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Ab initio calculation of the lattice specific heat of lithium
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We have made a first-principles calculation of the lattice specific heat of lithium. We calculated
the interionic potential using a first-principles pseudopotential which was constructed from the in-

duced electron density around a lithium ion in an electron gas. This induced electron density was

calculated fully self-consistently with the use of density-functional formalism. From the interionic
potential we obtained the phonon dispersion curve using the harmonic and the self-consistent har-
monic approximations. Then we obtained the phonon frequency distribution and the lattice
specific heat. The results of the calculation are in good agreement with the experimental results.

I. INTRODUCTION

One of the main contributions to the specific heat of
metals comes from the ion lattice. The first step in our
calculation is to obtain the interionic potential. In previ-
ous work' we had performed a first-principles calcula-
tion of the interionic potential of lithium without using
pseudopotentials, following a method based on the
density-functional formalism ' with no adjustable pa-
rameters. This had been applied previously with success
to metallic hydrogen. "' The phonons generated from
that interionic potential were not completely satisfacto-
ry' and were not used to calculate the lattice specific
heat or any other property of lithium.

For simple metals the interionic potential can be con-
structed from first principles using pseudopotential
theory. ' We construct a first-principles local pseudopo-
tential following the method proposed by Manninen
et al. , who followed the work of Rasolt and Taylor,
with some differences.

In the approach of Rasolt and Taylor, the displaced
electronic density around an ion in an electron gas is cal-
culated with the use of nonlinear screening theory and
the full electron-ion potential. Then a nonlocal pseudo-
potential is selected in order to reproduce, as closely as
possible, the nonlinear displaced electronic density by
linear-response theory, except in the vicinity of the ion.
In this way the nonlinear effects are partly included in
the pseudopotential. The interionic potentials calculated
using these pseudopotentials have been used with success
to calculate phonon dispersion curves in simple met-
als."

In the method of Manninen et al. , a Fourier trans-
form of the displaced electronic density around an im-
purity in an electron gas is taken. Then a local pseudo-
potential is defined in such a way that it reproduces ex-
actly, in linear-response theory, this displaced electronic
density. They considered the screening of the ion as cal-
culated for two models: one where the ion is embedded
in a homogeneous electron gas and one where the ion is
embedded in a jellium vacancy. They found this second
model to describe much better the cohesion in the metal.

From the calculated pseudopotentials they obtained the
interionic potential. Then, they calculated the total en-
ergy of the metal, the equilibrium lattice constant, the
bulk modulus, the vacancy-formation energy, and the
electrical resistivity of the liquid phase. The metal they
considered was aluminum. In a more recent work, Jena,
Sterling, and Manninen' made a calculation of the pho-
non dispersion curve of aluminum using the interionic
potential for this material reported by Manninen et al.
for the model of the nucleus embedded in a jellium va-
cancy. They did not calculate the phonon spectrum nor
the specific heat.

In this work we applied the method of Manninen
et al. to lithium in order to obtain a first-principles lo-
cal pseudopotential. From the pseudopotential we cal-
culated the interionic potential. Then, using the har-
monic and the self-consistent harmonic approxima-
tions" ' we obtained the phonon dispersion curve and
the phonon spectrum for lithium and from this, the
specific heat.

In Sec. II we present the equations of the density-
functional formalism we solved for the two models of the
impurities in the electron gas: the nucleus embedded in
a homogeneous electron gas and the nucleus embedded
in a jellium vacancy. ' '

In Sec. III we outline the method of Manninen et aI.
for smoothing the displaced electron densities to con-
struct the pseudopotential and give the dielectric func-
tion we use. Section IV is used to present the set of
equations to be solved in the self-consistent harmonic ap-
proximation" ' in order to obtain the phonon disper-
sion curve. In this section we also outline the method of
constructing the phonon spectrum to obtain the specific
heat. Results and discussion are given in Sec. V.

II. DISPLACED ELECTRON DENSITIES

To calculate the displaced electron densities we use
the formalism of Hohenberg, Kohn, and Sham. ' The
central result of this formalism states that there exists a
one-body local potential V,ft(r), which through a one-
body Schrodinger equation
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generates the set of wave functions P;(r) and the exact
ground-state density of the system.

The effective potential is

5F„[n(r)]
V,s(r) = —+(r)+

5n(r)
(2)

where N( r ) is the total electrostatic potential and
E„,[n (r)] is the exchange-correlation energy of the sys-
tem.

For the exchange-correlation contribution to the
effective potential Eq. (2), we use the expression given by
Gunnarson and Lundquist' in atomic units (two ryd-
bergs):

5E„,[n (r)]
V„,(r) —=

5n r

this way the pseudodensity must not contain wiggles
near the ion. The wiggles near the ion would appear be-
cause of the orthogonalization of conduction states to
core orbitals.

For a given unscreened pseudopotential form factor
v (q), which is assumed to be weak, the interionic poten-
tial, in second-order perturbation theory and linear-
response theory is'

Z 2
y

dq sin(qr)E(q)[5n (q)]N(r = 1+
r vrZ~ o q [1—e(q)]

(9)

where r is the separation between the two ions and Z is
the charge of the metal ion.

The induced density around an ion, when we consider
the nucleus embedded in a homogeneous electron gas, is
defined as

= —0.6109 —+0.0545 ln 1+1 11.4
(3) 5n(r)=n (r) —2g

l
Pb{r) I no, —

h

(10)

where 4 mr, = 1/n.
In order to have V,s.( r ) vanish at large r, the

exchange-correlation part is rescaled to

V„,(r)~V„,[n(r)] —V„[no] .

The electrostatic potential obeys Poisson's equation

4~D (r), —

(4)

where D (r) is the total charge density.
If we consider that the nucleus is embedded in a

homogeneous electron gas

D (r) =Z5(r)+no —n (r) =Z5(r) = b, n (r), (6)

where 5(r) is the Dirac 5 function. If the nucleus is lo-
cated at the center of a vacancy in jellium

D (r) =Z5(r)+noB(r Rws) —"{r)— (7)

where B(x) is the step function, and Rws is the Wigner-
Seitz radius.

III. THE PSEUDOPOTENTIAL

The unscreened pseudopotential form factor v (q) is
related to the Fourier transform of the induced charge
pseudodensity n (q) by

4vr5n (q)e(q)vq=
q [1—e(q)]

where e(q) is the dielectric response function.
We calculate 5n (q) using the induced density 5n(r)

computed by the density-functional formalism, ' with
smoothing in a region near the origin. Then, Eq. (8) is
used to obtain an effective local pseudopotential, which
in linear-response theory will give the exact induced den-
sity outside the region of smoothing. In this way some
of the nonlinear screening effects are included into the
pair potential calculated from the pseudopotential. ' It
should be remarked that in the pseudopotential formula-
tion, the pseudodensity must not have core orbitals. In

where n (r) is calculated with the total charge density
given by Eq. (7) and n„(r) is the electron density around
a jellium vacancy and corresponds to an external posi-
tive background charge density

D+(r)=noB(r —Rws) .

For both expressions for the induced electron density,
charge neutrality requires that

6n r dU=Z,

where Z is the valence of the ion in the metal.
The induced density calculated from the density-

functional formalism contains wiggles at small r as a re-
sult of the orthogonalization of conduction states to core
orbitals. We have smoothed our calculated induced den-
sity, following the method of Manninen et al. , without
introducing any adjustable parameter in the smoothing
procedure. This is achieved by using a second-order po-
lynomial given by

5n(r)=A Br, r &Ro— (12)

for sma11 values of r. The constants A, B, and Ro are
calculated with the conditions that 5n (r) and
(Blur)[5n(r)] are continuous at r =Ro and that the
electronic charge is conserved. The smoothed density is
the one we used as the pseudodensity in Eq. (9) to calcu-
late the interionic potential.

The dielectric function we used satisfies, by construc-
tion, the compressibility theorem which is important in
connection with the interionic potential. '' The dielec-

where n (r) is the total electron density calculated with
the total charge density given by Eq. (6) and gb(r) refers
to the bound electron wave function.

For the case of the nucleus embedded in a jellium va-
cancy, the induced density is calculated by taking the
difference

5n(r)=n(r) n, (r) —2g—
l
gb(r)

l

b
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tric function is given by

E(q) =1+, G(q),4~

where

(13)

TABLE I. Phase shifts g~, Friedel sum (FS), and binding en-

ergy (BE) for lithium r, =3.236ap with ap ——0.529 A. We have
three cases: nucleus in a homogeneous electron gas (NHG);
nucleus embedded in a jellium vacancy (NJV); vacancy in jelli-
um (VJ).

Go(q)
G(q)=

1 —(4n/KrF )GD(q)(1 L)—

BE'F

Br,
(14)

where Go(q) is the usual Lindhard polarizability, Kr„ is
the Thomas-Fermi screening constant, and

NHG

r]p 3.2171
0.4877
0.0112
—0.0008

g4 0.0007
FS 3.0131
BE (Ry) —3.1582

NJV

2.8472
0.1391

—0.0162
—0.0045

0.0001
2.0074

—3.0474

VJ

—0.6726
—0.2226
—0.0417
—0.0036

0.0000
—1.0022

In Eq. (14) p is the chemical potential, eF is the Fermi
energy, and

p(» )=&F(» )+p„,(~ ),
where p„,(r, ) is the exchange-correlation contribution to
the chemical potential.

Using the expression of Gunnarson and Lundquist'
for exchange correlation (which we used in the calcula-
tion of the induced density), the corresponding value of
L is

where M is the ion mass, p& is the vector describing the
displacement of atom l from its equilibrium position R~,
and 4 p(RI+p&) is the tensor derivative of the intera-
tomic potential evaluated at R&+pI. Finally

1
(~i)~p= +[1—cos(k R, )]e„* (k)gp~(k)

1

9n

1/3 0.6213r,
r, 1+

r, +11.4 (15)

X coth[ —,'PA'cog(k)]/coq(k), (19)

IV. PHONONS AND SPECIFIC HEAT

Having the induced pseudodensity and the dielectric
function, we can use Eq. (9) to calculate the interionic
potential.

From the interionic potential we calculate the phonon
dispersion curves from the self-consistent harmonic ap-
proximation. " ' In this approximation, in contrast
with that of Born and Von Karman, ' ' there is not an
initial hypothesis of smallness for the amplitude of atom-
ic vibrations and hence no truncated Taylor-series ex-
pansion of the interatomic potential energy.

The resulting set of self-consistent equations to solve
in order to obtain the phonon dispersion curve is the fol-
lowing:

cog(k)eg(k) =g D p(k)@PE(k),
P

(16)

with

where e~(k) is the component of the polarization vector
e~(k) and the dynamical matrix is

D p(k) = +[1—cos(k. R~ )](&0 p(RI ) ),1

where N is the number of ions. The sum is over the first
Brillouin zone, f3 is I/k~ T, kz being Boltzmann's con-
stant.

To solve the set of self-consistent equations (16)—(19)
we start with the frequencies generated by the harmonic
approximation as the first trial. Then the convergence
procedure is followed.

To calculate the phonon frequency distribution F(v),
from the force constants obtained in the phonon disper-
sion curve we followed the method of Gilat and Rau-
benheimer. ' This method consists of solving the secular
equation associated with the dynamical matrix only at a
relatively small number of points in the irreducible part
of the first Brillouin zone. Then, by means of linear ex-
trapolation the other phonon eigenfrequencies are ex-
tracted from within small cubes, each centered at one
point. These cubes are arranged to fill the entire irre-
ducible part of the first Brillouin zone and thus yield the
complete frequency distribution of the crystal.

Having the phonon spectrum F(v), the specific heat at
constant volume is calculated by the integral (numerical-
ly solved)

( C p(RI ) & = 1

(8m. detA, I
)'

X d @exp ——,
'

p& X

2
F(v)

sinh(13h v/2)
(20)

X@ p(R(+pl), (18)
where (E ) is the average of the internal energy, T is the
temperature, and v is the maximum phonon frequency.



36 AB INITIO CALCULATION OF THE LATTICE SPECIFIC. . . 4703

V. RESULTS AND DISCUSSION

The first step was to calculate the induced electron
density for lithium. We did this using two models: a
nucleus in a homogeneous electron gas and a nucleus in
a jellium vacancy. Notice that in order to obtain 5n (r)
from Eq. (11) we need to calculate the electron density
around a jellium vacancy and around a nucleus in a jelli-
um vacancy. We calculated the electron densities fully
self-consistently. The Schrodinger equation was solved
in steps of 0.01a0, where a o is the Bohr radius
(ao=0. 529 A), up to R,„=15.04ao, where the phase
shifts were evaluated. Table I shows the values for the
phase shifts g~ and the Friedel sum rule (FSR) for the
calculation of the electron density for the three cases we
have considered. We can see that the 1S bound state
has an energy closer to zero for the case of a nucleus in
a jellium vacancy because of the repulsive potential in-
troduced by the vacancy.

The following step was to evaluate the Fourier trans-
form of the smoothed densities. Since this implies know-
ing 5n (r) up to infinity, we used the asymptotic form for
5n (r) beyond R,„=15.04ao, given by

5n (r) = A cos(2kFr +P)/r
where the constants A and P were obtained using the
last points in our calculation of 5n(r). In order to test
the accuracy of our Fourier transform we obtained 5n (r)
by taking the inverse Fourier transform of 5n (q) and the
difference with respect to the original values of n (r) was
less than 0.08%.

~ith 5n (q) and the dielectric function corresponding
to the expression for exchange correlation energy given
by Gunnarson and Lundquist, ' we can obtain the in-
terionic potential using Eq. (9). Figure 1 shows the re-

qqq qqO
10—

suiting interionic potentials from the two models. We
can notice from this figure that the potential resulting
from the model of the nucleus embedded in a jellium va-
cancy has a minimum which is less deep than the corre-
sponding to the other model and has oscillations of
smaller amplitude.

From the interionic potentials we calculated the pho-
non dispersion curves using the self-consistent harmonic
approximation. " ' Figure 2 shows the phonon disper-
sion curve obtained from the interionic potential calcu-
lated for the model of the nucleus embedded in a homo-
geneous electron gas. Figure 2 also shows a comparison
with experiment. The theoretical predictions using this
model are not good. The overall shape is not satisfacto-
ry and the magnitude of the maximum frequencies for
the [qqq] and [qq0] branches are not satisfactory either.

The phonon dispersion curve obtained from the in-
terionic potential resulting from the model of the nu-
cleus embedded in a jellium vacancy is in good agree-
ment with experimental results as it is shown in Fig. 3.
The curves have the same overall shape as the corre-
sponding experimental results and the values of the max-
imum frequencies are satisfactory, and the differences be-
tween the frequencies generated using the harmonic ap-
proxirnation and those generated using the self-
consistent harmonic approximation are very small (about
1%). The force constants obtained for this case were
used to calculate the phonon spectrum F (v).

2- ~
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~~.'0

C3

O

C3

~ 2

10
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FICx. 1. Calculated interionic potential for lithium. Model
of a nucleus embedded in a homogeneous electron gas,
model of a nucleus embedded in a jellium vacancy, -

FIG. 2. Phonon dispersion curve for the interionic potential
calculated with the model of the nucleus embedded in a homo-
geneous electron gas, ; experimental results (Ref. 22) X, 0,
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