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Wave-vector dispersion versus angular-momentum dispersion of collective modes
in small metal particles

W. Ekardt
Fritz Hab-er Insti-tut der Max Plan-ck Gese-llschaft, Faradayweg 4-6, D I000 B-erlin 33, West Germany

(Received 4 June 1987)

The wave-vector dispersion of collective modes in small particles is investigated within the
time-dependent local-density approximation as applied to a self-consistent jellium particle. It is

shown that the dispersion of the volume plasmons can be understood from that in an infinite elec-
tron gas. For a given multipole an optimum wave vector exists for the quasiresonant excitation of
the volume mode but not for the surface mode. It is pointed out that —for the volume
modes —the hydrodynamic approximation gives a reasonable first guess for the relation between
frequencies and size-quantized wave vectors.

In a recent paper' Dozier and Gibbons discuss the
wave-vector dispersion of the giant atomic resonances
which were found in photoabsorption and photoemission
of the rare gases and in other elements. As explicitly
shown by Zangwill and Soven these giant resonances can
be understood as collective charge-density oscillations of
all the electrons of a given atomic shell and have, there-
fore, much in common with ordinary plasmons in a homo-
geneous electron liquid.

However, because of the spherical symmetry of the
atom, the wave vector is not a conserved quantity but, in-
stead, the angular momentum is a "good" quantum num-
ber. For this reason, we have a competition between the
shape-enforced "angular-momentum" dispersion (reso-
nance frequencies as a function of l) and the wave-vector
dispersion (e.g. , measured in an angle-resolved energy-loss
experiment) of these modes. If the charge-density oscilla-
tions preserve their character as longitudinal excitation
modes (as they do at least locally) we would expect to find
the multipole-plasmon eigenfrequencies at certain wave
vectors on the known dispersion relation of the homogene-
ous electron gas (as is trivially the case within the local
dielectric theory of classical electrodynamics). However,
as the results of Dozier and Gibbons show this expectation
is wrong and the reason is simply that the atomic shell
electrons are, of course, too inhomogeneous.

For small metal particles the situation is slightly
diA'erent. Compared to an atom, it is a relatively extended
object and, as we have already found in our previous study
of the optical properties, fairly we11-defined volume
plasmons do exist for all electron numbers down to
N=20. The frequencies are a little blue shifted and, in
addition, the modes are heavily perturbed by Landau
damping.

In a general context, the excitation of these size-
quantized volume plasmons is a nonresonant process be-
cause the photon does not provide the momentum the
plasmon needs. This is just another way of saying that the
plasmon is to a considerable extent still a longitudinal
mode. It is only because of the nonlocal response that it
can be excited by photons. Hence, we expect —in contrast
to the surface modes —a more efficient excitation of these
modes by inelastic electron scattering. The disadvantage
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FIG. 1. The I 1 part, bi, of the differential cross section, Eq.
(2), for four different q values q =O. l, 0.2, 0.3, and 0.4 inverse
Bohr in the LDA (dashed line) and in the TDLDA (continuous
line). The example discussed corresponds to a spherical jellium
particle with parameters pertaining to 92 valence electrons of
Na: r, 4ao and R 18.057ao. The value of the energy loss is
given in units of the classical surface dipole frequency of a
"sodium sphere:" r3 E/(tot, J3). Shown is the log~o of the
quantity 6&, Eq. (2), measured in units of R . The resonant ex-
citation of the first dipolar volume plasmon around co 1.9 at
q 0.3 is clearly resolved. Likewise, the absence of dispersion in
the dipolar surface plasmon peak is nicely seen. Similar curves
are obtained for the other partial waves I 0 to 11. From the
frequency shift of the surface peak for different I values the
angular-momentum dispersion is obtained.
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of this way of exciting plasmons is obvious because we
cannot disentangle (experimentally) the various angular
momenta. As shown in a recent Letter by Ferrell and
Echenique, a rather large number of partial waves is
needed to reach convergence in the cross section for in-
elastic electron scattering by small metal particles. It was
exactly for this reason that the theory of inelastic electron
scattering by small particles in general was not worked
out properly until Ref. 6 was published. Whereas Ref. 6
was based on the classical multipole polarizabilities of a
sphere given as

acl ~ R 2I+1 .(~)+(I+1)/I '

where R is the radius of the sphere, e(rd) the frequency-
dependent local bulk dielectric constant of the solid in
question, and l is the polarity of the mode, Ref. 5 was
based on a microscopic response model with full inclusion
of nonlocal and exchange-correlation-induced quantum
eAects, respectively. However, in Ref. 5 the evaluation of
the exact expression for the differential cross section (in
Ry atomic units),

=8 — g 4x(2l + 1)J dr r j I (qr )„dr '(r ') j ~ (qr ') ImZI (r, r ';co;r)
t)'o f 1 1 +

8Ef Qk k; x q I 0 dp

g 8) =—— 6,4 kf 1 4 kf 1

zk;q4, p zk;q4 (2)

was restricted to relatively small wave vectors q. In Eq.
(2), Z& is the 1th component of the retarded density-
density correlation function, co;f and q are the transferred
energy and momentum. jI are the spherical Bessel func-
tions, and Im means the imaginary part. To answer the
questions discussed above, we need to calculate the full ex-
pression of Eq. (2), which is a formidable task. The in-
teresting results of this study are communicated in the
present work. For the discussion to follow the prefactor of
Eq. (2) is unimportant. Hence this discussion is based on
the sum over 61.

To begin, Fig. 1 shows the 1=1 part, 6~, of the total
quantity 6 under discussion for wave-vector transfers
q =0.1, 0.2, 0.3, and 0.4 inverse Bohr. This figure should
be compared to the optical excitation spectrum which was
discussed in length in Refs. 7-9. To facilitate the discus-
sion of the collective features in these curves we give as a
dashed line the independent electron result, calculated
within the LDA. That means in the calculation of Eq. (2)
X~ is used instead of XI. The continuous line in the figure
is the TDLDA. Because we discussed already in Refs.
7-9 how to identify a certain feature in these curves as be-
ing a collective one, this discussion is not repeated here,
but in Fig. 2 the optical spectrum is given again where the
collective modes are characterized by an arrow. The
mode around 0.9 is the dipolar surface plasmon and the
broad hump around 1.9 is the optically excited first dipo-
lar volume plasmon mode. Note that the surface plasmon
has a rather small damping, whereas the volume mode is
heavily damped. Both features were discussed at length in
a previous work and the discussion is, therefore, not repro-
duced here. For comparison, the classical spectrum is
given as a chain line. The optical excitation of the volume
plasmon is missing in the classical spectrum, simply be-
cause of the local character of the classical theory.

On comparing the optical spectrum with the loss spec-
trum at various wave vectors we see clearly how the
volume plasmon excitation is turned on and at the same
time the surface plasmon excitation is turned ofI'.
Whereas in the optical spectrum the red-shifted Mie reso-
nance is the dominating feature, it is increasingly the
volume plasmon in the loss spectrum. At a wave vector of

q =0.3 the I =1 volume plasmon is obviously resonantly
excited. At this wave vector, the surface mode does not
carry much oscillator strength but is still clearly resolved.
Hence we see to which extent the surface plasmon is
transverse in character and to which extent the volume
plasmon is a longitudinal excitation. Similar curves were
obtained for the other angular momenta (I =0 to 11) with
basically the same results. The collective modes, already
identified in the optical polarizabilities, are dramatically
enhanced in the energy-loss matrix element which means
nothing else than that "the multipole plasmon needs more
momentum transfer than the photon can provide. " For
the example under study, the volume plasmon can be
clearly resolved up to l =5. On the other hand, on com-
paring the dashed curves with the continuous ones we see
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FIG. 2. Imaginary part of the dynamical polarizability, in
units of R, for the same particle as discussed in Fig. 1. The
continuous line is the TDLDA result, the chain line is the classi-
cal Drude result. This figure was discussed at length, especially
in Ref. 8. In order to facilitate the comparison with the energy-
loss spectrum, it is reproduced here. The collective modes are
characterized by an arrow. The sharp line around 0.9 is the di-
polar surface plasmon and the broad hump around 1.9 is the
first dipolar volume plasmon.
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that around q =0.5 collective features disappear. As al-
ready discussed in our previous work this is to be expect-
ed because of the existence of the critical wave vector in
the bulk (!) and its "partial transferability" to finite-size
objects.

Before continuing we want to comment about the q
dependence of the excitation spectrum in the volume
plasmon region of the various l channels. For low-I values
(I =0, 1, 2, 3) we find the following q values for the most
efficient excitation at the lowest volume mode of each l:
q =0.25, 0.3, 0.35, and 0.4. All the modes are relatively
broad as revealed in Fig. 1 for I =1. It is interesting, now,
to compare these q values with the corresponding result of
the hydrodynamic theory, published in Ref. 10, because
for the volume modes (and in sharp contrast to the surface
modes) the hydrodynamic approximation can be expected
to give a reasonable first approximation to the microscopic
response equations. %'ithin hydrodynamic theory, the al-
lowed q values for a mode of type l in a sphere of radius R
are approximately given' by the zeros of the spherical
Bessel function jt~~(qR) =0. This condition yields for
the first allowed q value and the four values l =0 to 3 the
numbers: q=0.21, 0.28, 0.35, and 0.42 which are in
surprisingly good agreement with those obtained from the
microscopic theory (see above). Of course, hydrodynamic
theory does not tell us anything about the damping, which
is intrinsically beyond the scope of this approximation.

The difficulty in an energy-loss experiment with fast
electrons is that none of the structures discussed in Fig. 1

is directly accessible experimentally, because in the total
quantity, Eq. (2), all l channels contribute! For the exam-
ple under discussion, a jellium particle corresponding to
92 valence electrons of Na, 12 partial waves have to be
taken into account to make the total cross section conver-
gent for q values smaller than one inverse Bohr (which
means a considerable amount of computer time). Typical
results are shown in Fig. 3 for a relatively small-q value
(0.1), for an intermediate one (0.3), and, finally, for a
large q value (0.9) where collective behavior does not play
any role.

Analyzing carefully the results shown in the figures, we
find that the various l-channel surface plasmons (one per l
value) have nearly no q dispersion. " This is especially
clear in Fig. 1 where the Mie peak stays nearly constant at
0.9 both in the optical spectrum and in the loss spectrum
(as long as it can be identified). The same is true for oth-
er I channels not shown in the figures. The most pro-
nounced feature with the surface plasmons is their q-
dependent oscillator strength. As a consequence, all the
various surface plasmons show up in an energy-loss exper-
iment at the same time if the wave vector is sufficiently
small. Because there is nearly no q dispersion in the sur-
face peaks" we speak instead of the I dispersion of the
[one (.)] collective surface excitation, which is shown in
Fig. 4. In this figure we have assigned each surface mode
I an equivalent wave vector qt via qt =I/R (Ref. 10). The
situation is diff'erent for the volume plasmons. The vari-
ous l channel volume plasmons are superposed in the loss
spectrum to give one (or more) broad peak which shows a
clear q dispersion ! The dispersion relation we find is
given in Fig. 4. The most striking result is that the form
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FIG. 4. Angular-momentum dispersion of the surface peak
and the wave-vector dispersion of the first volume peak. Each
surface mode has been given an equivalent wave vector q& via

qt i/R. Each dispersion relation shows a square dependence on
the wave vector in the low-q limit. However, the dispersion
coefficients are diferent for the two modes. If the frequency of
the volume mode were shown as a function of q we would ob-
tain a curve which looks very similar to those discussed in Ref.
11. Note that the dispersion of the volume mode is a measur-
able quantity, whereas the angular-momentum dispersion of the
surface mode is not. The latter gives just the calculated fre-
quencies of the various collective surface peaks at their calculat-
ed equivalent wave vectors.
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FIG. 3. The total differential cross section 6, Eq. (2), for
three different wave vectors q 0.1, 0.3, and 0.9. Eleven I values
had to be taken into account to obtain convergence for wave vec-

tors smaller than 1. The vanishing of the collective effects at
large wave vectors is clearly demonstrated. From the q disper-
sion of the volume peak we obtain the results shown in Fig. 3.
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of the dispersion curve is nearly identical with those dis-
cussed by Gupta, Aravind, and Singwi' in a study of the
density-density correlation function of a homogeneous
electron gas beyond the RPA level.

It is now in order to comment about how to detect ex-
perimentally the eAects discussed in this paper. Optical
experiments on clusters in a beam are now possible in
various laboratories, e.g. ,

' but energy-loss experiments
are still in a very preliminary stage. Hence, it is tempting
to do the experiments on embedded clusters in very much
the same way as the rare-gas bubbles in Al were studied
by electron-energy-loss spectroscopy. ' Because of the in-
teraction between the host and the surface of the particle,
frequency changes of the surface plasmons are to be ex-
pected. But all the qualitative findings should be experi-
mentally accessible. These are first, a very weak q disper-
sion of a given l-pole surface mode; second, a nearly con-

stant oscillator strength for the excitation of these modes
up to a certain q value beyond which the excitation quick-
ly drops down; third, the nonclassical I dispersion of the
surface modes; fourth, the quasiresonant q excitation of
the volume modes and, finally, the q dispersion of the
volume mode which should be in near agreement with
what is known for an infinite free-electronl. ike system.
Hence, all alkali metals are the principal candidates for
experiments to be done in the future.

It is a pleasure to thank Professor E. Zeitler for con-
tinuing interest and support. I am grateful to R. Fuchs
for critically reading the manuscript and for constructive
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Felde for informative discussions on the experimental as-
pects of the problems investigated.

'A. K. Dozier and P. C. Gibbons, Phys. Rev. A 32, 1981 (1985).
2J. B. West and J. Morton, At. Nucl. Data Table 22, 103

(1978).
3M. H. Hecht and I. Lindau, Phys. Rev. Lett. 47, 821 (1981).
4A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
5W. Ekardt, Phys. Rev. B 33, 8803 (1986).
T. L. Ferrell and P. M. Echenique, Phys. Rev. Lett. 55, 1526

(1986).
7W. Ekardt, Phys. Rev. Lett. 52, 1925 (1984).
sW. Ekardt, Phys. Rev. B 31, 6360 (1985).
9N. Barberan and J. Bausells, Phys. Rev. B 31, 6354 (1985).
'OW. Ekardt, Phys. Rev. B 32, 1961 (1985).
''This is a nontrivial result because we cannot prove that there

is only one surface mode per I channel. For the classical

response function, Eq. (1), this is true, but for the microscopic
response this is still an open question whose answer can even

be model dependent. Another possible mechanism which in-

troduces q dispersion even for a single mode per I channel
would be strong damping by particle-hole pairs. For the
specific problem under discussion this is not the case for the
low-I surface modes.
A. K. Gupta, P. K. Aravind, and K. S. Singwi, Solid State
Commun. 26, 49 (1978).
W. A. Saunders, K. Clemenger, %'. A. de Heer, and W. D.
Knight, Phys. Rev. B 32, 1366 (1985).

' A. vom Felde, J. Fink, Th. Muller-Heinzerling, J. Pflugler,
B. Scheerer, G. Linker, and D. Kaletta, Phys. Rev. Lett. 53,
922 (1984).


