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Local-density-functional calculation of electrodynamic surface response
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A frequency-dependent exchange-correlation potential is employed to calculate the nonlocal effects
on the optical response of jellium-metal surfaces within a microscopic self-consistent model. Results
for the frequency-dependent surface-response function d& for the whole range of metallic densities are
presented. In context with electrochemical experiments, the electric field effect on the differential
reflectance is studied.

Recently we have studied the electromagnetic response
of jellium-metal surfaces, using a microscopic nonlocal
theory based on the random-phase approximation (RPA). '

We concentrated on the so-called nonlocal optical effects,
which occur owing to the spread of optically induced
charges at the metal surface. These effects, which cannot
be described in the framework of classical Fresnel optics,
contain detailed information about the electronic surface
structure. This is why optical methods, such as difference
refIection spectroscopy or ultraviolet photoemission, have
attracted outstanding interest. An adequate survey of the
theory of surface electromagnetic fields may be found in
two recent review articles. '

In our model, ' the ground-state electronic density is
treated in the self-consistent density-functional formalism
elaborated by Lang and Kohn. This formalism allows a
consistent description of the electromagnetic surface
response, since the RPA comprises electron-hole pair and
collective plasma excitations, and the detailed electronic
structure at the surface is taken into account. A
shortcoming of the RPA treatment is, however, that ex-
change and correlation effects are not readjusted to the
responding electronic system. To get rid of this
discrepancy, a generalized linear-response theory, which
takes into account the static exchange-correlation poten-
tial, has been proposed, and various applications to
surface-response problems have be-n presented. '

An actual frequency-dependent linear-response theory,
with a corresponding frequency-dependent exchange-
correlation potential has been developed by Gross and
Kohn. The key equation which they derived for the
self-consistently induced electron density can be written
as

5n(K, z;co) = f dz'X' '(K,z, z';co)

X [@„(K,z', co)

+f„,(co
~

n (z'))5n(K, z';co)] .

Here, the nonlocal dependence in the direction parallel to

the metal surface is dissolved by Fourier transformation,
K denotes the two-dimensional parallel momentum vec-
tor, cu the frequency, and the z axis is chosen perpendicu-
lar to the surface. 7' ' denotes the density-density
response function of the unperturbed ground state, and

is the self-consistent electrostatic potential, which
fulfills Poisson's equation:

f„,(co~&+
~

n)= ', n [n—— E(n)] .
dn

(4)

Furthermore, f„,(co) is a complex-valued function, which
is analytic in the upper half of the complex co plane, and
satisfies the Kramers-Kronig relations.

Within this theory we have calculated the nonlocal
effects on the optical response of meta1 surfaces, i.e., the
linear response to an electromagnetic wave in oblique in-
cidence. In solving Maxwell's equations, the essential
simplification follows from a long-wavelength expansion.
It takes advantage of the fact that the external field and
the induced longitudinal field vary on different length
scales, given by the wavelength of light and the (much
smaller) Fermi wavelength, respectively. In this limit,
Maxwell's equations are effectively decoupled, and the in-

4„(z;co)= 4,„,(z;co)—4m.e 5n(z;o&),
dz2 ' dz2

with 4,„, the external applied potential. [For conveni-
ence, the K dependence in Eq. (2) is not written in full. ]
A local exchange-correlation term, which is linear in the
induced density 5n, emerges in Eq. (I). Omitting this
term (f„,=O) yields the conventional RPA response re-
ferred to before. In the spirit of local-density approxima-
tion, Gross and Kohn give a parametrization of the func-
tion f„, by a Fade-type expression, depending on the
exchange-correlation energy per particle of a homogene-
ous electron gas, c„. Asymptotically for zero and for
high frequency the following relations hold:

df„,(to=0
~

n) = [ns„,(n)],
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teresting nonlocal effects can be summarized in two
surface-response functions d II, d z. In our model, d

II
is

given by the zeroth momentum of the electron density,

T~~T~T T T

( )

0

T TTT T TW r 7 7

(b)

1
QII— dz [n (z) —n + e(z —zi, )],

with n+e(z —zb) the jellium density, 6 the unit step
function, and d~ is determined by the center of mass of
the optically induced charge,

di = I dz(z —zb)5n(z;co) I dz5n (z;co) . (6)

In calculating these surface-response functions, the small
parallel momentum vector K can be neglected owing to
the long-wavelength limit. Other optical quantities can be
expressed through these functions, e.g. the reflection am-
plitude for p-polarized light:

e,p p, —i (1——e't )(pptd~~ ~Kdi )—
rp =

e~p+pt i(1——e, )(Pp, d~~~+K di )

Here, the normal components of the incident and the
transverse transmitted wave vector are denoted by p and
p„respectively, K =

I
K I, and we introduced a free-

electron-like dielectric constant e, = 1 cop /co, with
co& ——(4irn+e /m )'~ the bulk plasma frequency, e the
electronic charge, and m the electronic mass.

In the numerical calculations we have used a finite jelli-
um slab model, owing to computational convenience. '

After solving the Kohn-Sham equations for the ground-
state electronic density self-consistently, we used a spe-
cial Fourier representation' to obtain the density-density
response. An improved approximation for the exchange-
correlation energy c.„, was incorporated. ' In calculating
the response function d~, a phenomenological damping
constant y has been included. "

In Fig. 1, the result for the surface-response function
dj is shown for different metallic densities, given by the
Wigner-Seitz radius r, =( ,'4vrn + a 0 ) —'~, with ao the
Bohr radius. Compared with the result of the conven-
tional RPA, ' our density-functional calculation yields
noticeably more negative values for the rea1 part of dz.
Since the exchange-correlation interaction is calculated
on equal footing both in the ground state and in the
response, the values of di in the static limit (co~0)
agree with the center of mass of the static induced
charge, obtained from a ground-state calcu1ation. ' The
imaginary part of d~ is, in the low-frequency region,
linear in co, and is likewise more negative than the RPA
result. Our results for di (co~0) and for the linear
coefficient of the imaginary part Imd~(co~0) =g(a~/co~ )
agree with those calculated by Liebsch for r, =2, 3,4. '

At higher frequencies no serious differences between the
two theories are discernable, so that our prevous inter-
pretation of the optical response' can be maintained.
We conclude that the effect of the exchange-correlation
interaction is important at moderate frequencies, but
negligible in the high-frequency regime.

Finally we briefly discuss, as an interesting applica-
tion, the electric field effect on the differentia1
reflectance, ' i.e., the relative change of the reflectance
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FIG. 1. (a) Real and (b) negative imaginary part of the surface
response function d& vs frequency. Solid lines: present calcula-
tion with frequency-dependent exchange-correlation interaction.
Dashed lines: conventional RPA. The parameters used in the
computations are jellium slab thickness, 48, 60, 90, and 100 A,
damping constant y/co~ =0.06,0.05,0.02, 0.02, for r, =2, 3,4, 5,
respectively. Note that for r, =4, 5 the scale is dift'erent than for
r, =2, 3. The estimated numerical accuracy is +0.05 A.
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FICx. 2. Field erat'ect on the difFerential reflectance for a metal
surface with r, =3 and surface charge o. (in pC/cm ): curve 1,
—3.8; curve 2, 0; curve 3, 3.8; curve 4, 7.6; curve 5, 15.3; curve 6,
22.9; and curve 7, 30.6. The change in surface charge is
Ao. =7.6 pC/cm and the angle of incident light is 45'.

R =
I r~ I

for differently charged metal surfaces,

bR /R =[R(o+4o ) —R(o ))/R(o ) .

with o the surface charge (per unit area). ' In Fig. 2 we
show typical results for the difFerential reflectance of a
metal surface with the surface charge varied from the
cathodic (curve 1) to high anodic (curve 7) values. Ap-
parently, the peak structure in —AR/R shifts towards
the plasma frequency and becomes sharper, but finally
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decreases. Since this effect is a result of the dramatic
changes in the surface-response function dz, it appears
only for p-polarized incident light.

Direct comparison of this field effect with conventional
electrochemical experiments, e.g. , at silver electrodes, ' is
not conclusive, since the experimental results depend
largely on the electronic band structure. However, for
free-electron metals, which can be studied in
nonaqueous electrolytes, the above theory is well estab-
lished. Experimental confirmation of the field effect would

provide a better understanding of the microscopic surface
response properties.

Vote added in proof. Recently, a correction to Eq. (4)
was published, ' which, however, does not change our re-
sults significantly.
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