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Inverse dielectric response function of a dielectric sphere
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We present a model inverse random-phase-approximation dielectric response function e '(r, r', co)

of a dielectric sphere of radius d. e '(r, r', co) is applied to the calculation of the image potentials
when the dielectric sphere is in the field of a point charge and in a uniform electric field.

I. INTRODUCTION

In our previous papers' we studied one of the most
basic properties (image formation) of a planar surface by
performing a model calculation of the real-space inversion
of the dielectric response function (DRF), e '(r, r', to), of
a dielectric slab and that of a semi-infinite dielectric
media. One is always interested in a spherical surface
after studying a planar surface. In this paper we extend
our calculation of e '(r, r', eo) to a dielectric sphere. We
present a compact form of e '(r, r', co) for a dielectric
sphere taking into consideration the long-range dipole-
dipole interaction. The DRF, thus obtained, has been ap-
plied to calculations of the image potentials (a) when the
dielectric sphere is kept in the field of a point charge, and
(b) when it is in a uniform electric field.

Spherical particles have been the subject of extensive in-
vestigations in a recent past. ' The distinct characteris-
tic of a spherical particle is the size dependence of its vari-
ous properties such as image potentials, surface excita-
tions, and optical and transport properties. The theoreti-
cal treatments of a spherical particle have followed two
routes. The first is to modify the usual bulk properties by
introducing the necessary boundary conditions. The
second rate is to treat the particle as a microscopic
quantum-mechanical system and to evaluate its properties
from first principles. During the recent past the second
route has been followed for a metallic particle by a num-
ber of researchers, who model it as a free-electron sys-
tem. ' Comparatively less work has been done on
nonmetallic particles because of the complexities in-

volved 5, 6, 20, 2i In this paper we study the dielectric
sphere, modeling it as a system composed of polarizable
atoms which interact with each other via a multipole-
multipole interaction on the application of an external
field. Using the extreme-tight-binding (ETB) model, we
first calculate the random-phase-approximation e '(r, r, co)
of a dielectric sphere, with which we than calculate the

image potentials when the dielectric sphere is in the field
of a point charge, and when it is in a uniform electric
field.

No —— 4Eg l(Eg —R to ), — (2)

C= f f d A, d p A, (A, —R)v(A, —p)A*(p —R) .

Es, v, R, and v (A. —p) denote he energy gap, the orienta-
tion index, the location of an atomic site, and the
Coulomb interaction, respectively. A„(A,—R) is the prod-
uct of valence- and conduction-band orbitals at an atomic
site R. Since A, (A, —R) and A *

(p —R) are localized,
matrix C can be expressed as

C=e~ f f d r d r'A, (r)

g (r V)" g (r'. V') p(R —R')A,*(r'),
n=0 m =0

(4)

where p(R —R')= I/
~

R —R' ~, V and V' are gradient
operators of R and R'. Separating the long-range interac-
tions from the short-range interactions, we write

C=gt+C, ,

where

II. INVERSION OF DIELECTRIC RESPONSE
FUNCTION

In order to obtain e '(r, r', co) we evaluate the matrix
(Qa'it ) which includes the multipole-multipole interac-
tions [see Eqs. (1) to (5) of Ref. 1]. The matrix (Qi7a )

can be expressed as a series given below. '
Q '=1+NoC+NoC C+NoC C C+

where

C, =d V[d "V'(5(R—R')],

C, = g f d r A, (r)(r.V)" d, V'P(R —R')+ —,
' g f d r'A * (r')(r'. V') P(R —R')

n =2 m =2

+ d .V+ —,
' g f d r A (r)(r.V)" g f d r' A '(r')(r' V') P(R —R'), (7)

=2 m =2
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where d is the dipole momentum. In order to calculate various matrix products of Eq. (1), we evaluate C C. The ma-
trix product C C cannot be calculated analytically unless we truncate Eq. (4). C, is significant only at atomic scale. In
order to calculate C C, we sum on R over the sphere. C &C ~, therefore, makes a large contribution to C C unless the
sphere is very small. We therefore can safely write CC=C&C~ for a reasonably big sphere in order to obtain

'(r, r', ru) for practical use. We can write [see Eq. (12) of Ref. 1]

C C=d nod, V f ds V"P(R—R")d,,"V'P(R"—R') —f d'R "(V") P(R —R")d,,"V'P(R"—R')
i

(8)

where n p is the atomic density, d is the average squared
dipole moment, and ds is the unit area along the outward
normal to the surface. On the right-hand side of Eq. (8)
finite-geometry effects appear in the first term while the
second term contains the pure bulk effects. The calcula-
tion of the second term is straightforward. We calculate
the first term by performing the surface integration over a
sphere of radius d. Choosing the origin at the center of
the sphere, R' along the z direction, R along the direction
(a, f3), and R" along the direction (H, P), we obtain

I

(QRR') ~RR'+DRR' (16)

where

No(co )
Bvv $vv C v1'

RR' RR'
1 AN ( )

RR'

Substituting the various matrix products in Eq. (1), and
then summing up various series, we obtain

C C= A(C D, ), — (9)

where

A =4~gpd2, (10)

n+1 d .V
D

&

—g, [R "dv' V'[R ' " P„(c os a)]]
n=0 2n +1

and

ANO(~) " (n +1)
1 —ANo(~) „„[2n+ 1 —ANO(co)]

CD ]
——AD2,

Similarly,

CDp ——AD3 .

In general, we have

CD )
——AD

where

D.=A y " '"+" ' d„V
(2 +1) d "+'

(12)

(14)

&& [R "d "V' [R ' "P„(cosa)] ] .

P„(cosa) being the Legendre function. It may be noted
that C is the dipole-dipole interaction matrix between the
real dipoles, while D

&
is the dipole-dipole interaction rna-

trix between the real dipoles and the first-order image di-
poles.

In order to evaluate C C C, we calculate the matrix
product CD&. Proceeding as in the calculation of C C, we
get

, (R "d,,"V'

)& [R ' "P„(cosa) ] )

(18)

The matrix BRR involves the pure bulk effects. It con-
tains the on-site dipole-dipole interaction and the
screened dipole-dipole interaction between the real di-
poles. On the other hand, the matrix D RR is the
screened dipole-dipole interaction between the real di-
poles and the image dipoles of different orders. DRR, a
distinct characteristic of a dielectric sphere, is added to
the bulk terms to obtain (Qtvtt )

' for a sphere. Dz'tt
provides all the information about the spherical surface
and the finite radius. As d~m, DRR is vanishingly
small and, consequently (Qtttt )

' reduces to the matrix
BRR, as it should. On the other hand, for small values
of d, Dzz dominates over BRR. This shows that surface
effects are more important than bulk effects in the case
of a small sphere. The response function e '(r, r', ~) of
a dielectric sphere can be now given by '

e '(r, r', co) =5(r —r')+No(co) g f d r"U (r —r') A, (r"—R)(B&z +Dt7tt ) A,*(r'—R')
v, R

(19)

Although we have neglected the short-range interactions in obtaining Q, Eq. (19) still contains a great deal of informa-
tion about the short-range interactions.
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III. IMAGE POTENTIALS

In order to demonstrate the physical correctness of Eq. (19), we calculate the image potentials when the dielectric
sphere is kept in the field of a point charge, and when it is a uniform electric field. The field of the point charge, qo, at
location a and the uniform electric field, Eo, are

v,„,(r) =qo/ r —a ~—:qoP(r —a), (20)

and

u,„,(r) =Eoz =Eor cos9 .

The image potential can be calculated as

u„,(r)= f d r'e '(r, r', co)v,„,(r') .

Substituting Eqs. (20) and (19) into Eq. (22) we can write

v„,(r) =u, „,(r) + u
~ (r)+ u2(r)+ v3(r),

(21)

(22)

(23)

where u, (r) and u2(r) correspond to the second and third terms, while u3(r) corresponds to the fourth term on the right-
hand side of Eq. (19). We can define v, (r) as the on-site potential, and u2(r) and u3(r) as the interaction potentials.
Keeping in mind the localized nature of A (r —R), v, (r) can be expressed as

v, (r)= g
vR n=O

f d r" A, , (r")(r".V)"u(r —R)
m=0

f d'r' A,*(r')(r'. V) u(r' —a) (24)

Separating the long-range interaction potential from the short-range interaction potential, we can write

v, (r) =u»(r)+u&, (r),
with

u~i(r)= g [d„VQ(r —R)][d„.VQ(R —a)],
v, R

and

(25)

(26)

V„(r)= g d„VQ(r —R) g f d r' A,*(r')(r' V') P(R —a)
v, R m =2

+d„.VQ(R —a) g f d r" A, (r")(r".V") u(r —R)
n =2

(27)

u»(r) can be calculated analytically while v„(r) cannot.
However, we can numerically calculate u„(r) by substi-
tuting the appropriate value of A, (r) as has been done for
a bulk semiconductor in Sec. III of Ref. 22. We here no-
tice that depending on the position of field point (r) and
the source point (a), u, (r) has the following four possible
values which correspond to the cases: (i) r & d and a &d,
(ii) r &d and a & d, (iii) r & d and a &d, and (iv) r & d and
a &d. We see from Eq. (27) that v&, (r) has a substantial
contribution to v

&
(r) only when either r or a, or both r and

a are in the vicinity of the spherical surface. On the other
hand, when both r and a are away from the surface, the
contribution of u„(r) to u, (r} is insignificant and
v~(r)=v&~(r). The main object of this paper is to obtain a
model e '(r, r', co) of a sphere and to demonstrate the
correctness of our model e '( r, r', co ). We therefore
neglect the short-range potentials and calculate only
u &~(r) in order to obtain analytic results. We similarly cal-
culate only long-range interaction parts of potentials v2(r )

and v3(r). Our results are given, for case (i) r &d and
Q (d, as

u&(r)= ANo(co) u,„,(r) —qo P A,„
n=0

A No(co)

1 —ANo(co)
'"'

n + 1n=0

A No(co)
u3(r) = — qo

1 —AN() (co )

oo 2

x g 2n +1 [2n +1—ANo(co)]

where

n +1 r "a"
p (g, )2n+1 d n+

(28}

(29)

(30)
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with

r-a=ra cosO' .

Similarly, neglecting the short-range interactions u
~ (r),

uz(r), and uz(r) for cases (ii) —(iv) are given by
and

A N (co)

)E]
(39)

v&(r) = ANo(co)qo g
n=0

(31)
2 A Np(co)

u~(r) = —— Epr cosg .
9 [1—ANp(co)][3 —ANo(co)]

and

A 'No(~)qp " n

1 —ANp(co) „p n+1

A No(co)

1 —ANp(co) 2n + 1n=0

(32)
For case (b)

d
u, (r) =—No(co) Eocos9,1

3
0 2 0

A No(co)
u2(r)= Epcos6

g [1—ANo(cu)] r~

(40)

(42)X,(33)[2n + 1 —
A No (co ) ]

and

2 A No(co)
vg(r) = —— EpcosO

9 [1—ANp(cu)][3 —ANo(co)] r~

where for cases (ii) —(iv) P„ is given by

n

P(c soH'),
a2n+]

Here we again neglected the short-range potentials, in or-
der to avoid numerical computation. The short-range po-
tentials substantially contribute to u„,(r) when r is in vi-

cinity of surface. The v„,(r) can be given by

n

P„(cos8'),
2n +1 r 2n+1

E.

d2n+1
P„(c soO'), —

2n+1 r + a

respectively. On substituting Eqs. (28)—(30) into Eq. (23),
we get for case (i)

v„,(r)=u, „,(r) —v;„d(r) .

Here for case (a) r & d

e(co) —1
u; d(r) = Epr cosO

e(co }+2

(44)

(45)

u, „,(r)
u„,(r) = —v;„d(r),

E(CO)

where

(34)

For case (b} r & d

e(cu) —1 d
v;„d(r) = EocosO .

6 ca) +2 r
(46)

e(co) —1 " (n + 1) r "a"
e(co) o [ne(co)+n +1] d~" +'

(35)

Here e'(co) is the "long-wavelength" dielectric function.
For cases (ii) —(iv) we substitute Eqs. (31)—(33) into Eq.
(23). We obtain

v„,(r) = u,„,(r) —u;„d(r), (36)

where

u;„d(r) = [e(co)—1]qp g (2n +1)
ne(co +n +1 (37)

u, (r) = Np(co)Epr cosO, —
3

(38)

For the case of a uniform electric field, v&(r), v2(r), and

u&(r) have two values according to cases (a) r &d and (b)
r &d. Neglecting the short-range interaction part, u, (r),
uz(r), and v~(r) are given for case (a) as

IV. DISCUSSION AND CONCLUSIONS

Our results for the image potentials, given is Eqs. (35),
(37), (45), and (46), are exactly the same as those obtained
using classical electrodynamics, as they should be be-
cause we have considered only long-range interaction
effects. This demonstrates the physical correctness of our
model E '(r, r', co). Our results for the image potential are
obtained using a quantum-mechanical approach which is
based on the dielectric response function of the sphere,
and which does not involve any matching conditions.
Thus our calculation of image potentials provides a
quantum-mechanical proof of old classical results. We
note here that the evaluation of Eq. (23) with the use of
appropriate bond orbitals gives short-range fluctuating
terms in the image potentials. This information about
short-range fluctuations in the image potentials can be ob-
tained by performing a numerical computation of Eq.
(27). We have, however, confined ourselves to only the
analytically obtainable results in this paper.

To conclude, we have reported a simple analytic expres-
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sion for a model e '(r, r', co), which incorporates the basic
and most distinct features of a dielectric sphere. Equation
(19) yields a good model RPA e '(r, r', co) unless the ra-
dius of the sphere is very small. The imaginary part of
ETB model e '(r, r', co) contains a 5 function, and there-
fore, it does not give a physically correct answer for opti-
cal properties. Our calculation should be extended
beyond the ETB model in order to study the optical prop-
erties of a dielectric sphere. ' A further modification of
our calculation is the inclusion of the quantum size
effects.
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