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Surface segregation and relaxation calculated by the embedded-atom method:
Application to face-related segregation on platinum-nickel alloys
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The embedded-atom method (EAM) [M.S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285
(1983); Phys. Rev. B 29, 6443 (1984)] is applied to surface segregation and surface relaxation of
binary alloys. This method needs no ad hoc size-mismatch strain energy and can handle arbitrary
interlayer distances at the surface. Three low-index faces of platinum-nickel alloys are studied.
Previously, low-energy electron diffraction investigations have established a face-related segrega-
tion on platinum-nickel alloys, with platinum enrichment on the (111) surface and nickel enrich-
ment on the (110) surface. This work shows that EAM is capable of reproducing the experimen-
tally determined segregation and relaxation with a good accuracy. In addition, EAM predicts the
existence of a metastable concentration profile on the Pto &Nio 5(110) surface.

I. ImRuDUCTIOX

In the present paper the embedded-atom method'
(EAM) is used to describe the energetics of atoms in sub-
stitutionally disordered binary alloys, where both multi-
layer segregation and multilayer relaxation are found to
occur at the surface. The energy expression in the EAM
is a function of atomic distances. This makes it possible
to find both the composition and the geometry near the
surface. A statistical approach is used to simulate the
equilibrium state of the alloys.

In this work the EAM is applied to platinum-nickel
alloys which show a face-related segregation ' with pla-
tinum enrichment on the (111)surface and nickel enrich-
ment on the (110) surface. The (110) surface is particu-
larly interesting because of the large contraction of the
spacing between the first and second layers. It is well
known that platinum-nickel alloys are exceptions from
simple segregation criteria, which are successfully ap-
plied to a large number of other alloys. The EAM gives
a quantitatively correct description of the (111) surface
of platinum-nickel alloys with respect to both concentra-
tion profile and surface relaxation. For the (110) surface
the EAM indicates the existence of two equilibrium
states of segregation. One state is in good agreement
with experiment, and the other can be interpreted as a
metastable state which may be obtained by a special
treatment of the crystal. It is concluded that a good
description of the surface relaxation is crucial for the
calculation of segregation.

The EAM is a semiempirical model, proposed by Daw
and Baskes, ' for the energy in a pure metal or in an al-
loy. This model is used in a number of different applica-
tions, ' ' ' where various bulk and surface properties
are studied. In a previous work Foiles' used Monte
Carlo simulations with energies from the EAM to pre-
dict both concentrations and atomic positions for
copper-nickel alloys. Surface energies and surface relax-
ations for pure metals are obtained, and the surface

reconstructions on Pt(110) (Ref. 11) and Au(100) (Ref.
14) are predicted. These results make the EAM a
promising model for energies at surfaces of pure metals
and alloys.

Surface segregation is of great technological impor-
tance. The properties of alloy surfaces may be complete-
ly different from the bulk properties with respect to cata-
lytic behavior and resistance to chemical attack. A
great number of works, both experimental and theoreti-
cal, deal with these phenomena.

Williams and Nason' use a simple bond-breaking
model, where the segregation profiles are calculated from
the heats of vaporization for the pure metals and the
bulk activity coe%cient for the alloy. They also propose
a surface enthalpy relaxation, but give no recipe for the
size of the relaxation. King and Donnelly' use an im-
proved bond-breaking theory, where the pair potentials
depend on the number of nearest neighbors. These pair
potentials are obtained from the heats of vaporization,
the energies of vacancy formation, and the surface ener-
gies for the pure metals. King and Donnelly use these
pair energies in Monte Carlo simulations.

When the two kinds of atoms in the alloy have
different radii, there is a strain in the lattice. This strain
can be calculated by means of elastic continuum
theory. ' There are some drawbacks of this approach.
The macroscopic elastic continuum theory may not be
valid on an atomic scale and the interaction between the
bond-breaking energies and the strain energies is not
known. The EAM does not have these drawbacks, be-
cause the strain energies are implicit in the energy for-
malism.

Other approaches to surface segregation are based on
tight-binding methods. Treglia and Legrand' apply the
common bond-breaking model with a size-mismatch en-
ergy from a simplified tight-binding approach, ' where
the strain energy in the dilute limits follows from the
cohesive energy and the bulk modulus. This method is
similar to the EAM, where the elastic parameters and
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the sublimation energy are used to determine an energy
function. A different tight-binding method is proposed
by Mukherjee et al. , who calculate the energy for a
slab of layers from the local density of states. This is
evaluated from the mixed Bethe-lattice model, which
gives the density of states for an atom embedded in an
effective medium.

This paper is organized as follows. Section II de-
scribes the EAM and the statistical theory for bulk and
surface properties. Section III presents calculations of
segregation and relaxation profiles for five platinum-
nickel alloys. The application of EAM to surface segre-
gation is discussed in Sec. IV, and in Sec. V the con-
clusions drawn from this work are presented.

II. THEORY

A. Embedded-atom method

In EAM, the total electron energy is written as a su-
perposition of contributions from individual atoms. The
energy contribution from a single atom is in principle a
functional of the electron density arising from the other
atoms. ' In EAM the electron density is approximated
by a uniform electron density calculated from superposi-
tions of atomic electron densities. A uniform electron
density is a crude approximation, but can be improved
by adding the core-core interaction. The total energy is
then written

E„,=+F[pg(r;), Z;]+ —,
' g P(R,J,Z;,ZJ),

c(R,z)=c,(z)[1+p(z)R"' '] -'z" (3)

Co is taken to be the number of outer electrons and a, p,
and v are fitted to experimental data. In connection
with alloys, the embedding function F[pz(r;), Z;] must
be available for electron densities different from the pure
metal densities. The effect of variations of the electron
density can be obtained from the sublimation energy
versus the lattice parameter. First-principles calcula-
tions and compressibility experiments of metals show
that the sublimation energy versus the lattice parameter
a, E(a), can be approximated by

where i and j are subscripts enumerating all the atoms of
the solid. The ith atom is supposed to sit at position r;
and to have the atomic number Z;. pi, (r;) is the elec-
tron density of the host of atoms surrounding the ith
atom, and the function F[pz(r;),Z;] gives the energy to
embed the ith atom in the host. P(R;J,Z;, Z~) is the
repulsive core-core interaction between two atoms with
atomic numbers Z; and ZJ and separation
R;~ =

~
r; —rj ~. The EAM is discussed by Manninen,

who concludes that expression (1) can be derived formal-
ly as an approximation of the density-functional theory.

The next step is to find the functions F and P in Eq.
(1). The core-core terms P(R, Z;, Z& ) are written as
screened Coulombic potentials,

C(R,Z;)C(R, ZJ )
P(R, Z;,Z, ) =

E(a ) =E;qb (1+a * )exp( —a ' ),

ao

980
E—;qb

Here E,qb is the sublimation energy at the equilibrium
lattice parameter ao, B is the bulk modulus, and A is the
equilibrium volume per atom. In the present work, as in
Refs. 1 and 2, the superposition of atomic orbitals from
the tables of atomic data in Refs. 24 and 25 is used.

The tables of atomic data have to be used with care.
The number of outer s and d electrons is different when
the atoms compose a solid and when they are free. We
can take this difference into account by introducing
another parameter n„giving the number of outer s elec-
trons of an atom in the alloy. If the total number of
outer electrons is N„the electron density at radius R
from an ion core of atomic number Z; is given by

p, (R,Z;)=n, p', (R,Z;)+(N, n, )p—", (R, Z; ), (6)

where the electron densities p', and p," refer to the outer
s and d orbitals of a free atom. The electron density of
the host of atoms surrounding position i then follows
from the sum

pi, (r;)= g p, (R;., Z ) .
J

(j&I )

(7)

The four parameters a, p, v, and n, in expressions
(1)—(7) determine the embedding function F [pi, (r; ),Z;].
We utilize the parameters published by Foiles et ah.
These workers fitted a, p, v, and n, for copper, silver,
gold, nickel, palladium, and platinum to the elastic prop-
erties, lattice constants, vacancy formation, and sublima-
tion energies for the pure metals, and at the same time,
to the heat of solution for the binary alloys in the dilute
limits. This approach gives proper embedding functions
and core-core interactions for the binary alloys as well as
for the pure metals.

B. Buik properties

The energy calculated from the EAM can be used to
predict the equilibrium state of alloys. In his work on
copper-nickel alloys, Foiles' makes a rearrangement of
the atoms by a Monte Carlo simulation to find an equi-
librium composition. In this work we use a statistical
approach, where any atom is studied in an average envi-
ronment. We consider a disordered alloy A 8

&

where an atom A occurs with the probability x and an
atom 8 with the probability 1 —x. In contexts where Z;
signifies the atomic number of species A (species B), the
letter A (B) is used instead of Z; in p, and P. The aver-
aged host electron density follows from

p (r; h)= g [xp, (R;~, A )+(1—x)p, (R;&,B)] .
J

(j&I )

This expression is independent of i, if we assume transla-
tional invariance in the solid. For the core-core interac-
tion we have two possibilities depending on the type of
the randomly chosen atom. The energy equals, for an
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atom A at position i,

E~;(x)=F[p~ (r; ), A ]

[xg(R;~, A, A )+(1—x )P(B,~, A, B )]
J

(j~l )

and, for an atom B at position i,

E~, (x) =F[pl (r, ),B]
+ —,

' Q [xg(R,~,B, A )+(1—x )P(R;,B,B )] .

(i&j )
(10)

Since Eqs. (9) and (10) are independent of i with transla-
tional invariance in the solid, we can drop the label i and
write Ez(x) and Es(x). We now calculate the energy
for an average atom in the alloy as

E(x)=xE&(x)+(I—x)E&(x) .

6=E(x),x2, . . . , x~)
N

+kz T g [xklnxk+(1 —xk )ln(1 —xk )],

BE Xp+k, Tln
BXk 1 —xk

=p, k=1,2, . . . , N .

assuming that the substitutional disorder can be
represented sufficiently well by the configurational entro-
py. T is the temperature and kz is Boltzmann's con-
stant. We find the equilibrium concentrations by mini-
mizing the free energy with respect to x& with the con-
straint that the total number of A atoms (i.e., gkxl, ) is a
constant. Introducing a Lagrange multiplier p to re-
move the constraint, we search for the stationary points
of the function

N

G(x),xp, . . . , x~) —p g xk
k=1

This gives

The heat of solution hH can be calculated from

bH(x)=E(x)+xE,"„b+(1—x )E,„b, (12)

The chemical potential p is the same for all layers. It
can be calculated for a layer b well inside the bulk,
where the concentration is known:

where E,„band E,„bare sublimation energies for A and
B, respectively. Table I shows an example of calculated
heats of solution. The good agreement with the experi-
mental values is not surprising since the parameters
used to describe the energies were fitted to the dilute
limits of the heats of solution.

BE Xb
+k~T ln

Bxb 1 —xb
(16)

From Eqs. (15) and (16) we get the system of equations

C. Surfaces of alloys
1 —xk 1 —xb

1 BE
exp

k~ T Bxb

BE
Bxg

TABLE I. Comparison between calculated and experimen-
tal heats of solution for Pt Nil

Concentration
(x)

Heats of solution (cal/mol)
Theory Experiment

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

—671
—1266
—1674
—1876
—1889
—1724
—1402
—1019
—475

—651
—1340
—1867
—2146
—2214
—2159
—1730
—1225
—762

The surface can be considered as a slab of N atomic
layers, the compositions of which are to be optimized
with the boundary condition that the composition of the
bulk layers is fixed. The energy in the surface slab can
be calculated in the same way as in the bulk, given the
layer dependence of the concentration. In this model
the energy is a function of N concentrations,
E= E( x, |qx, . . . , ~x) where xk is the concentration of
atom A in layer k, k=1,2, . . . , N. We now apply classi-
cal thermodynamics and write the free energy 6 for the
slab"

k =1,2, . . . , n . (17)

These equations give the concentration profile of the al-
loy.

III. CALCULATIONS

A. Calculation of surface relaxations

In principle, the relaxation of the interlayer distances
near the surface can be obtained by minimizing the free
energy with respect to the interlayer distances. This
must be done with some care to get reliable results. The
problem is that the total number of atoms of a given
kind does not come out exactly constant in Eq. (17), un-
less the concentration profile gradually approaches and
attains the concentration xb in the Nth layer. The ener-

gy is more sensitive to this artificial change in the num-
ber of atoms than to the relaxation. If the optimization
of the relaxation and the composition is made simultane-
ously, the result will be in poor agreement with experi-
ment.

We have found two ways to overcome this problem.
In Eq. (17) a (N +1)th layer can be introduced with a
concentration xN+1 chosen so as to give a concentration
profile xk, k = 1,2, . . . , X + 1, an average value equal to
the bulk concentration xb. Another way to calculate the
relaxation is to optimize the relaxation for fixed concen-
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TABLE II. Iteration scheme for calculating compositional profile and relaxation. Xl, , k=1,2,3,4,
is the platinum concentration of layer k. b» and b,» give the spacings between the first and second
layer and between the second and third layer, respectively. Positive (negative) values of b» and A/3

signify expansion (contraction). The first iteration of xk' conveniently starts from b» ——623 —0.

Iteration (%)

PtX) PtX2
(at. %)

XPtX3 PtX4

2
3
4
5
6
7
8
9

10
11
12
13
14

0.0

—2.7

—3.9

—4.5

—5.0

—5.2

—5.3

—5.3

0.0

0.9

0.3

—0.2

—0.7

—1.3

—1.4

66.0

64.0

65.1

65.8

66.7

67.2

67.5

47.9

42.0

37.8

35.0

32.6

31.3

30.6

51.0

54.4

55.5

55.9

56.3

56.4

56.4

49.6

48.3

47.9

47.8

47.7

47.6

47.6

trations and, separately, the concentrations for fixed re-
laxation. The scheme can be iterated to a result in quali-
tative agreement with experiment. An example of this
procedure is given in Table II. The relaxations are rath-
er insensitive to the concentrations and seem to converge
to a unique geometry. The two methods give similar re-
sults. In the rest of the paper the latter approach is
chosen.

B. Dependence on the number of optimized layers

If the concentrations in the three surface layers are
sought, it is enough to optimize four layers in Eq. (17).
More layers will change the concentrations in the three
outermost layers by the order of 1 at. %. The relaxation
of the two outermost interlayer distances is changed a
few tenth of a percent when the number of optimized
layers is increased from four to seven. However, for the
(110) and (100) surfaces the calculated concentrations of
layers far from the surface behave in a strange way. For
the Pt05Nio ~ (110) and (100) surfaces we obtain plati-
num concentrations alternating between 4 and 96 at. %
far from the surface. These oscillations are not damped
when the number of optimized layers is increased. This
may indicate a fundamental problem with the model or a
strong tendency for the alloy to order in a region of
several layers near the surface.

C. Multiple solutions to the segregation equation

An interesting fact is that Eq. (17) does not always
give a unique solution xk, k =1,2, . . . , N. Hence, if the
task is to find all solutions to Eq. (17), an iterative pro-
cedure is disqualified, since, in general, the way its start
influences its end is unknown. A straightforward
method to determine unique or multiple solutions to Eq.
(17) is the following. For a limited number of layers N,

one sets up a grid of concentrations filling the N-
dimensional cube formed by xk, k =1,2, . . . , N, running
from 0 to 100 at. %%uo, an d foreac hpoin t of th egri done
calculates the right-hand member of Eq. (17). If the
value is su%ciently close to the left-hand member, the
considered concentrations xk are near to a solution of
Eq. (17). We have carried through calculations of this
kind for N=3. For the (111) and (100) surfaces just one
solution is found. For the (110) surface Eq. (17) gives a
more complicated behavior, as illustrated in Fig. 1 for
the outermost layer. The result is striking, as one finds
three solutions to Eq. (17) for a range of bulk concentra-
tions. The dotted line in the middle indicates saddle
points and the two solid lines correspond to true local
minima.

An iterative method of solving Eq. (17) always con-
verges to one of the solid-line solutions, and provided

20

10

0 10 20 Xl 40 50 60 70 N % 100
Xb lat. X)

FIG. 1. Platinum concentration in the first layer, x&, vs pla-
tinum concentration in the bulk, xb. The solid lines are local
mimima in the free energy, and the dotted line represents sad-
dle points. The interlayer distance between the first and
second layer is contracted 10%, and the temperature is 1200
K.
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the iterations start su%ciently near one of the solutions,
the procedure will converge to this one. Qn the other
hand, an iterative procedure fails to hit the dotted-line
solutions. In the calculation illustrated in Fig. 1 the
spacing between the first and second layer is contracted
10% in relation to the spacing of the (110) layers in the
bulk. Test calculations show that the threefold solution
to Eq. {17)exists for all reasonable spacings between the
first and second layer, although the range of bulk con-
centrations where multiple solutions are found may
change. Figure 2 shows the free energy as a function of
the concentrations in layers 1 and 2 for Pto &Nio ~(110).
The concentration x3 is chosen so as to give the correct
averaged concentration over three layers. It is instruc-
tive to see the two minima and the saddle point. When
the bulk concentration is changed, the saddle point ap-
proaches one of the minima and for a certain bulk con-
centration one of the minima disappears and the solution
becomes unique.

The enrichment of nickel in the top layer {lower solid
curve in Fig. 1) will be considered as a stable segregation
state, and the enrichment of platinum in the top layer
(upper solid curve in Fig. 1) will be considered as a
metastable segregation state. Since the EAM gives a
qualitatively correct description of three (111) surfaces,
and since one of the calculated concentration profiles of
Pto &Nio 5(110) is in excellent agreement with experiment
(Sec. IIID), we have reason to believe that the predic-
tion of a metastable state on the (110) surfaces is correct.
This metastable state should be available under special
experimental conditions. One must keep in mind that
the platinum-rich state may be reconstructed as in the
case of pure platinum (110). The method of calcula-
tion used in the present work can be adapted for recon-
structed surfaces. "

D. Results

Experimental composition profiles and relaxations are
available from low-energy electron diffraction (LEED)
for the (111) surfaces of Pto iNio 9, Pto qNio &, and
Pto 7sNio 22, and the (110) surface of Pto 5Nio, . The
top-layer concentrations determined by LEED for the
(111) surfaces are in excellent agreement with the results
obtained by ion scattering spectroscopy and Auger-
electron spectroscopy. The LEED measurements, list-
ed in Table III, show that face-related segregation
occurs at the low-index surfaces of platinum-nickel al-

loys. With 50-at. % Pt the (111) surface segregates with
platinum in the topmost layer, while the (110) surface
segregates with nickel in the topmost layer. In both
cases there is an oscillatory concentration profile, whose
amplitude is more pronounced for the (110) surface. For
the (111)surfaces the relaxation is small, while the relax-
ation for the (110) surface exhibits a strong oscillation
with 19% contraction between the first and second layer
and 10% expansion between the second and third layer.

Theoretical composition profiles corresponding to
1200 K are compared with experimental profiles in Table
III. Interlayer spacings for three different cases are used
in the calculation: a nonrelaxed surface, a surface with
relaxation determined by LEED investigations, and final-

ly, a relaxation obtained by optimization of the energy as
discussed in Sec. III A.

The calculated segregation for the (111) surfaces
agrees convincingly well with the experimentally deter-
mined top-layer segregation for any of the aforemen-
tioned relaxation models. The nickel-rich Pto iNio 9(111)
alloy is a case where the calculation is in almost perfect
agreement with respect to both segregation and relaxa-
tion. For Pto &Nio 5(111) and Pt07gNio 2z(111) the opti-
mized spacing between the first and second layer are
contracted 5% instead of l%%uo, and the segregation is too
weak in all layers. The segregation in the top layer turns
out to be rather insensitive to relaxation, but the compo-
sitional oscillations become stronger with an optimized
relaxation than with no relaxation.

For Pto &Nio 5(110), two different solutions to Eq. (17)
are obtained (See Sec. IIIC). One solution is in very
good agreement with the experiment and is called a
stable segregation state in Table III. The calculated re-
laxation between the first and second layer is 14% con-
traction instead of 19% contraction in the LEED study.
The calculated relaxation between the second and third
layer is close to zero instead of 10%%uo expansion found by
LEED. The concentration profile agrees closely with the
experiment when the interlayer spacings are taken from
the experiment, and it is fairly correct when the relaxa-
tion is calculated. However, if an unrelaxed surface is
assumed, hardly any nickel enrichment results. We con-
clude that a model which permits a realistic geometry is
crucial for the (110) surface.

FICx. 2. Free energy vs platinum concentrations x& and x2
in first and second layers for Pto 5Nio 5(110). The interlayer dis-
tances and temperature are the same as in Fig. 1. The energy
is in arbitrary units.

IV. DISCUSSION

A. The EAM calculations

The EAM has previously been used in a Monte Carlo
simulation of surface segregation. ' The difference be-
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tween a Monte Carlo simulation and a mean-field ap-
proach was investigated by King and Donnelly. ' They
made an interesting comparison between the segregation
profiles produced by Monte Carlo simulation and those
resulting from the model of %'illiams and Nason. ' The
obtained segregation profiles are very close for gold-
silver alloys, when the same description of the pair ener-
gies is used in both cases. By analogy we believe that

the thermodynamical Eq. (17) is equally well suited for
obtaining the segregation as Monte Carlo simulation, at
least when we do not wish to, study finer details of the
alloy composition as, for instance, clustering in layers.

It is interesting to apply the EAM together with the
parameters published by Foiles et al. to pure platinum,
pure nickel, and platinum-nickel alloys and to compare
the calculated relaxations.

TABLE III. Concentration profiles and relaxations for platinum-nickel alloys. The values obtained

from the EAM are compared with experimental values (Refs. 3 and 4) and with tight-binding results

(Ref. 18). Three different choices for the interlayer spacings are used: a nonrelaxed surface, a surface

with relaxation determined by LEED, and finally, a relaxation obtained by optimization of the energy

as explained in Sec. III A. The relaxations are given in percent and the concentrations in atomic per-

cent.

PtX(
PtXp
PtX3

~iz
~23

PtX)
PtX2
PtX3

~i2

No
relaxation

27
5

12
0
0

66
48
52
0
0

EAM
Relaxation

from LEED

27
5

11
0.0
0.8

66
41
49

—1.0
—2.4

Calculated
relaxation

Ptp &Nip 9(1 1 1)
27

5

12
—0.7

0.2

Ptp 5Nip 5(1 1 1)
68
31
56

—5.3
—1.4

LEED study'

30
5

10
0.0
0.8

88
9

65
—1.0
—2.4

Tight-binding

23
7

10

70
43
52

XX)
XPtX2
XPtX3
~i2

XPtX)
XPtX2
XPtX3

90
80
77
0
0

39
97

5
0
0

90
73
76

—2
—2

13
98
10

—19
10

Ptp 78N1p 2p(111)
87
72
82

—4.7
—0.9

Ptp 5Nip &(110) stable state
25
95

2
—14

0

99
30
87

—2
—2

0
95
17

—19
10

90
73
82

62
60
39

XPtX)
PtX2

XPtX3

XPtX)
PtX2
PtX 3

90
14
84
0
0

Ptp 5Nip 5(110) metastable state'
91 91

3 0
95 90

—19 —14
10 1

Ptp 5Nip g(100)
93
0

87
—11.6
—4.2

0
95
17

—19
10

62
60
39

75
34
57

'References 3 and 4.
bReference 18.
'No metastable state is predicted with the unrelaxed geometry.
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Let us first consider the (111) surface of Pt, Ni, and
Pt-Ni alloys. The relaxation between the first and
second layer for Pt(111) is 5% contraction according to
the theory and 1% expansion according to the experi-
ment. For Ni(111) a calculation gives no relaxation
against 1% contraction for the experiment. This
means that the EAM gives a relaxation which is 6% too
small for Pt(111) and 1% too large for Ni(111). For a
nickel-rich alloy surface we then expect that a calcula-
tion of the relaxation would be almost correct. In fact,
the optimized relaxation turns out to be 1% too small
compared with the experimental relaxation for the
Pto, Nio 9(111), which has 70% nickel at the surface.
For a platinum-rich alloy we expect the calculated relax-
ation to be around 5% too small. The calculated value
is found to be 4% too small for Pto 5Nio ~(111) and 3%
too small for Pto 7sNio 2~(111).

We now turn our attention to the (110) surface of pure
Ni and the Pto qNio ~ alloy. For the (110) surtace of pure
nickel the EAM predicts 2% contraction, while the ex-
periment ' gives 8% contraction. We thus expect a re-
laxation which is 6% too large in the calculation, if the
first layer is a complete nickel layer. The EAM in fact
predicts a 5% too large relaxation for Pto ~Nio &(110).

The disagreement between the calculated and the mea-
sured relaxations as discussed in the two last paragraphs
shows a systematic trend. The disagreement in the re-
laxations for the alloys turns out to be rather close to
the disagreement found for the pure metals constituting
the alloys. It must be kept in mind that in the present
version of the EAM only bulk properties are used for
determining the parameters of the material ~ If surface
properties were introduced in the EAM in a way that
gave accurate relaxations for the pure metals, we could
expect an agreement within maybe 1% for the relaxation
between the first and second layer of the alloys.

segregation for the (111) surfaces of platinum. This
model predicts 2 and 61 at. '7o platinum in the toplayer
at 1000 K (30 and 99 at. % according to experiment) for
Ptp ~Nio 9(1 1 1) and Pto 78Nio 22(1 1 1), respectively. The
size mismatch can be included in the bond-breaking
model by elastic continuum theory as in Ref. 17. This
approach gives 16 and 33 at. %%uoplatinu m i n th e top layer
at 1000 K for Pto, NIQ9(111) and Pt07sNio, z(111), re-
spectively. The nickel-rich alloy is reasonably well de-
scribed with the elastic strain term, while the platinum-
rich alloy is poorly described. The conclusion is that
these simple theories are inapplicable to platinum-nickel
alloys.

Gijzeman assumed Lennard-Jones potentials for the
energy versus the nearest-neighbor distance. This
method gives a modification of the pair-bonding ener-
gies, when the lattice parameter is different from those
of the pure metals. The prediction of the segregation
nevertheless disagrees with the experiment, since nickel
segregation results for the (111)surfaces.

Treglia and Legrand' used a tight-binding approach
to impurities for calculating the size-mismatch energy.
The mismatch energies for the dilute alloys were then in-
terpolated for nondilute bulk concentrations and added
to the usual bond-breaking energy. For the (111) surface
they obtained the same concentration profiles as in this
work within a few percent, but for the (110) surface they
predicted platinum segregation, in disagreement with
LEED experiments and with this work (Table III).

As far as we know the EAM is hitherto the only ap-
proach that is able to describe quantitatively the segrega-
tion on both the (111) and (110) surfaces of platinum-
nickel systems.

V. CONCLUSIONS

B. Other theoretical models

The segregating element for most alloys can be pre-
dicted by qualitative criteria for polycrystalline and di-
lute alloys. Platinum-nickel is one of the very few sys-
tems where such criteria fail. Miedema suggested a
model which can explain 21 out of the 22 studied sys-
tems. Abraham and Brundle tested another model
against 45 alloy systems, where 38 predictions were
correct. Chelikowsky suggested a criterion which can
explain 35 out of 40 studied systems. Mezey and Giber
presented an approach which gives the correct behavior
for 39 out of the 40 systems. Abraham and Brundle got
neither solvent nor solute segregation for dilute nickel in
platinum, and in the three other works the authors got
nickel segregation instead of platinum segregation. The
qualitative segregation criteria are designed for polycrys-
talline samples with an averaged surface structure very
similar to an actual (111) surface, but, nevertheless, they
fail to predict the segregation on the (111) surface of
Pto J Nio 9 and Pto 78Nio 22

The commonly used bond-breaking model, ' without
any size-mismatch corrections, fails to predict platinum

The EAM off'ers a promising approach to the energet-
ics of surface segregation. Unlike pair-bonding models,
the EAM is not limited to nearest-neighbor interactions.
The atomic-size-mismatch eff'ect is intrinsic in the EAM
and no ad hoc mismatch energies have to be added. The
model also permits lattice relaxation and surface recon-
struction.

For platinum-nickel alloys the face-related segregation
occurring on the low-index surfaces is reproduced by the
EAM. The calculated relaxations are in qualitative
agreement with available LEED measurements. A real-
istic choice of interlayer distances at the surface is cru-
cial for obtaining a correct concentration profile. The
EAM predicts a metastable concentration profile for the
(110) surface for platinum concentrations between 20
and 60% in the bulk.
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