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Characteristic times for resonant tunneling in one dimension
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It is shown that the properties of the propagator for transmission through an arbitrary one-
dimensional potential lead in a natural way to two characteristic times z and z for decay, re-
spectively, through the end points of the system, in terms of which the lifetime z may be written
as 2r r /(r'+ r ) W.e obtain the traversal times rpL and rLO for scattering, respectively, from the
left and right ends of the system. In terms of these characteristic times, it is found that, in gen-
eral, for asymmetric or random potentials, the rate is given by toL/tro=(1 —R'i )/(1+R'i2),
where R stands for the refIection coefficient evaluated at resonance energy. A comparison with
experiment shows that tpL may be even an order of magnitude difIerent from tr. o.

In recent years there has been an increasing interest in
traversal times for tunneling. ' This is of particular im-
portance in the context of the remarkable developments in
the fabrication of solid-state devices at nanometric scales
as exemplified by multilayer heterostructures. Over the
years there has been a number of controversial definitions
of the concept of traversal time on a one-dimensional bar-
rier. ' All those approaches refer to a situation where
resonant eflects are absent. In the presence of resonant
processes, as in the multilayer heterostructures mentioned
above, which originate from a complicated constructive
interference phenomenon occurring in a time scale given

by the reciprocal of the resonance width r—6/I, a
diA'erent approach is required. Clearly, the lifetime z does
not provide information on whether the electron decays
through the left or right end points of the system, and
therefore it cannot be identified with a traversal time as
considered by some authors.

The purpose of this work is to show, for a general arbi-
trary one-dimensional potential, how resonant processes
give rise to two characteristic times z„and z„, associated,
respectively, with electronic decay through the end points
of the system. The result is of particular interest for the
case, normally found in physical cases, of scattering by
asymmetric or random potentials. It is important to em-
phasize that we are concerned here with single-potential
arrangements and not with ensemble averages. It is
shown below that the traversal times for scattering at res-
onance energy c„, respectively, from the left and right end
points of a one-dimensional system may be expressed in
terms of the above characteristic times. We show, when
compared with practical cases that these times may be
quite diff'erent.

Let us, therefore, consider an electron of energy E and
mass m incident from the left, x & 0, on an arbitrary one-
dimensional potential of finite length, i.e., V(x) =0; x ~ 0
and x ~ L. The solutions of the corresponding Schro-
dinger equation, outside the interaction range, may be

y (k, x) =2lkG+(O, x;k); 0~ x ~ L,
which is valid along the internal region of the interaction.
From Eq. (1) and the value of +i(k, x) at x =L, one ob-
tains the expression for the transmission amplitude'

ti(k) =2ikG+(O, L;k) exp( —ikL) . (2)

Near an isolated pole k„=a„—i b„, it is possible to write
the propagator ' as

G + (x,x 'k ) =u„(x )u„(x ')/2k„(k —k„), (3)

where the functions u„(x) obey the Schrodinger equation
with complex eigenvalues E„=1' k„/2m =e„—iI „/2, and
e„=h (a„—b„)/2m represents the position of the reso-
nance, and I „=6 (4a„b„)/2m the corresponding width.
The functions u„(x) satisfy purely outgoing boundary
conditions at the end points of the system, i.e.,
u„'(0) = —ik„u„(0), and u„'(L) =ik„u„(L). Here the
prime denotes derivative with respect to x. Using Eq. (3)
in Eqs. (1) and (2) allows one to write

~ +i(k, x)
~

and
~
ri(k)

~
near resonance, respectively, as

~
~i(k, x)

~

'=k'b„'~ u. (x)
~

'/a'Nk —a. )'+b'j (4)

written as yi(k, x) =exp(ikx)+r(k) exp( —ikx), x ~ 0,
and yi(k, x) =t(k) exp(ikx), x ~ L, where the subindex l
denotes that the electron approaches the system from the
left, k =(2mE)'//6, r(k), and t(k) stand, respectively,
for the reflection and transmission amplitudes.

It is well known that resonant processes may be de-
scribed in terms of the complex poles of the outgoing
Green's propagator G+(x,x';k) and its corresponding
residues. Making use of the equation for G+(x,x';k)
and its boundary conditions at the end points of the sys-
tem, enables one in a straightforward way, to obtain the
relationship '
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and

I tt(k) I
=k b„b„/a [(k —a„) +b ] (5)

for scattering from the left and the right, respectively,
from the expressions

r„=(rp+ r„')/2 . (6)

Equations (4) and (5) are convenient expressions to dis-
cuss resonant processes in one-dimensional systems. In
particular the quantities I „and I „may be seen as partial
decay widths through the corresponding end points of the
system. One may define the characteristic times

r„'-t/ro; r„'-b,/r„'.
In terms of the above quantities one may write the life-

time r- t'i/I „as
.=2., =2.„"„'/(.„'+.„'),

which features the lifetime in a rather curious way as
twice a reduced time in terms of z„and z„. The transmis-
sion coefficient T(k) =

I tt(k) I evaluated at resonance
may be written using (5) as

T(a„)=I „'r„'/r„',

which indicates that in general the transmission peak at
resonance depends on the values of the partial decay
widths. Clearly its value may be less than unity. From
Eqs. (6) and (9) one readily obtains an expression which
gives I „and I „ in terms of the total width I „and the cor-
responding value of the reflection coefficient R =1-Teval-
uated at resonance energy, namely

r„'=r„[I—lZ(a„)] '"] r'=r„[I+ [Z(a„)1' } (10)

which may be convenient for practical purposes. ' '

For scattering from the right, the transmission ampli-
tude t, (k) depends on G+(L,O;k), which is manifestly
symmetrical on b„and b„as shown by Eq. (5). However,
the corresponding probability density I +„(k,x) I will be
given in this case by

I +„(k,x) I
=k bn I un( )Ix/a„[(k —a„) +b„], (11)

which differs from Eq. (4) by the appearance of b„ in-
stead of b„. For a symmetric potential, it is well known
that the transmission peak attains a value of unity at reso-
nance energy, and therefore, using Eq. (5) it follows that
b„o=b„. Consequently, in that case I +t(k, x) I=

I +„(k,x) I . However, in general, for asymmetric po-
tentials b„&b„, which tell us that the decay will occur
with diA'erent probability and, therefore, with a diflerent
time scale through each end point of the system. Using
Eqs. (4) and (11)enables one to obtain the traversal times

where b„=
I u„(0) I

and b„=
I u„(L ) I denote, respec-

tively, the resonant eigenfunction u„(x) evaluated at each
end point of the system. The quantities b„and b„are not
independent. It can be easily shown ' by using Green's
theorem between the equations for u„(x) and u„*(x) and
the corresponding boundary conditions, that the pole
width b„may be written for an isolated resonance term as
b„=(b„+b„)/2 or equivalently,

and

46
toz(a. ) — „ I et (a„,x) I

'dx =
a„"p r„ r„ ' (12)

1
" 461

tzo(a ) — I +,(a„,x) I
'dx =

a r„ r„ (13)

The above results mean that although the transmission
coefficient for scattering from the left or from the right
has the same value, the corresponding traversal times tpL
and tLp are, in general, diAerent. The integrals appearing
in Eqs. (12) and (13) correspond to the definition of time
delay. It follows, therefore, that the analysis of traversal
times in terms of the phase of the transmission amplitude
is related to the present approach. A comparison will be
considered elsewhere. From Eqs. (12) and (13) one ob-
tains the ratio tpz/tzp-I „/I „and using Eq. (10) leads to
the result

t pz/tz p r.'/r.' = [I —[~(a„)] ' ]/[1 + [R (a„)] ' j

(14)

The authors acknowledge G. Monsivais for sharing his
computing abilities with us and the partial financial sup-
port from Subsecretaria de Educacion Superior e Inves-
tigacion Cientifica, Secretaria de Educacion Publica,
Mexico.

which allows one to estimate the rate of traversal times in

terms of the reflection coefficient evaluated at resonance
energy. For a symmetrical system one has I „=I„and,
hence t pL =tLp. In practice, however, the potential profile
is deformed by the applied voltage. It is well known that
this affects the value of the transmission peak ' and, as
shown by Eq. (9), this is related to the characteristic times
of the system, namely to the fact that I „&I „.As a conse-
quence, in this case the traversal time for scattering from
the left is diA'erent from that from the right, i.e., t pL&tLp.
For example, for the symmetrical double-barrier structure
considered by Sollner, Goodue, Tannewald, and Parker, '

with parameters U =0.23 eV, a =b =50 A, and
m* =0.08m„we obtain a width I =0.481 meV which
corresponds to a lifetime z —1.368x10 ' s, which is of
the same order of magnitude as other estimates. How-
ever, in the presence of an applied voltage of 0. 1 eV as
considered in Ref. 12, the transmission peak at resonance
attains the value T(e„)—0.644 and using Eq. (14) it is
predicted that tpz/tzp 0 25 Similarl. y, .for an applied
voltage of 0.24 eV, T(a„)—0.349 and tpz/tzp —0.11. The
above results indicate that the traversal times for the elec-
tron through the system may be quite diff'erent when the
resulting potential is asymmetrical.

The results of this work are relevant, in addition to
asymmetric double-barrier structures, for the case of ran-
dom one dimensional "superpotentials" ' ' and, in gen-
eral, for finite length one-dimensional problems.
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