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Thermoelectric power Auctuations
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We consider the fluctuations of the thermoelectric transport coefficients due to quantum in-

terference. At low temperatures, the relative fluctuations in these coefficients are substantially
enhanced over the relative conductance fluctuations and result in random sign changes in the
coefficients. We suggest a simple experiment to measure these eA'ects for L & L;„.

It has been recognized recently that quantum transport
is inherently non-self-averaging due to intrinsic interfer-
ence efrects. ' Thus conductance fluctuations are size in-
dependent at low temperature, ' in violation of simple
statistical arguments. Experimental systems confirming
this have included metallic wires and rings and
metal-oxide-semiconductor field-efI ect transistors
(MOSFET's). It is of interest to investigate how quan-
tum interference manifests itself in other transport prop-
erties. Already this has led to the observation of a zero-
field transverse (Hall-like) conductance and anomalous
magnetic field asymmetry of the conductance. In this
paper, we will investigate non-self-averaging aspects of
thermoelectric eA'ects.

Our calculation is based on the fact that in the absence
of inelastic scattering, thermoelectric coe%cients, like the
Peltier coe%cient, the thermopower, and others, can be re-
lated to the conductance at finite temperature, ' "which
in turn can be related to the dependence of the conduc-
tance on the chemical potential. Thus, fluctuations in the
thermoelectric coe%cients are closely tied to the correla-
tion in the conductance fluctuations between states of
diflerent chemical potential. We will find that these ther-
moelectric fluctuations grow with temperature until either
the inelastic lifetime r;„ is less than the time ~D taken for
the electrons to diff'use across the sample or k~T & 6 rD '.

We begin with the current response to an electric field
and a thermal gradient

j=oE—gVT .

Since we are dealing with random samples, the local equa-
tion (1) is not well defined; instead, we use the conduc-
tance 6 and the corresponding quantity for q denoted by
N. We then have

where G (e) is the zero-temperature conductance at chem-
ical potential e, p is the physical chemical potential, and f
the Fermi distribution. If, in addition, the Sommerfeld
expansion is valid, (3) becomes

(4)

where

x F(e ~')dsde',

F(x) =(G(p)G(p+x)) —(G(p))(G(p+x)) (7)

is the conductance correlation function at zero tempera-
ture. In Ref. 1, the function F(x) was calculated in order
to study the chemical potential correlation in the conduc-
tance. F behaves like

that is, N is proportional to the derivative of the conduc-
tance with respect to the chemical potential. Note that
common textbook proofs notwithstanding, (3) and (4) are
not based on the relaxation time approximation.

Following the reasoning of Ref. 1, we define

(5)

with () implying the impurity average. This gives the
fluctuations of N within an ensemble of macroscopically
"identical" samples, and via the ergodic assumption, the
fluctuations under changing magnetic fields or chemical
potentials in the same sample. ' Using Eq. (3), we have

I =GV —Nh, T, (2)
with I as the current, V as the voltage drop, and h, T as the
temperature diAerence between the two ends.

Provided the quasiparticles are noninteracting and all
scatterings are elastic, it has been shown that' "
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with ad of order unity and weakly dependent on the
eAective dimension d. The chemical-potential change at
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which conductances become uncorrelated is given by

Az D
C

L 2

In (9), D is the difl'usion constant and L„ is the sample
size in the direction of the current. The behavior of
(BN) is as follows.

(i) kc T & E,: In this case F(c c') va—ries little on the
scale of k~T. The Sommerfeld expansion is valid, and
yields

T[—F (0)] '~2= k27(PG)', (I())
x2 ka
3 3e

where the last equality follows from (4). Then from Eq.
(sa),

T increases. For example, in one dimension p is expected
to be 3, hence BN = T ', while in two dimensions

p = —,
' and 6N —T'

Depending on whether k~T or Ar;„' becomes greater
than E, first, the temperature dependence of 6N is given
by 6N —(E,/kc T) ' or by Eq. (14). For a highly
diflusive system z;„should be very large (z;„-D'~ in one
dimension, -D in two dimensions); the former case ap-
plies and the universal (SN)m, „can be observed. This is
the situation for the gold rings ' but not for the
MOSF ET's.

Next we discuss the Peltier coefficient H. For VT=O,
the heat current due to an electric field is IH =NHV.
Onsager's relation requires NH(B) =TN( —8), with 8
being the external magnetic field. The Peltier coefficient
is defined as

kgT
6N = kc J2ad

3e 6 E,
II = TN (8)/G(B) = TNH( —8)/G(8) (is)

Unlike 6G, BN depends on the size and the degree of dis-
order, 6N going as L, /D. Since in this regime &N) —&G'),
and &G')-&G)/EF,

6N EF BG (i 2)
N E, &G)

where G is now the conductance at temperature T, and for
longitudinal conductance G(B) =G( —8).

For a given G, N —G' can be randomly positive or neg-
ative and relative fluctuations of G are small, so that
&N/G) = &G ')&N). Assuming that &G ') = &G) ', we
find that

(i6)&Ii) = T&N)/&G) .

Since BN/&N)» 6G/&G), the fluctuation in II is dominated
by the fluctuation in N, yielding

BH BN
&fi) &N)

For the thermopower Q, we use Kelvin's theorem,
II =QT, which is based on thermodynamic considerations
and holds generally (but see the following discussion).

The analysis thus far has relied on Eqs. (4) and (1S)
which are unaveraged relations and hold for a given sam-
ple. If the same experimental setup is used to measure G,
L, and Q then, while they will all undergo random fluctua-
tions with, say, changing chemical potential, the fluctua-
tions are not independent and these equations hold at a
given chemical potential. If diA'erent setups are used, then
the fluctuations become independent. Also, if the thermo-
powers Q~ and Qq of two samples are measured, their rel-
ative thermopower when placed together (actually three
samples are needed) is

~2 e2(6N),„=— kc j2ad .
e 3 h

Note that (8N),„ is independent of size, dimension, and
degree of disorder. Samples with larger temperature
slopes, due to smaller D or larger L, peak at lower tem-
peratures. The discussion so far has been confined to elas-
tic scattering. Although Eq. (3) has strictly been shown
to be correct only for that case, we will assume its applica-
bility, even with elastic scattering, our view being that the
principle efr'ect of such scattering is to destroy quantum
coherence. The relevant length scale is L;„, the inelastic
dift'usion length.

For L„»L;„or, equivalently, 6 z;„'» E„BN/&N)
should scale' as (L;„/L„)"~ . Since &N)-L„, this im-
plies

Q» =Q, -Q, +o(~g»g, —g, .

In particular, if Q ~ =Q2, Q ~q will not be zero.
In summary, we have considered the fluctuations of

thermoelectric coefficients. These fluctuations may be due
to a chemical-potential or magnetic field change in one
sample, or they may be fluctuations between samples. '
We have restricted ourselves to diagonal or longitudinal
components. We note here that, since G„y~O in zero
field, Nzy will be nonzero also. The consequence of this
will be reported elsewhere. In the regime where L & L;„,
the maximum fluctuation, at kcT=E, =ALII D/L„, of N
is "Universal, " while that of Q —1/&G), and of II-E,/
&G). In all cases, they are anomalous for kc T ~ E„and

SN = (bN), „(Tz;„)(E,z;„)'

with (BN),„given by (13). Because z;„—T ~, there is a
crossover behavior from BN —T to BN —T' ~+ "~ as

Thus, the relative fluctuation in N is enhanced over that of
G by a factor EF/E, . From reported experimental values
of EF, &G), etc. , BN/&N) ranges from —1 (MOSFET) to
—10 (gold rings and wires). That 8N/&N) is large is not
surprising since &N) must have the same sign for a given
material, while N —G' fluctuates in sign as the chemical
potential is changed.

(ii) kcT & E,: The linear increase of N with T and L„
ceases when kcT ~ E,. In this case, in Eq. (6), F(c c')—
varies rapidly on the scale of k~T, and the Sommerfeld
expansion breaks down. Since F(c c') is nonnegliyib—le
only for

~
c—c'~ & E„ this leads to 8N —(E,/kcT) ' for

kcT & E, . Thus, 8N increases as kcT/E, until kcT & E„
whence it decreases as (E,/kcT)' . The peak value of
BN, at kaT =E„is
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do not vary with size or dimension as they do in classical
statistics. Since the relative fluctuations are much
enhanced over the conductance fluctuations
[6N/N ~II/fI ~Q/Q (FF/F, ) (86/6 )], and can re-
sult in random sign changes of the thermoelectric eff'ects,
they shou1d be observable even in spite of the difficulties
associated with such measurements in small systems.

While it is difficult to set up a controlled temperature
diff'erence between the ends of samples of size greater
than L;„, the thermopower fluctuations in samples of size
less than L;„can be eff'ectively enhanced over those in the
smaller samples, as we will now explain. To probe these
thermoelectric effects, we suggest that fluctuations in the
induced magnetic moment, M, be measured rather than
the fluctuations in the current. This is because BM
—(6I)L, while 8I—L '/ for L) L;„. An idealized
configuration for this measurement is presented in Fig. l.
Here, wires a and b of the same material and length L
(L & L;„) are connected by large electrodes which are
maintained at a temperature diff'erence h, T. If 6 is the
conductance of each electrode between the a and b con-
tacts, then the circulating thermoelectric current is

N, fl, —Nbf,
1+f fb(G, +Gb)/6

where f, =6,(6,+ Gb ) ' and similarly for fb For.
G»G, —Gb, and because 86/G((SN/N, Eq. (15) be-
comes

I =2(N, —Nb) .
h, T

This circulating current creates a magnetic moment
M = (ILL ', where g—1. The fluctuation of M about zero
is then

SM =g(L II. ')'"SN /3. r (IS)
where 8W~ is the fluctuation of 6'N when L =L;„. This ex-
periment is subject to less stringent size restrictions than
measurements of conductance fluctuations.

Q

FIG. 1. Schematic of a setup to observe thermopower fluc-

tuations, more specifically, fluctuations of the coefficient N. If
the bridges a and b are equivalent on average, the variation of
the moment with change of chemical potential or external mag-

netic field will be equally often positive as negative.

Nore added in proof. For kaT » E„the important con-

tribution to 8N comes from the large-x regime of F(x)
and the approximation in Eq. (8) is insufficient. Instead,
the relatively slow power decay of F(x) should be used.
While the T '/ falloff in b'N given above Eq. (13) is still

correct for d ~ 2, it changes to a slower T for
d ~ 2. We thank B. Scrota for pointing this out to us.
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