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Eff'ect of partial phase coherence on Aharonov-Bohm oscillations in metal loops
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The averaging of Aharonov-Bohm oscillations caused by incomplete phase coherence has been
studied in two Sb rings. In these devices, the phase-coherence length L& can be determined in-

dependently from an analysis of the weak localization contribution to the magnetoconductance

(AGc) or from the amplitude of the conductance fluctuations. We find that the Aharonov-Bohm

oscillations decrease as exp( —L/Li) where L is the sample length. The values of Li inferred

from AGp qualitatively predict the temperature dependence of the conductance fluctuations.

The recent observation of quantum-interference Auc-
tuations in the resistance of metal samples' has revised
conventional notions of diffusion in metals. At low tem-
peratures, most of the scattering of carriers is merely elas-
tic because inelastic scattering becomes weak or infre-
quent. In this case, the sample length L can be compara-
ble to the distance L& the electron diffuses before losing
memory of the wave-function phase. Classical approxi-
mations break down completely then: the interference of
the wave functions of the carriers is observed directly in
the resistance. In the presence of a magnetic field, the
Aharonov-Bohm mechanism causes the resistance of a
loop to oscillate periodically in field and the resistance of
a wire to Auctuate randomly. In fact, the average ampli-
tude of such oscillations and Auctuations in a device of
length L& is a "universal" value (AG) —e /h for any me-
tallic sample. ' Here, () denotes ensemble average.
The question naturally arises concerning the effect of par-
tial phase coherence: what happens when L&~L? This
has been addressed for the case of aperiodic fluctuations
(AF's) in a wire, ' and it was found that the amplitude of
the fluctuations falls off as (L/L&) / . A similar decay of
the amplitude of the periodic oscillations was observed for
the case of ensemble averaging of completely-phase-
coherent loops connected in series. ' In both cases, the
conductance Auctuations obeyed
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will be proportional to the number of carriers retaining
phase memory, i.e., that the amplitude of the oscillations
will also be proportional to the exponential. We further
expect that energy averaging also reduces the amplitude
of the h/e oscillations. The scale for energy averaging is
AF. =rr2hD/L2, where D is the diffusion constant of the
carriers. ' Assuming that the universal amplitude will
result as L& ~, we expect
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This equation difl'ers from Eq. (1) because here we are ac-
counting for conductance fluctuations AG which result
from the carriers which travel the distance L without los-
ing phase coherence, whereas Eq. (1) predicts the ampli-
tude of the "ensemble average" of the fluctuations in L/L&
phase-coherent segments. The energy-averaging factor
contains L rather than L& because the electrons which con-
tribute to the h/e period in the magnetoresistance are
those which complete the entire path length L without los-
ing phase memory. We emphasize that Eq. (2) is an esti-
mate based on the above argument; it is not a quantitative

where the factor in brackets accounts for energy averag-
ing. ' ' Gi is a number of order 1 which accounts for
the details of sample geometry. In this work we present
evidence that the oscillations in a loop suffer a more severe
averaging as the phase-coherence length shrinks to less
than the sample size L.

The Aharonov-Bohm effect which causes the periodic
oscillations of the resistance with the amplitude of the
magnetic field (see Fig. 1) requires that the carriers in-
volved retain phase coherence throughout the traversal of
the sample. By the definition of L&, the fraction of carriers
which arrive at the voltage probe retaining phase memory
is exp( L/L&), where L is —the distance between the volt-
age probes. ' [The length L of a sample (with L )L&) is
the distance across which the resistance is measured. ] For
L~L&, we expect that the amplitude of the oscillations
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FIG. 1. The magnetoresistance R(H) at T 0.06 K in sam-
ple 1 (the inset illustrates the h/e oscillations which pervade the
entire field range) and the Fourier transform of R (H ) (inserted
is a photograph of sample 1).
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prediction from the perturbation theory. This exponential
decay was not observed in the experiments on noble-metal
loops' ' because, in these samples, L& was temperature
independent below T—1 K.

It is the aim of this work to test Eqs. (1) and (2) quan-
titatively by independently determining the phase coher-
ence length and the amplitudes of the various fluctuations
and oscillations. Toward this purpose we studied two Sb
loops made by two diff'erent lithographic techniques: sam-
ple 1, a round loop having a resistance R =876 0
(D=0.0028 m /s), diameter 0.85 pm, length L=1.64
pm, w =0.038 pm, and t =0.08 pm made by the contam-
ination resist method, ' and sample 2, a square loop (1.05
pm on a side) with R =86 fi (D =0.0095 m /s), L =2.51
pm, w=0. 16 pm, and t =0.08 pm made by the same
high-resolution scanning transmission microscope but us-
ing a negative resist (w is the width and r is the thick-
ness of the wires forming the device). We chose Sb as
sample material because L& is large and because Sb exhib-
its weak-localization behavior. Also Sb is a semimetal
with a low carrier concentration, and therefore we can
achieve large resistances in small samples. However, we
sacrifice the simple band structure of the noble metals
used in other experiments for the more complicated
bands in Sb. 2'

The phase coherence length can be determined from
weak localization independently from any assumption
about the fluctuation amplitudes, except that there is
sufhcient ensemble averaging to make h, G~ large enough
to observe. It is extracted from the magnetoresistance by
fitting the weak localization contribution (AGc). Near
0=0, the coherent backscattering between time-reversed
pairs of particles (weak localization) increases the resis-
tance of the sample. The destruction of the weak localiza-
tion by magnetic fields has been widely used to obtain the
phase coherence length. Specifically, for a one-
dimensional sample (the width w of the wires forming the
loop being small compared with L&) in a magnetic field H,
the dominant correction to the conductance is

near H =0 are displayed in Fig. 2(a), where we have tak-
en Lso&(L;„since Sb is a heavy element. (This is con-
sistent with measurements on large two-dimensional
films. ) The difference between a wire, for which the
theory has been done, and a loop has been accounted for
in a classical approximation for series and parallel net-
works. The analysis of the data near 0=0 is, in principle,
straightforward; however, since the amplitude of the con-
ductance fluctuations is comparable to AG~ there is con-
siderable danger of systematic errors in the fitting pro-
cedure which determines L&. From the results of such fits
throughout the range of temperatures it was determined
(under the standard assumption that L;„~AT i') that for
sample 1, Ls =0.98 pm and L;„=(0.41 pm) x T 3~4, and
for sample 2, Ls =2.84 pm and L;„=(1.53 pm) && T
(The fitted power p =0.75 ~0.1 is somewhat difTerent
from the other published results in metal wires. ) We
observe that L& is longer in sample 2 than in sample 1 by
more than a factor of 2 at all temperatures. Although the
absolute magnitude of the inelastic diA'usion length is
difI'erent for the two samples, the temperature dependence
is approximately the same. The quality of these fits can
be judged from Fig. 2(b) where the values of L& obtained
from the magnetoresistance are plotted along with the
above parametric equations (solid lines) for L&. To illus-
trate the importance of the boundary conditions we also
display the results obtained upon ignoring the boundary
corrections to Eq. (3) (dotted lines). Clearly the two
equations for BG~ yield diferent results. For sample 1,
where L/L& is larger, the difference is —15%, and for
sample 2, where L/L& —1.2, the correction is as much as
30%.

In principle, we can use these values to predict the am-
plitude of the aperiodic fluctuations and the h/e oscilla-
tions as a function of temperature. Except for the prefac-
tors G~ and G2, Eqs. (1) and (2) contain no free parame-
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The lengths L p and L I are related to L& by

Lp '=Lp '+LH'=LID '+2Ls '+LH'

LH =3(h/eHw)

and
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Typical results of fitting the weak localization term

where the subscripts denote inelastic (in), spin-orbit
(SO), and spin-flip (S) scattering lengths. In short sam-
ples where L —L&, it is important to account for the boun-
daries of the device. Here we employ the correction de-
rived by Santhanam [his Eq. (7)) which should be
applicable to four-terminal measurements, for i =1, 0,

T (K)

FIG. 2. (a) A representative fit of the weak localization term
Eq. (3) to the magnetoresistance near zero magnetic field. The
solid line is the experimental data, and the dashed curve is the fit

which yields L&=0.58 pm. (b) The values of L~ obtained from
fitting Eq. (4) to the magnetoresistance in sample 1 (O) and

sample 2 (&&). The solid lines are the parametric fits to the
weak localization data including the boundary corrections, and
the dotted lines are the fits without boundary corrections. The
dashed lines are the estimates of L& obtained from the amplitude
of the h/e oscillations.
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FIG. 3. The rms amplitude of the h/e oscillations (&) and
the aperiodic fluctuations (&) for samples 1 and 2 [(a) and (b),
respectively). The solid curves are the predictions from Eqs. (1)
and (2) where L& is taken from fits to weak localization. The
dashed lines are empirical fits to AG which are discussed in the
text.

ters, since the diffusion coefficient can be calculated from
the band parameters of Sb (EF—0.1 eV and %, =%I,
=5.36X10 /m ) and the measured sample resistivity.
We have measured the temperature dependence of the
root-mean-square (rms) amplitudes AGAF and HAGI, ~, for
the aperiodic fluctuations and h/e oscillations respectively.
We note that to determine these amplitudes it is necessary
to take into account the noise in the measurement. The
noise in each measurement has been calculated from the
"dead" regions in the Fourier spectrum (see Fig. 1), and
for each point in Fig. 3, the mean square noise has been
subtracted from (AG) . dGg~, was measured in the range
—1 & 0 & 1 T for both samples, and hGAF was measured
over wider field ranges. (Measurements from difl'erent
ranges of magnetic field yielded the same results to within
the experimental errors. ) The first point to notice is that
the oscillations and the random fluctuations do not follow
the same function of temperature. As expected the oscil-
lations are reduced more rapidly than the random com-
ponents as temperature increases and L& decreases.

Using the values of L& obtained from fitting Eq. (4), we
fitted Eq. (2) to the h/e data by optimizing the value of
G2 so that the fit coincided with the data near 0.5 K. This
choice of normalization is arbitrary, and others yield
diA'erent values of G2 but do not aAect the fit quality.
Similarly the values of L& were inserted into Eq. (1) and
fitted to the amplitude of the aperiodic fluctuations by ad-
justing G&. The predicted dependences appear as solid

lines in Fig. 3. The values of G ~ are 0.43 for sample 1 and
0.38 for sample 2, and G2 is 0.12 and 0.25 for samples 1

and 2, respectively. This factor of 2 difference between
the samples in G2 is more than we expected, and it might
indicate remnant errors in the values of L& (see below).
The values for G~ and G2 are, however, consistent with
theory and with previous experiments. ' Our results
clearly demonstrate that an independent check of Eqs. (1)
and (2} can be performed and that in this case it gives
qualitatively correct results.

The difference between the measurements and the pre-
dictions (solid lines), however, is significant at low tem-
peratures. In both samples the data have a somewhat
stronger dependence on temperature than the predictions
based on weak localization. For comparison, we fitted Eq.
(2) to AGp, y, using L& as an adjustable parameter (again
assuming a power law L;„~T~ for the inelastic scatter-
ing). Using the L& inferred from the temperature depen-
dence of AG~y„we calculated the amplitude of the
aperiodic fluctuations and the results are displayed as
dashed lines in Fig. 3. We find excellent self-consistency
within each sample. From these fits, G~ is 0.55 and 0.39
in samples 1 and 2 respectively, and G2 =0.30 and
p =0.75 ~ 0.1 in both samples. The resulting L& are
displayed as dashed lines in Fig. 2(b). In both samples,
the conductance fluctuations (dashed lines) exhibit more
temperature dependence than the L& inferred from h, G~
would lead one to expect. This is clearly seen in Figs. 2
and 3 where the dashed curves are stronger functions of
temperature than the solid curves. We conclude that the
two different expressions, Eqs. (2) and (3), yield diflerent
values of the phase coherence length. Nevertheless, the
qualitative agreement in Fig. 3 between h, G and the pre-
dictions (solid lines) based on L& inferred from weak lo-
calization is respectable. There are several possible
sources for the discrepancies seen at low temperatures.
We propose the following possibilities.

An obvious problem in the comparison between theory
and experiment is that the weak localization theory as-
sumes an ensemble average, and in the experiment this
average is far from complete. Using the L& inferred from
Eq. (3), in sample 1 we find the ratio L/L& is as low as 2 at
the lowest temperatures and for sample 2 it is as low as
1.2. Since the AF becomes a significant perturbation on
d, Gc at these low ratios [see Fig. 2(a)], it might contribute
to a systematic error in the values of L&. In addition, in
this limit both the magnitude and functional form of h, G~
are very sensitive to the assumptions employed for the
boundary corrections. It is possible that Eq. (4) is not ap-
propriate for our system. Another possible problem with
the analysis is that Lq is, in fact, a field-dependent param-
eter. The spin-flip scattering is quenched when H & kT/p
(p is the effective magnetic moment of the impurities)
which is less than 0.1 T at the lowest temperatures. The
fluctuation amplitudes h, GAF are measured in a regime
~here magnetic scattering is probably suppressed. In the
case of strong scattering from paramagnetic impurities,
the h/e oscillations are completely quenched at low fields
and regain their full amplitude at higher fields 27, 13 Al-
though there is no clear signature of strong magnetic
scattering in the present data, we would find it surprising
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if the process were completely absent.
The remaining possibility is that in Eq. (2) some nu-

merical constants are absent which multiply the sample or
phase coherence length, and the values of L& inferred from
fitting AGpg, are wrong. The self-consistency of the
dashed lines in Fig. 3 implies that this is unlikely —the
values of L& which fit the h/e oscillations also fit the
aperiodic fluctuations. In particular, setting L [in Eq. (2)]
to be half the perimeter of the loop, we obtain worse
agreement with weak localization predictions and un-
reasonably small values of 62. An error in the measured
value of L can also affect the quality of the fit because the
"cutoff" for the energy averaging factor in Eq. (2) shifts
with L. From the h/e frequency and the photographs of
the devices, we conclude that the error BL for sample 1 is
less than 2% and for sample 2 it is about 10%. Inserting
L+'BL into Eqs. (1) and (2), we find no significant
difference in the quality of the fits.

We have shown experimentally that the phase memory
length L& is a critical parameter determining the ampli-
tude of various conductance fluctuations which result

from Aharonov-Bohm effects in a normal metal. In
agreement with previous experiments ' ' the aperiodic
fluctuations average away as a power law in the ratio
L/L&, where L is the separation between the voltage
probes. In contrast, the periodic h/e oscillations are re-
duced exponentially as L&/L shrinks. The phase coherence
lengths determined from fitting the weak localization term
(with the proper boundary conditions) in the conductivity
yield predictions for the amplitudes of the conductance
fluctuations (both aperiodic and periodic components)
which are qualitatively correct. We attribute the quanti-
tative discrepancies partly to approximations in the
theoretical formulas used in the analysis of the data, and
partly to incomplete ensemble averaging within the de-
vices.
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D. Yu. Sharvin and Yu. V. Sharvin, Pis'ma Zh. Eksp. Teor.
Fiz. 34, 285 (1981) [JETP Lett. 34, 272 (1981)].

2R. A. Webb, S. Washburn, C. P. Um bach, and R. B.
Laibowitz, in Localization, Interaction, and Transport Phe-
nomena in Impure Metals, edited by G. Bergmann, Y. Bruyn-
seraede, and B. Kramer (Springer-Verlag, Heidelberg, 1985);
C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A.
Webb, Phys. Rev. B 30, 4048 (1984).

R. A. Webb, S. Washburn, C. P. Umbach, and R. B.
Laibowitz, Phys. Rev. Lett. 54, 2696 (1985); V. Chan-
drasekhar, M. J. Rooks, S. Wind, and D. E. Prober, ibid. 55,
1610 (1985); S. Datta, et al. ibid 55, 2344 (1985)..

4R. Landauer, Philos. Mag. 21, 863 (1970).
SY. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959); B. L.

Al'tshuler, A. G. Aronov, and B. Z. Spivak, Pis'ma Zh. Eksp.
Teor. Fiz. 33, 94 (1981) [JETP Lett. 33, 101 (1981)].

Y. Gefen, Y. Imry, and M. Ya. Azbel, Surf. Sci. 142, 203
(1984); Phys. Rev. Lett. 52, 129 (1984); M. Biittiker,
Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207
(1985).

7A. D. Stone, Phys. Rev. Lett. 54, 2692 (1985).
sP. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985);

B. L. Al'tshuler, Pis'ma Zh. Eksp. Teor. Fiz. 41, 530 (1985)
[JETP Lett. 41, 648 (1985)]; B. L. Al'tshuler and D. E.
Khmel'nitskii, ibid 42, 291 (1985.) [ibid 42, 359 (19.85)].

9A. D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986).
' A. D. Benoit, C. P. Umbach, R. B. Laibowitz, and R. A.

Webb, Phys. Rev. Lett. 58, 2343 (1987).
~ ~Y. Isawa, H. Ebisawa, and S. Maekawa, J. Phys. Soc. Jpn. 55,

2523 (1986).
A review of the perturbation theory is given in P. A. Lee,
A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039
(1987).

' For reviews, see Y. Imry, in Directions in Condensed Matter
Physics, edited by G. Grinstein and E. Mazenko (World

Scientific, Singapore, 1986), p. 101; S. Washburn and R. A.
Webb, Adv. Phys. 35, 375 (1986).

' W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jack-
el, D. M. Tennant, and A. D. Stone, Phys. Rev. Lett. 56, 2865
(1986); 58, 2347 (1987).

' C. P. Umbach, C. van Haesendonck, R. B. Laibowitz,
S. Washburn, and R. A. Webb, Phys. Rev. Lett. 56, 386
(1986). The data for h, G in this experiment were plotted after
the effect of the series addition of loops was factored out. In
this method of displaying the data, the power law is
pG ~~ —~/'2

' S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A.
Webb, Phys. R41v. B 32, 4789 (1985). The factor in brackets
is the inverse of the number of uncorrelated bands contribut-
ing to AGg, since this number is never less than one, the factor
in brackets can never exceed one.

'7D. Di Vincenzo (private communication); see also Ref. 11.
'sThis has been given erroneously in past publications (Wash-

burn and Webb in Ref. 13) as ~ z AD/L~~.
'9A. N. Broers, J. Van. Sci. Technol. 10, 979 (1973).

C. P. Umbach, A. N. Broers, C. G. Willson, R. Koch, and
R. B. Laibowitz (unpublished).

'Yu. A. Pospelov, G. S. Grachev, and S. G. Novikov, Zh. Eksp.
Teor. Fiz. 87, 2104 (1984) [Sov. Phys. JETP 60, 1215
(1984)], and references cited therein.
D. J. Bishop, R. C. Dynes, and D. C. Tsui, Phys. Rev. B 26,
773 (1982); G. Bergmann, Phys. Rep. 107, 1 (1984).
J. C. Licini, D. J. Bishop, M. A. Kastner, and J. Melngailis,
Phys. Rev. Lett. 55, 2987 (1985).

24B. Doucot and R. Rammal, J. Phys. (Paris) 47, 973 (1986);
Phys. Rev. Lett. 55, 1148 (1985).

zsP. Santhanam, Phys. Rev. B 35, 8737 (1987).
P. Santhanam, S. Wind, and D. E. Prober, Phys. Rev. 8 35,
3188 (1987), and references cited therein.

27A. D. Benoit er al. (unpublished).




