for p& & [2nlg»] =6, Eq. (2a) cannot be satisfied. ]
Similarly, the range for the other coefficients can be de-
duced to be 0&pi &6, 0&p, &2, 0&p3 &5, 0&r] &6,
and 0 ( rz & 6. Since g3 & 0, there exists an upper limit for
r 3 We consider two cases. First consider two tetrahedra
AABB' and AABB" with a cornrnon face AAB. The
distance between B ' and B" must be ) 1, implying
1//3 & rr/6, or r3 & 6. Next, consider i( & & ir/6. In this
case, it is impossible to put A ABB' and A ABB" together
with a common face, as B' and B" will overlap. This
overlap should be prevented by separating any pair of
A ABB tetrahedra by at least one A A AB tetrahedron, irn-

plying that r 3 & r &, where 2r 3 is the number of A ABB
tetrahedra around an AB edge and r] is the number of
AAAB tetrahedron around the AB edge. Since ri &6,
therefore in both cases r3 &6. This completes the proof
that there are at most max(p&)max(pz)max(p3)max(l ])
X max(rz )max(r3) =6 X 2 X 5 X 6 sets of possible
coefficients of P and R. One can further reduce consider-
ably the number of sets of P and R using the following
constraints:

p &4iu +2pzdzu +p3)'o & 2ir (4a)

also increases, despite the finite number of possible P
and R. However, we observe that the increase in the
number of solutions all comes from the set with
P =(111),and the number of solutions that do not have
P =(111) remain constant as X increases beyond 10 .
Indeed, we can show analytically that for P =(111),
Q =(n00), and R =(111),we have solutions for all n & 6
(refer to Appendix B). This means that there are
infinitely many solutions to the dihedral equations.
However, these solutions are not acceptable, as discussed
in the next section. Apart from these forbidden
configurations, the number of solutions generated by the
numerical search is constant for N) 10 . Unless there
are two roots the separation of which is smaller than
10 (we carry out the search up to X = 10 ), we can say
that the number of solutions to the dihedral equations is
finite. In the next section we will discuss some simple
topological considerations that eliminate as many solu-
tions found for the dihedral equations as possible, as well
as a computer-assisted method of eliminating solutions.

IV. COMPATIBILITY CONDITIONS

As already mentioned, the dihedral equations (2), even
completed by the inequalities (3) and (4), have many solu-
tions. However, most of them can be discarded by the
simple compatibility arguments given below.

A first rule is that P =(piOp3) is forbidden if p,p3&0.
Indeed, the hypothesis p, p3&0 implies that there are
A ABB and A A A A tetrahedra with a common A A

edge, and in that case there should be some AA AB
tetrahedron separating A ABB from A A A A tetrahedra;
therefore p 2 &0. The same argument sho~s that
Q =(q~Oq3) for qiq3&0 and R =(r~rzO) for r~r3&0 are
forbidden. This rule eliminates for instance the solution
x = —„', y = &5/2 in Table I because it has the
configuration P =(202).

The compatibility of P, Q, R can sometimes readily be
checked by simple arguments. For instance, r3&0 implies
the existence of AABB tetrahedra and therefore qi&0
and p, &0. This rule therefore eliminates the P =(210),
Q =(022), R =(202) configuration in the x = 1, y =&2
solution.

When these simple methods fail, the compatibility of a
given solution of (2) should be tested by the following pro-
cedure. One starts with one tetrahedron and one adds
one atom after the other trying to keep the cluster as
spherical as possible. This requires the use of a computer.
After a certain cluster size (in practice, not more than 50
atoms) (i) either it becomes impossible to build the envi-
ronment of some atom, proving that the considered values
of x and y are not acceptable, or (ii) it becomes possible to
form a periodic lattice. Then the values of x and y are ac-
ceptable. Examples of ease (ii) are given in the next sec-
tion. An example of case (i) is P =(111), Q =(n00),
R =(111). One can start with two B neighbors and their
n A neighbors. The surroundings of the n A atoms are
completed by 2n other A atoms, and if one now wants to
complete the surroundings of these A atoms, this turns
out to be impossible.

Other cases are more complicated {for instance x = 1,
y =&2) because the surroundings of some pairs may be
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completed in many ways. The rule in this case is to
choose whenever possible pairs which do not leave any
choice. Most of the solutions of (2) can thus be eliminat-
ed. The remaining solutions (listed in the first three rows
of Table I) are discussed in the next section.

V. SPACE-FILLING SOLUTIONS

Our simple compatibility conditions eliminate all but
three solutions, which we now show to fill space. We first
prove the space-filling property of a solution by giving its
unit cell for a crystalline arrangement of the tetrahedra.
We then show by construction modifications of the crys-
talline arrangement of the tetrahedra that exhibit random-
ness. Finally, we investigate all the possible random
structures associated with a given solution.

A. Arrangements of regular tetrahedra and octrahedra

The y =&2 solution has Q =(022) and R =(040) and
no A —A bonds. The top-view diagrams of Q and R are
shown in Figs. 4(a) and 4(b). R =(040) is the determinis-
tic part of this solution, in the sense that there is a unique
arrangement of tetrahedra around the A —B bond. There
are two possibilities associated with Q = (022) and they
provide the randomness in this solution. [Refer to Figs.
4(b) and 4(c).]

We have shown in the introduction the unit cell of

(a)

(e)

FIG. 4. (a) Projection (or top-view) diagram of the y =&2
solution for R = (040). (b) and (c) are two different
configurations of tetrahedra around a BB bond for Q =(022). y'0

is arccos( —'). (d) Random stacking of planes (aaPP). The
boundary of the a and P phases is B&B2. {Open circles for A,
solid circles for B.) (e) Successive rotations of the octahedron
lead to a gap G.

this solution to be the NaC1 structure. (Refer to Fig. 1.)
Therefore it fills space. The unit cell shown in Fig. 1 is
arrived at by using the deterministic part of the solution,
R =(040), to obtain a regular octahedron with B atoms
at the vertices and an A atom at its center. The other
unit needed for filling space is the regular tetrahedra of
B atoms. According to the Q = (022) configurations
shown in Fig. 4(b), we get the NaC1 structure.

To see that there is randomness in this solution, we
refer to Fig. 4(d) where a stacking of planes in the NaC1
structure is shown. In this figure, the location of
atoms, being at the center of an octahedron, is marked
with an empty circle. The two octahedra centered around

and A3 are connected by sharing a fact using the
Q =(022) configuration shown in Fig. 4(c). If we call the
arrangements of atoms below the line B]Bz the a phase
and above B,B2 the P phase, then Fig. 4(d) shows an
aaP13 stacking of planes. In general, one can have any se-
quence of a. . .a and P. . .P, thereby a random structure
of this solution.

To see that random stacking of planes is the only pos-
sible randomness in this structure, we consider all possi-
ble mixing of the two configurations of Q =(022). Fig-
ure 4(b) corresponds to a translation of the octahedron,
while Fig. 4(c) corresponds to a rotation of the octahed-
ron by yo. Because yo is not a submultiple of ~, we can
have at most one rotation by yo. Successive rotations
around a point will lead to a gap G [Fig. 4(e)]. Can a
combination of rotation and translation of the octahed-
ron [a mixture of Fig. 4(b) and 4(c)] lead to other ran-
dom structure? Let us start with a translation from oc-
tahedron Ai to A2. A third octahedron A3 can relate
to A2 either by translation or rotation. If it is rotation
then a fourth octahedron A4 that is a common neighbor
to A 3, and either A i or A2, must be related to A 3 by a
translation. [This can be seen with the help of Fig. 4(d)].
If it is a translation, then we can repeat the arguments
above applied to A2 and A3. In both cases, one obtains
a stacking of a and P planes. This proves the uniqueness
of the type of the random structure possible in the
y =&2 solution.

B. Random stacking of hexagonal layers

The solution (x,y)=(&4/7, &12/7) has P =(400),
R =(012), and three possible Q's: (600), (410), and (220).
The arrangements of tetrahedra around the respectives
bonds are shown in Fig. 5(a).

The P and R determine the prism, shown in Fig. 5(b).
(This is obtained by applying R to the AB, AB', and AB"
edges of the ABB'B" tetrahedron, which must exist be-
cause r2 = 1. ) By applying Q» ——(220) along the BB',
B'B",and BB"edges, we have two prisms stacked togeth-
er on their common triangular face BB'B". Continued
application of Q&& yields a tube with a triangular cross
section, and application of P =(400) to the tube of prisms
yields a hexagonal lattice, the unit cell of which has been
shown in Fig. 2 in the Introduction. Thus, this solution
can fill space.

There is a random structure, shown in Fig. 5(c), where
the boundary between the a and P phases has the two
prisms connected in the way shown in Fig. 5(d). [Note
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(a
00)

Q=( Qr=

R= (012) Q=

0 0
g, BIB'.. O ~&a

(b)

B'

Bjl B
jl

] 2

WY'- B3

Bt,

BI'

Be
(e)

FIG. 5. (a) Top-view diagrams of the (&4/7, &12//7) solu-
tion. Note that there are two configurations for Q =(220). (b)
The regular prism determined by P and A. (c} A random stack-
ing of hexagonal layers (aP)r)a). (d) Phase boundary between a
and P. (e) Successive rotations of prisms lead to a gap G.

that the Bi'Bz' edge has Q =(600), BiBz, B',Bz, B,B'&,

and BzBz edges all have Q =(410).] The c axis of the
hexagonal lattice in the e phase is along c, which is
perpendicular to the c)i axis in the P phase.

Is there another possible random structure? If we do
not stack the prisms together to form a tube using Q»,
then we have the configuration illustrated in Fig. 5(d).
Continued rotation of the prism to avoid stacking leads to
a gap G shown in Fig. 5(e). Although this gap can be
completed using Qi for the B5B6 edge, the subsequent ap-
plication of R to the A —B bond leads to a defect. There-
fore, stacking of prisms using Qii is necessary to avoid de-
fect. Once we accept this conclusion, the random stack-
ing of a hexagonal lattice shown in Fig. 5(c) is inevitable,
proving that this is the only form of random structure.

C. Random stacking of the 44-face polyhedral

The solution (i/8/11, &12/11) had R = (102),
Q =(600), and three possible P's: (310), (211), and (112),
shown in Fig. 6(a). If we follow the procedure of analysis
in Sec. VB we find instead of a prism a deterministic
structure (using R and Q): a 44-face polyhedron with 24
surface atoms (18 A and 6 B) around a B Bbond. —
(Refer to Appendix C.) Stacking of this polyhedron leads
to a tube, and the random structure obtained is again a
stacking of planes of atoms. In the following discussion,
however, we present a different method of analysis which
may be more illuminating in showing the uniqueness of
the type of random structure allowed in this solution.

Instead of starting with the deterministic structure R

and Q we start with one of the three possible P
configurations and try to determine all positions of atoms,
using all possible P, Q, and R. In all three possible initial
I' arrangements of atoms around the A —A bond we find
that the fully determined part of the positions of atoms
form layers, with a unit cell whose projection is shown in
Fig. 6(b) for P =(310), (211), and (112). Layers can be
generated by translating the projection of the unit cell
shown in Fig. 6(c) in the xz plane. In Fig. 6(c) we show
the projection on the xy plane of a stacking of layer along
the y axis.

First of all, the existence of a unit cell for the layer and
the possibility of stacking layers as shown in Fig. 6(e) in-
dicate that this solution is space filling. To see the ran-
domness in this solution, we see from Fig. 6(e) the ran-
dom choice of A and 8 along the line indicated by the ar-
row. At the bottom of the figure we have 8&, and if we
repeat the unit cell containing 8& along y, we put a 82 at
the translated site. However, we can also have an A atom
at Bz. The choices of atoms shown in Fig. 6(e) corre-
spond to a stacking of a @Pa sequence of layers, with a
denoting the choice of an A atom and P a B atom.

The uniqueness of the type of random structure in this
solution is proved by the fact that in all three possible
initial configurations of atoms around the A —A bond,
we invariably arrive at a layer structure and the only
possibility of randomness is in the stacking sequence of
layers. In Appendix III, this randomness is manifested
in the two possible senses of orientation which the 44-
face polyhedron can take with the same positions of the
8—8 bond inside the polyhedron.

VI. DISCUSSION

We have discussed three solutions, y = &2,
(x,y)=(&4/7, &12/7) and (&8/11, &12/11), that can
fill three dimensional space with tetrahedra formed from
two kinds of atoms. Furthermore, these solutions can
fill space with some degree of randomness, which always
correspond to a random stacking of layers. Therefore,
the diffraction pattern for these structures can be com-
puted using the theory of Hendricks and Teller. ' A
more surprising result is the conclusion that the random
stacking of layers is the only form of randomness per-
missible in these solutions, if we do not introduce de-
fects.

These solutions have the chemical formula AB, for
y =&2 and AzB for (x,y)=(&4/7, &12/7) and
(&8/11, &12/11). The first solution, AB, is the NaCl
structure. If we introduce the A —A bond in this solu-
tion, then the NaC1 structure, shown in Fig. 1, suggest a
value of x =&2. Therefore, this solution is certainly not
a hard-sphere solution as x+y =2&2. On the other
hand, the (&4/7, &12/7) solution has x +y =2.065 and
the (&8/11, &12/11) solution has x +y =1.987. These
two more interesting solutions satisfy the hard-sphere
condition (x +y =2) approximately.

Since we fill space only with tetrahedra, the structure
we obtained is close packed. If the bonding energy for
A —A A —B, and 8—8 bonds are the same, then the
close-packed structures from our geometric analysis also
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have the lowest energy. On the other hand, if we use a
general set of bonding energies, we do not know if our
close-packed structure is the ground-state structure. It
will be interesting to investigate a crystal growth mod-
el' '" in which the 3 and B atoms have the distance d„
given by our geometric analysis and a set of bonding en-
ergies E„and see if one can generate the close-packed
structure. In the spirit of the quenched growth model of
Ref. 12, it will be interesting to grow three-dimensional
crystals "surface after surface, " and forbid the atoms to
move once they stick to the initial cluster. Since the

(&8/11, &12/11) solution has a distorted pentagon on
the surface of its unit cell, shown in Fig. 6, a quenched
growth model may yield a structure intermediate be-
tween crystalline and amorphous material. In particu-
lar, if we grow the cluster with groups of atoms at a
time, such as those specified by the R =(1,0, 2) environ-
ment of an A —B bond, we may preserve the distorted
pentagonal symmetry.

The remaining solutions exhibited in Table I are exact,
but they do not fill space. Thus they yield finite clusters.
If we want to fill space with these solutions, we must

P=( P=(211) P = ('l12)

Q= (600)
R = (102)

(b)

(c

(310)

iiY

0 A atom at Z=O

P =(211) ~ B atom at Z=O

AA bond atoms
at Z=+ dAAI2

& A atom at Z=dAA

A B atom at Z=dAA

=0
=0

toms
/2

P = (112)

FIG- 6 (a) Top-view diagram of the solution (x,y)=(~8/11 ~12/11). (b) projection on the xy plane of the unit cell for
P =(310), (211), and (112). The single circles are A and B atoms at z =0, the double circles are the top view of an A —A bond,
with A atoms at z =+d» /2. The open triangles and solid triangles are A and B atoms at z =d». The atoms with z =0 can be
translated on the xz plane to form a three-dimensional unit cell. Some of the translated atoms are shown, with A to A' and B toB'. The unit cell has dimension shown by the dotted line on the xy plane and height d» along the z direction. The atoms indicat-
ed by solid and open circles have z =2nd» and those indicated by solid and open triangles (only some of them are shown in the
figure) form a plane at z =(2n +1)d». The double circle shows A atoms at z =(2n+ —')d». Here n is an integer. (c) Projection
on the xy plane of a stacking sequence of ppa layers. The unit cells are indicated by the dotted rectangle and the arrows indicate
the line of atoms which can be randomly chosen to be A or B. The choice shown is a B1B2A sequence, corresponding to a stack-
ing of ppa layers.
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supplement the finite clusters, built from tetrahedra,
with other polyhedra not as closely packed as tetrahed-
ron. The possible number of "crystal" structures result-
ed from such an extended geometric investigation is
enormous, and study along this direction with special at-
tention to n-fold symmetry structure is underway. One
notices that our geometric approach to crystal structure
does not impose translational invariance, although in our
proof that the structure is space-filling we find it useful
to construct a periodic structure from the microscopic
structure specified by P, Q, and R. Our approach is
therefore completely different from the projection
method, ' ' from higher-dimensional space to three di-
mensions, used in the discussion of quasicrystals. The
projection method a priori assumes a space-filling struc-
ture. It is our hope that the microscopic approach tak-
en here can supplement some of the missing information
in the projection method.

Finally, we also find many approximate solutions to
the dihedral equations. Suppose that the x and y values
yield dihedral angles, whose sum around the correspond-
ing bond differs from 2~ by 10 ", then one can say that
the given solution yield a finite cluster containing on the
order of 10" atoms. These may be relevant in experi-
mental studies.
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Pi+ 242+'Yo=2vr,

0) ——2~/n,

Pi+2/3+it'z=2vr .

Equation (B1 a) is equivalent to

2&2 .
cos(2/2) = cos(go+ P ) = —,

' cosP, — sing,

(B1 a)

(Blb)

(Blc)

or

—,
' sin P, =[—,

' cosP~ —cos(2$~)]

(B2)

Using (Blb) and (Blc), cosP~ can be expressed as a func-
tion of x:

2 2 x
cosP& =1——+—

4 sin (0& /2)
with t =1—x /4 .

Since cos(2/2) is also a function of x according to (lb),
(B2) can be written as an equation for x which turns out
to be biquadratic in x, namely

2 2

4 x
3 sin (0, /2)

= —x8
9

1 x—1 4—
sin (0, /2) sin (0, /2)

(B3)

It should now be checked that this is consistent with
(Blc). The latter equation may be written as

cos(2$, ) =cosit, cosg2 —sinit
~ sing&

APPENDIX A: SIMULTANEOUS SOLUTION
OF EQS. (2a) AND (2c)

or

sin lt ~
sin t(z ——[cosg& cosg& —cos(2/3)]

(84)

For a given P and R, we consider two cases: (i) p, =0
and (ii) p ~&0.

If p& ——0, then Eq. (2a) involves only the variable x, and
one can use binary search for the root of x in Eq. (2a) for
the range 0 &x & 1. Assuming a solution is found, then
Eq. (2c) becomes an equation of y only and a binary
search for a root in the range of 1 &y & &3 can be used to
solve Eq. (2c).

Ifp«0, we can rewrite Eq. (2a) as

x =i/12t/(2+3t), y =2(1—x /k)'r

with

(BS)

The cosines of P; (i =1,2, 3) can be expressed as func-
tions of x and y using (le) —(lg) and then as functions of
only x and n using (lc). Insertion into (B4) yields unex-
pectedly a biquadratic equation again, which is in fact
identical with (B3).

The solution (x,y) can be written as

2

y =2 1—
4

2'rr —2p 2A —p 33'o
1 —cos (Al) k =4sin vr/n, t =[—%—(X —4AC)' ]/~,

A =a — +1, %= —4(a +1),
Since Pz is a function of x alone, this equation expresses y
in terms of x and can be inserted into Eq. (2c). Then a
binary search for the root x in Eq. (2c) can be carried out.

In both cases a binary search for roots is used implying
that the probability of missing a root is proportional to

', where N is the number of intervals that divide the
range of the search. We have used N =10 .

C =—', , a =(12—3k)/k .

These values of (x,y) yield dihedral angles that satisfy the
dihedral equation (2) only when n & 6.

APPENDIX C: 44-FACE POLYHEDRON

APPENDIX B: SOLUTIONS OF THE
FORM P =(111),Q =(nDO), R =(111)

It will be checked here that the system (2) has such
solutions for P =(111),Q =(n00), and R =(111),i.e.,

Starting with a B atom and using the deterministic
configuration R =(102), we can construct the surround-
ing of the BpA&, BpA2 and BpA3 edges [coordinate
system is shown in Fig. 7(a)], and we obtain an elementa-
ry unit called u, the top view of which is shown in Fig.
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Ap

(a)

Bp (0,0,0

A3

8)

Ag

8)

Bp

Y

Bp

Y

tA

As

Ae

83

(b)

(c)

A4 ——(0,&32, —1)/&33,

Ag ——( —&24, —&8, —1)/&33,

A6 ——( —&24, &18,—1)/+33,

A7 ——( —&6,0, 3)/&33,

As ——( —&21,0, 3)/&33,

A9=( —&6, —&18,3)/&33,

Atc=(&6 —&18 3)/&33

A t) ——(&21,0, 3)/&33,

At~ ——(&6,+18,3)/+33,

Bo ——(0,0,&36)/&33,

B,= ( —&24, &8, —2)/+33,

B,=(0, —&32, —2)/&33,

B3 ——(&24,&8, —2)/&33) .

(C 1)

A

Ag

Bp (4)

7(b), and the bottom view of which in Fig. 7(c). By con-
sidering a Bo atom at (0,0,&12/11) with d„~ =1 as
scale, we construct the elementary unit co using the
prescription of Q =(600) for the Bo Bo bond, w—ith the
six A atoms chosen at A7, A8, . . . , A», A &z. The top
view of co, shown in Fig. 7(d), is identical to its bottom
view if we omit the points A4, A &, A6, B&, B2, and B3
in that figure. With these choices of A's and B's, the u
and co units thus constructed determine the U unit, whose
constituent atoms are BO,B&,Bz,B3 A4 A5
A», A&z. Figure 7(d) shows the top view of v. This
construction gives 16 nearest neighbors of Bo at the ori-
gin with the following coordinates:

A )
——(0,&8, —5)/&33,

A~=( —&6, —V2, —&5)/&33,

A3 ——(&6,—&2, —&5)/&33,

FIG. 7. (a) Coordinate systems. (b) Top view of u or U' or
bottom view of U. (c) Top view of u' or bottom view of u. (d)
Top view of v or bottom view of U'.

These 16 nearest neighbors of Bo at the origin are a
fixed-stacking of uvres units along z once we fix the posi-
tions of the initial tetrahedron BOA& A2A3. There are
also 16 nearest neighbors of Bo, with z reAected by ~ and
the corresponding stacking of elementary units is cou'u'.
There are therefore 16+ 16—6—2= 24 atoms that are the
vertices of a 44-face polyhedron. This 44-face polyhedron
is a stacking of elementary units (uvtvv'u') along z and
contains inside it a BoBo bond along z. Also, the bottom
and top face of a 44-face polyhedron are regular triangles
of A atoms, with the same orientation and separated
along z by 16/&33. By stacking the 44-face polyhedron
along the z axis, sharing a common triangular face

A 2 A 3 we have a chain of 44-face polyhedra. To show
that this solution fills space, we look at the tiling of the xy
plane by the hexagons A4A5 A6B&B2B3. Once we are
given the 44-face polyhedron unit constructed as the
stacking of (uvcov'u'), the hexagons on the xy plane are
fixed for that 44-face polyhedron, thereby also fixing its
neighboring 44-face polyhedra on the xy plane. There-
fore, such chains of 44-face polyhedra forming a tube
along z can be "glued" together to fill space. Also, from
the threefold symmetry of the u unit shown in Fig. 7(b),
and the sixfold symmetry of the cu unit shown in Fig.
7(d), we observe that there is a twofold degeneracy of
stacking v'u' onto co. This intrinsic randomness of 44-
face polyhedra in the stacking of (uvcov'u') along z can be
considered as a random stacking of (uv) planes. Thus
there is a random structure that fills space.
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