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Lattice modes and internal modes do not have the same status with respect to anharmonicity in
molecular crystals. Usually the description of lattice phonons is based on a lower-order diagram-
matic expansion of temperature Green's functions, but for internal modes, theories borrowed from
gas and liquid states are preferred. In this paper, we give a unified view of phonon-phonon in-

teractions in molecular crystals; the lowest-order diagrams prove inadequate to account for the
anharmonic behavior of internal modes. Fourth-order diagrams bring to light the concept of pure
dephasing which is particularly emphasized in gas and liquid states; this expansion step holds as
long as the anharmonic coupling between internal modes is small compared to their dispersion.
For very flat bands, singularities occur and a further step in the expansion is required. We show
how singularities may be handled by the resummation of a subset of diagrams; their contribution
is identified as an energy-exchange mechanism between internal modes, and the connection is
made with previous approaches to this problem. Finally, we point out that spatial dispersion of
the internal bands, resulting from their harmonic coupling with the lattice, and temporal disper-
sion, due to their anharmonic interactions with thermal phonons, have similar consequences on
the energy-exchange processes.

INTRODUCTION

The coexistence of very dissimilar interaction poten-
tials in molecular crystals plays a leading part in their
vibrational properties. In the harmonic approximation,
it often gives one way to distinguish between lattice
modes, m'ainly due to van der Waals forces, and internal
vibrational modes these modes, which originate from
the vibration of the free molecule, usually have a weak
dispersion and are isolated in the vibrational spectrum,
which makes their contribution to the phonon density of
states very sharp in contrast with the lattice-mode con-
tribution. These salient features also have important
consequences on the anharmonic interactions and indeed
induce a singular behavior of the phonons belonging to
the internal vibrational branches (termed vibrons in the
following).

An important effect of the potential anharmonicity is
to shift phonon frequencies from their harmonic position
and to broaden them. The standard way to study this
problem relies on the formalism of temperature Careen's
functions determined through a diagrammatic expan-
sion. Usually the lowest-order diagrams predict satis-
factorily the phonon frequency shift and width; it may
be noticed that, at this step of the expansion, this sophis-
ticated formalism does not bring anything new com-
pared with ordinary perturbation theory or the simple
Fermi's golden rule. However, some problems occur
when this method is applied to study vibrons and ad hoc
theories, borrowed from gas- or liquid-state studies,
are preferred; ' in these approaches the distinction be-
tween contributions to the vibron lifetime from respec-
tively pure dephasing and depopulation processes" is
particularly emphasized.

In this paper we analyze the extent to which vibrons

behave singularly with respect to the anharmonic in-
teractions, and we show how to overcome this problem
by going beyond the lowest-order diagrams. In this way
we realize a unified description of anharmonic interac-
tions among the whole set of vibrational modes. The
zeroth-order approximation is only made of delocalized
states but it is still possible to introduce and discuss in a
natural way a "molecular" problem such as the pure de-
phasing concept or a "local" problem such as the de-
phasing by energy exchange between internal modes.
Moreover, this approach describes the transition from
very dispersed modes to singular ones.

In the next section, we briefly sketch the basics of the
diagrammatic expansion and describe circumstances un-
der which the lowest-order diagrams become inadequate.
In Sec. III, it is shown that the fourth-order diagrams
lead to the advent of the pure dephasing concept and
how singularities in the vibron density of states may
dramatically change the convergence of the expansion.
In Sec. IV we study the local interaction between two
dispersionless internal vibrational bands and we prove
that it is possible to recover the convergence by the par-
tial summation of an infinite subset of diagrams; the con-
tribution of these relevant diagrams appears to be an
energy-exchange dephasing process and the connec-
tion is made with the results of previous ad hoc theories
used to discuss this problem. In the last section a finite
dispersion is introduced on the internal modes but the
coupling parameters are still dispersionless. Under these
assumptions, we show how the singular behavior of vib-
rons disappears when the dispersion parameter is in-
creased. Furthermore, a formal equivalence is set up be-
tween the consequences on the energy-exchange mecha-
nism of, on the one hand, the spatial dispersion of the
vibron branches due to a harmonic coupling with the
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lattice and, on the other hand, the temporal dispersion
of the same branches resulting from anharmonic interac-
tions with thermal phonons.

A,p

II. LOWEST-ORDER DIAGRAMS

The main purpose of the temperature Green's-function
formalism is the determination of the phonon propaga-
tor. The summation of reducible diagrams leads to the
Dyson equation

FIG. 1. Lowest-order diagrams.
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(4) (3)

which, in this diagonal approximation, relates the har-
monic (Gq) and anharmonic (Gz) propagators of a pho-
non with wave vector k belonging to a branch j and in-
dexed by X; here co is the usual imaginary Matsubara
frequency. The anharmonicity is introduced through the
self-energy S~, the analytic continuation of which is re-
lated with the frequency shift A~ and frequency width

lim Sg(co+i E)= f3%[A,q(co) ——il q(co)] .
a~0+

Moreover, the self-energy may give rise to new poles in
the propagator G& besides the poles of G~', they are the
evidence of new excitations of the system referred to as
collective excitations. ' The power of the diagrammatic
expansion mainly consists in the statement of a set of
rules which allow the building of all the diagrams con-
tributing to S~ for a given order of magnitude and
which give the determination of these contributions.
Only the cubic and quartic anharmonicities given by

with

B,=b &+b (4)

where N is the number of cells and n~ is the phonon
thermal population in the mode A, ; and

will be considered. It is possible to define a dimension-
less parameter for ordering the Hamiltonian expansion
in such a way that the two terms above are respectively
of the first and second order of magnitude. Then the
contributions to the self-energy have only an even order
of magnitude. The lowest-order diagrams 1(a) and 1(b)
[Figs. 1(a) and 1(b), respectively]' give, respectively, the
second-order contributions A~" and S~'") to the self-

energy:

with

Diagram 1(a), which only contributes to the frequency
shift, means that the harmonic frequency of the mode A, o
is shifted, via a quartic anharmonicity, by 6&(nz+ —,')/X
when the crystal is strained by populating the mode k;
this implicitly assumes that the phonon population is in-
stantaneously set to its thermal value nz. Diagram 1(b),
built with cubic vertices, contributes both to the fre-
quency shift and width; the imaginary part of the self-
energy is mainly directed by two selection rules: one
about the wave vectors, which is expressed through the
interaction vertices, and the other about the frequencies,

which is contained in the 5 function. Thus this contri-
bution may be completely inhibited when a vibron Xo is
involved due to the combination of both the Hat disper-
sion and the isolation of the internal modes. Under
these circumstances it is natural to consider higher-order
diagrams.

III. FOURTH-ORDER DIAGRAMS

The whole set of diagrams, which contribute to the
fourth order (when no singularity occurs), may be drawn
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following some topological rules, but the following dia-
grams may be ruled out: disconnected and reducible di-

agrams, diagrams built with vertices higher than the
quartic rank, and diagrams which could lead to the same
selection rules as those relative to diagram 1(b). Only
the diagrams in Fig. 2 remain after such a screening.
Their contribution is given by

Xp

FIG. 2. Fourth-order diagrams.
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Now it is always possible to find processes giving rise to a nonzero imaginary part in the self-energy. At this step,
keeping in mind the actual nature of vibron branches, it is interesting to give special attention to the subset of dia-

grams in Fig. 3 which involve twice the vibron branch jo, these diagrams may indeed be considered as pure dephasing
contributions as defined in liquids and gases. " The populating of a mode (jo, ko) corresponds to the creation of a
coherent state made of oscillators jo located at R and vibrating with a spatial phase relation exp( i—ko R . ); then,
the diagrams in Fig. 3 describe the randomization of the phase relation over the whole Brillouin zone, which destroys
the coherence but preserves the vibrational energy within the vibron band jo. Relation (8), restricted to the diagrams
in Fig. 3, may be approximated by (m & 0)

(3)~j,k (~+iE)= g ~ +k, —k —q k, —k+q nj, k(nj, k —q+1)(~+is ~j,k +q ~j,k+~j, k —q)
24 (4)JpJ pJ ]J2 —1

J, ,J2,
.k,

(4)jp jpjj 15

kp kp q, k, —k+q 24+ j (10)

Furthermore, the vibron branch jo is supposed to be
dispersionless. Then the contribution to the width can
be written as

I,",'(~) =~5Ns f dc@' n (cu')[n (co')+1]PNS(~')

+sr g 5 n (nj+1)
J

&& f dao'pj(u')pj(a)j —co —co')

where the functions p are normalized densities of states.
The first term on the right-hand side is weakly depen-
dent on co (here, it has been written with co=coj ) and

represents the pure dephasing induced by lattice-mode
interaction. In contrast, the second term due to vibron-
vibron interactions varies rapidly around coj when pJ isJp

a sharp distribution and thus exhibits a quasisingular be-
havior. In the same way, the contribution AJ 'J to the

shift of jo, from the vibron branch j, given by

It is possible to go further by introducing some
simplifications. First, we separate nonsingular modes
(mainly lattice modes) which give a smooth contribution
to the phonon density of states from singular ones (main-

ly vibrons) which give a sharp contribution. Nonsingu-
lar phonons are assumed to be "Maxwellians" in
Wannier's sense, ' which means that the coupling pa-
rameters involving these phonons are replaced by a
mean value (A'5Ns/24N). In the same way an anharmon-
ic coefficient 6j is attached to each singular branch j

b,j j(co)=5jnj (nj+1) f dco'd. co"Pj(~')Pj(~")

X(co—~j +~ —co )p (12)

is also quasisingular and may reach the order of magni-
tude of the shift 5j(nj+ —,') due to diagram 1(a). This is

the indication that the diagrammatic expansion is no
longer convergent when the interacting bands become
Aat. In the nex. t section we give the correct derivation
for the interaction between two dispersionless vibron
bands and show that, in this case, the quartic anharmon-
icity leads to a process of dephasing by energy exchange.

jp, kp

j , k1'

0' o jp, kp

FICx. 3. Diagram contributing to the pure dephasing of the
vibron mode (jp, kp).

IV. DEPHASING BY ENERGY EXCHANGE

First, we will show that the lack of dispersion on both
the harmonic frequencies of the modes jo and j and on
the anharmonic coupling parameter means that the
anharmonic interaction is local and works within indivi-
dual molecules.

For a system restricted to the vibron bands jo and j
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interacting only through coupling parameters which
satisfy relation (10), the quartic anharmonic term of Eq.
(3) may be written as

Moreover, the lack of dispersion may be used to intro-
duce local operators Bj (Bj ) defined by

]yA2yA3yk4

1
Bj k

———g exp( —ik.R )B
&N

(14)

A5j ~B 8. 8 8Jp kp Jp —kp —q J, k J, —k+q
kp, k, q

(13)
which act only on the oscillator j (jo) located at the lat-
tice points R . The substitution of Eq. (14) in Eq. (13)
leads to

]yA2&k3yk4 kp, k, q
m], m~, m3, m4

Bj p, m ]Bj p, m 2Bj,m 3Bj,m 4

A6j
QBj Bj
m

&& exp[ —i[ko. (R —R )+k.(R —R )+q.(R —R )] I

(15)

In the last equality, we have used the following result:

g exp( —ik.R )=N5(R),
k

where the sum goes over all k values in the first Bril-
louin zone and where 5 must be taken as a dimensionless
Kronecker symbol.

The last term of expression (15) shows clearly that the
interaction between the two modes is local and couples
two oscillators jp and j vibrating in the same place.
Thus the whole Hamiltonian describing the two vibron
bands' interaction may be written as

T

splitting of the pole coj of the harmonic propagator in aJp

multiplet of poles [coj +(n, + —,')5, ] with a respective
strength exp( —PAnjcoj). We see that the localization
greatly modifies the consequences of the anharmonicity
and that the use of lowest-order diagrams gives only a
coarse description of the true solution; thus diagram 1(a)
gives a single pole [coj +(nj+ —,')5j] which is only the
barycenter of the actual pole multiplet. We will now de-
scribe an infinite set of diagrams which gives a more
realistic pattern, where the multiplet is replaced by two
poles at [co +5 l2+O(nj )] and [coj +35j l2+O(n~ )].
This discussion is valid under the condition

~„b,, mb, , m n. «1, (21)

2 2+~) b m&J m+ BJ mBJ. m

Kimball and Fong' have studied the particular case
"jp ——j'* and shown that this quartic interaction leads to
an actual localization of the vibrational excitations.

The localized states

which is not restrictive in molecular crystals, where
internal modes usually are weakly populated (Ph'coj »1)
up to the melting point. The generic term of the infinite
series of relevant diagrams (p =0, ao ) is given by dia-
gram 4 (Fig. 4) and the two first terms are diagrams 1(a)
(p =0) and 3 (p =1). Due to the lack of dispersion, the
summation of a single bubble over the whole Brillouin
zone leads to the advent of a two-vibron harmonic prop-
agator

can be used as a basis set and are associated with the en-
ergy levels

E(n, , nj)lk=coj (n + —,')+co (n + —,')

+5, (n, + —,')(n, + —,'),
where

1 p 0 0
jo,ko+q (~m ~n )Gj,k —q(~n ) Gjo, j;ko+k (~m )

q, n

j k

(22)

nJ = nJ. (20a)
jo,ko

j,k q

bubbl

j,k+ e

j,k

+j nj, m (20b)

These levels are no longer equidistant, which leads to the

FIG. 4. Relevant diagram for the dephasing of the mode
(jp, kp) by an energy-exchange process between the vibron
bands jp and j.
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with

(=)(ko 4)
GJ, Jg, +g (co )=Gj j(co )= g & 5ocoj, + cd corn

where

(23) FIG. 5. Bethe-Salpeter equation for the two-vibron propaga-
tor.

6(go, g)=gog[1+n(gocoj )+n(/co, )] . -

The number of pairing schemes, to which diagrams 4
correspond, is ( 24j'/2j' '

) beyond the fourth order
(p & 1) and must be multiplied by 2~ ' when these dia-
grams are restricted to the vibron lines jo and j. Then,
this infinite series is a simple geometrical series, the sum-
mation of which is

S,' '(co&)= —PA5, g Gj~(co~ —co )

x ,'+[I+—/3—f5,G,', , (~ )]-'

The term [I+PR5jGJ, j(co )] ' gives rise to two poles

co+=co, +co, +6,(1+n, +nj), (26a)

co =coj —coj+5j(nj nj—) (26b)

which can be considered as true bound states. This can
be clearly seen if the bubble summation shown in Fig. 5
is considered as a Bethe-Salpeter equation for the two-
vibron propagator'

Ph'5j
(25)

G, j(co ) =G, j(co )[1+/3A'5j G, j(co )]

Then Eq. (25) can be written as

(27)

S,' '(co))=Pfi6, g G, (co) —corn )[ —,'+PA5j—[G...(corn ) —,'G, j(c—imam )]] . (28)

This expresses the interaction between the modes j and the bound states and leads to the poles

co,' = coj + ( 1 +n, + n j )6j,
co," =coj +(nj —n, )6,

in the self-energy (co & 0):
1

SjI '(co+iE)=5J(nj+ —,') 6jnj(nj. +—1)[(co+i' cd )
'—+(co+iE coj') ' ——(co+iE coj )

'—] .

(29a)

(29b)

(30)

6J
G, (co+iE)= coj + +O(nj) (co+ie)—

36J
+n, 6, coj + +O. (nj ) —(co+i e)Jp

+O(n J), (31)

which, as expected, gives two poles located, respectively,

In an O(n, ) expansion, the two last terms in Eq. (30)
cancel out and the self-energy exhibits a single pole coJ .Jp

However, the above derivation is not entirely correct
and, to be self-consistent, the frequencies mJ and mJJp
have to be renormalized up to, respectively, (coj +51 /2)
and (co, +5, /2) to account for zero-point fluctuations;
this is done when the skeleton diagrams 4 are dressed by
insertion of diagram 1(a). Then, the following expression
for the propagator GJ is obtained,Jp

near (co +5j /2) and (coj +36j/2).
This diagrammatic derivation might seem rather

heavy but in fact, it can be easily used to take into ac-
count the coupling between the two-vibron band systems
and the other vibrational excitations acting as a thermal
bath. The previous pattern, made of infinitely narrow
poles, will be greatly modified by the influence of the
thermal bath. It is possible to handle this problem by
the stochastic approach of Kubo' and Anderson the
coupling with a thermal bath entails fluctuations in the
populating of the vibrational mode j within molecules,
which, through relation (19), randomly modulates the
frequency cd- and thus broadens it. This ad hoc theoryJp
has been used by Harris et al. to obtain the spectral
line shape of the mode jo.

In the diagrammatic derivation, the interaction with a
thermal bath may be taken into account by a partial re-
normalization of vibron lines jo and j, which can be ob-
tained by the insertion of self-energy diagrams, including
thermal phonons, in diagram 4. Thus the previous
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A, (co')
G, (co ) =

277 co com

(32)

derivation must be done with the harmonic propagators
6 replaced by partially renormalized propagators G.
To this end, it is convenient to introduce the vibron
spectral function A, which is related to the propagator
through the following relation:

which gives
I ff

G, , (co ) = J A, (co') A~(co")m 4~

1+n (co')+ n (co" )
X I fl

Q7 +CO —CO~

Now, after integration, analytic continuation leads to

(35)

or conversely,

AJ. (co)= i l—im [Gi(co+iE) G—J(co i—e)] .
v ~0+

(33)

=1 e(g„g)
lim Gi J(co+i E)=

~-o+ ~'J pfi
~ ~ gocoj +/co~ co—+i(y, +yj)

In the following, it will be assumed that the interaction
with the thermal bath leads to a Lorentzian broadening;
then the expression

(36)

Then, using Eq. (33), the "partial" spectral function
AJ J may be obtained,

4co) y, sgn(co )
AJ(co) =

P& (co —co, ) +(2coiy, )
(34)

[A~ (co)] may be used and it is assumed that the shift

due to the thermal bath is included in co~ and (coJ ). If
we substitute Eq. (32) into Eq. (22), it is possible to par-
tially renormalize the two-vibron propagator GJ

=2 e(go, g)(y, , +y, )

~(co) =
&~i) +(yj +yj)

which gives the true two-vibron spectral function

(37)

= 2 e(go, g)(y, „+y, )

AJ, , (co)=
p&, , [~—g,~, —g~, —e(g„g)5, ]'+(y, +y, )' (38)

The process above may be started again to obtain the true spectral function AJ . First we substitute Eqs. (37) and (38)Jo
in Eq. (28), which leads to

I fl

S~ '(coi)= Pfi5J(n~+ —,')+(P—ifi5J) J 2
Ai(co')[A, ~(co")—,'AJ, (co"—)]g(co' —coi+co ) '(co" —co )

m

(39)

The summation upon m is classically made by contour integration; then, after integration of the spectral functions,
the analytic continuation of the contribution S~(

' is given by (co & 0)

lim — S~( '(co+i E) =5~(n&+ —,
' )+5&n&(n&+ 1)[[co—co~ —5~8(1, 1)+iy ]

1

+ [co—co~ —5)e( 1, —1 )+i y ]
' —(co co, +i y )— (40)

where

(41)

The whole self-energy term

SJ (co+iE)=+iyj + S~' '(co+iE) (42)

can be used in Eq. (1) to obtain the true propagator G, , and finally the spectral function A, (co), which can be writtenJot Jp
as (co &0)

2 r, D+r6 n

AJ, (co)=
p& y& D+2y, y5, n, +[(co co, )(co co, —5, ) —5jn&]—+y (co co, )— — (43)
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where

BJ ——cuJ + ( JTJ + —,
'

)6J (44)

d~ sgn(co)pJ(co)—Q GJq(~ ) =X q
' fi co —co~

(50)

and

D =(co—coJ, —5J ) +y (45)

The spectral function is of prime interest because it can
be related to the spectral lines. The line shape defined
by Eq. (43) exhibits two peaks, the intensities of which
have a ratio nJ, and which merge under the condition

5J (2&2y (46)

VJpY J
COe =CO + +Jp 2 g2+ 2 J (g2+ 2)2

J J

2( y2~ +y2 —~2 )

I =yJ + nJ+ n, . (47b)Jp g2+ 2 J
(

2 +y2 g2)2+4y2g2

The above expression for I, is made of three terms.
(i) yJ results only from nonsingular interactions.Jp

(ii) The second term gives the energy-exchange de-
phasing contribution. This point is clearly viewed if y,Jp
is set to zero in Eqs. (47); then

in the low-temperature limit. Usually, only the greatest
peak can be observed; for this line it is possible to define
an e6'ective position co, and half-width at half maximum
I, given by

AJ(co) = sgn(co)pJ (co) . (51)

However, this correspondence is no longer valid in the
case of double summations over the Brillouin zone, due
to the wave-vector selection rule associated with each
vertex. This more complex situation is tractable if expli-
cit dispersion curves are used, but in order to draw the
whole benefit from the previous section, the mode jo will
still be considered dispersionless; then the formal
equivalence (51) is recovered for the whole derivation.

As a first step, the coupling with a thermal bath will
again be neglected so that the results obtained previously
can be used if we substitute pJ. for A, and 5(cokco ) for

Jp

AJ . Furthermore, to actually handle the consequencesJp'
of the spatial dispersion, an explicit density of states will
be used; following Kimball and Fong, ' we choose a
"semicircular" distribution given by

Q7 —COJ

J
(52)

In this simple case (a single summation on the wave vec-
tors) it is possible to set a formal relation between the
density of states pJ(co) resulting from the spatial disper-
sion and the spectral function AJ which has been used to
introduce a thermal bath,

and

r=e
where

5J 6J. + +
1+6J~J

2
5J 7 J

1

2y,

(48a)

(48b)

(49)

where AJ is the half-bandwidth; now the dimensionless
parameter

(53)

may be varied to observe the growing of the singular be-
havior of vibrons when we go from very dispersed modes
(pJ ~0) towards dispersionless ones (p, ~ oo ); in the fol-
lowing, it will be assumed that pJ is positive.

The two-vibron density of states may be drawn from
Eq. (38) and is given by

is the lifetime of the mode j. These results can be direct-
ly connected with those obtained in previous papers
on this problem.

(iii) The last term in Eqs. (47a) and (47b) comes from a
mixing between the two contributions (i) and (ii).

Thus we have shown that pure dephasing processes by
energy exchange may be studied within the scheme of
the standard diagrammatic expansion and are responsi-
ble for the singular behavior of dispersionless modes.
The above derivation is valid only in the low-
temperature limit and with completely flat vibron bands
jo and j. In the last section we introduce a dispersion
upon the mode j but still conserve dispersionless anhar-
monic coefficients.

V. SPATIAL DISPERSION EFFECTS

The dispersion of a branch j occurs mainly through
summations over the Brillouin zone. Thus

1
p...( )=

J

2 1/2
CO —CO —COJp J

(coa —crt)
—1

+2)(2PJ —1) 1— 1
5(co —cos ), (54)

where

COg =CONJ +COJ +
1+4p2J

4
(55)

The step function 2)(2pJ —1) means that a bound state
co& appears for

(56)

which is the condition observed by Kimball and Fong, '

who have considered the two-vibron density of states

pJ J .0. This is one piece of evidence for the breakdown
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of the weakly anharmonic picture. Other evidence may
be found through the one-vibron propagator; the self-
energy is obtained from Eqs. (39) and (51), which give

1 S' '(rti+iE)

0.08

p, (~')p, ,, (~")

=5J(n, + —,')+5, n, f dro'dna"
Q)+ I 8 —Q7 —CO

(57)

At this step, numerical computations must be done in
order to express explicitly the term above, and then to
get the spectral function. Again A~ consists of twoJo
lines, in the ratio n~, which merge below a critical value
of PJ. For the highest peak, it is possible to define the
effective position co, and half-width I, . The variations
(in units of 5~) of

5j
=CO —CO .

e e jo (58)

and I, in terms of PJ are reported in Figs. 6 and 7 for
n~=0. 1. We see that, about I „condition (56) gives a
frontier beyond which a diagrammatic expansion up to
the fourth order dramatically fails; such an expansion
gives only the asymptotic behavior (P~ ~0) and, in this
limit, the contribution of I, to the linewidth may be ex-
pressed as

lim I,=rr5jnj f deep, (co)
P.~Q

(59)

8 5 (b, /2)

+(6 /2)
(60)

asymptotically (P, ~O and P~ oo) fits I, ; with a re-

c
0. 10

and may be incorporated with the first term of Eq. (11).
Another conclusion may be drawn from this computa-
tion: the function

& 0.04

0.02

0.5 1.5

pi
—6i/Ai

2.5

FIG. 7. Vibron effective width, as a function of 6, /6, , due
to an energy exchange with a semicircular vibron band. The
diagrammatic expansion up to the fourth order (dashed line)
drainatically fails beyond P~ = —' and fits the full expansion
(solid line) only in the large dispersion region. The dot-dashed
line which gives the asymptotic behaviors p, ~0 and p, ~ oo is
homothetic with the curve which would be obtained with a
rescaled Lorentzian bandwidth.

Thus we conclude that temporal and spatial dispersions
of the interacting mode j are hardly distinguishable with
respect to their contributions to the shift 6, and the
width I, of the mode jo under consideration.

scaling of the bandwidth (b J /2~y~ ), it is very close to
the expression (48b) obtained with a Lorentzian distribu-
tion. This observation has led us to consider a Lorentzi-
an function to describe both the spatial (b,, ) and the
temporal (y~ ) dispersion eff'ects. It must be noted that a
Lorentzian vibron band is unrealistic because it entails
singularities in the dispersion curves; moreover, the ab-
sence of frequency cuts prohibits the appearance of
bound states. Nonetheless the nice analytical properties
of Lorentzian functions may be used to give a qualitative
prediction of the line shape. Indeed, relations (47) still
hold in this general case, providing the dispersion band-
width is included in the coefficient y:

(61)

o. oy
VI. SUMMARY

0.04
~~8

I

p 0.02
l)

0.5 2 5

FIG. 6. Vibron effective shift 5, =co, —co, —5, /2 as a func-Jp

tion of p, . The value n, 5, obtained for p, =0 is given by the
lowest-order diagram. A fourth-order expansion (dashed line)
deviates rapidly from the full expansion (solid line) ~

In this paper we have shown that it is possible to give
a unified description, based on first principles, of
vibrational-mode interactions in molecular crystals. The
weakly perturbative picture given by the lowest-order di-
agrams works well in the regions of the vibrational spec-
trum where the density of states varies smoothly. For
very isolated modes in molecular crystals (and more gen-
erally, for the highest optical modes in nonmolecular
crystals) the selection rules associated with the lowest-
order diagrams may be inhibited and the next step of the
expansion (fourth order) becomes necessary. This step
puts forward the concept of pure dephasing against



4714 B. PERRIN 36

depopulation processes and holds as long as the ratio of
the anharmonicity upon the dispersion is small. For too
weakly dispersed interacting modes, singularities occur
in the expansion, and the partial summation of an
infinite subset of diagrams is required. This summation
leads to a broadening mechanism by energy exchange.
We have made the connection with previous approaches
to this problem; furthermore, we have set up a formal
equivalence between the consequences on the energy-

exchange process of, respectively, temporal and spatial
dispersions upon the interacting mode j, and shown that
their distinction is problematic.
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