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The theory of the heavy-ferrnion state in the Anderson lattice at absolute zero presented in the pre-
vious paper is extended to finite temperatures. This extension is systematically accomplished by us-

ing thermofield dynamics. The use of this formalism enables us to calculate the densities of states of
the f electron and the conduction electron in the Anderson lattice at finite tetnperatures. An ex-
tremely sharp peak in each of the densities of states appears very near the Fermi level at low temper-
atures, along with a broad resonance peak outside the sharp peak. This narrow sharp peak corre-
sponds to a heavy-quasifermion state. When the temperature increases, the sharp peak broadens and
its height decreases due to a shortening of the quasifermion lifetime. This change may cause the
crossover from the heavy-fermion state to the Kondo-impurity-like state observed in cerium and
uranium compounds.

I. INTRODUCTION

Since the discovery of heavy-fermion systems in cerium
and uranium compounds, extensive experimental and
theoretical studies concerning their unusual properties
have been done by many investigators. The following are
some of the experimental results. ' The specific-heat
coefFicients of these compounds are extremely large at low
temperatures. The electrical resistivity in the systems ex-
hibits a temperature dependence similar to that in
Kondo-impurity systems at relatively high temperatures.
However, at low temperatures, the resistivity is very small
compared with that in Kondo-impurity systems and is
proportional to the square of the temperature. This low-
temperature state in the systems is called the heavy-
fermion state or the coherent state. Some of the com-
pounds show superconductivity in the heavy-fermion
state.

Stimulated by the experimental results mentioned
above, many theoretical studies have been made. For
treating the heavy-fermion systems, theoreticians usually
use the following Anderson-lattice model. The f-electron
ions whose f-electron energy levels are inside the conduc-
tion band are regularly placed at all lattice sites. The con-
duction electrons and the f electrons are mixed by the
mixing interaction. The strong correlation interaction
acts between f electrons when two f electrons sit on the
same site. In a previous paper (referred to as paper I
hereafter), we used the following method to solve the
Anderson-lattice problem at absolute zero. We assumed
the Kondo regime where the f-electron levels are placed
deeply below the Fermi level. In this regime, charge fluc-
tuations are weak, and thus spin fluctuations dominantly
contribute to the self-energies of electrons. Therefore, we
set up coupled Dyson equations for the Green's functions
for the electrons and the spin fluctuations. Between the
self-energies and the vertex functions, there are various
Ward-Takahashi relations which originate from the spin-
rotational invariance. These Ward- Takahashi relations
were utilized to relate the vertex functions to the self-

energies within the one-loop approximation. The Dyson
equations which are approximated so as to satisfy these
relations were solved numerically.

It has been shown that the unusual behavior of electri-
cal resistivity, therrnopower, specific heat, etc. in Kondo-
impurity systems is explained in a unified manner by the
resonance level appearing near the Fermi level. The res-
onance level forms a peak in the density of states of the f
electron near the Fermi level, when the density of states is
calculated using an impurity Anderson model. It may be
interesting to see how the resonance level is modified in
the Anderson lattice. For this purpose we calculated the
spectral density of the f-electron Green's function at abso-
lute zero in paper I. The result is summarized as follows.
When the wave number is fixed and the energy is
changed, a very sharp peak appears near the Fermi level,
corresponding to the quasifermion state. The energy
dispersion of the quasifermion is very weak, indicating
that the effective mass of the quasifermion is very heavy.
Along with this sharp peak, a broad peak appears in a rel-
atively high-energy region. This broad peak corresponds
to the resonance level which is similar to the resonance
level in the Anderson-impurity model.

Accordingly, we concluded that an essential difference
of the electronic state in the Anderson lattice from that in
the Kondo-impurity system is the appearance of the
quasifermion state near the Fermi level. The fermion
state may be responsible for the large coefficient of specific
heat, the anomalous behavior of electrical resistivity, ther-
mopower, and Hall effect, and also for superconductivity.

Our theory was restricted to absolute zero in paper I.
In the present paper, to clarify the origin of the crossover
between the heavy-fermion state and the irnpuritylike state
at relatively high temperatures, we extend our theory to
finite temperatures using the thermofield dynamics '

which is a real-time formalism of quantum field theory at
finite temperatures. A merit of the use of the thermofield
dynamics is that there is no need to use the analytic con-
tinuation for obtaining dynamical quantities in contrast to
the method of the temperature Green's function. The re-
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suit of calculation is the following. The quasifermions
even at the Fermi level have finite lifetimes at finite tem-
peratures. As a result, the quasifermion level near the
Fermi level rapidly changes to the resonance level as the
temperature increases above a certain temperature. Ac-
cording to this change, the narrow sharp peak in the den-
sity of states near the Fermi level broadens and its height
decreases as temperature increases. This change of the
state near the Fermi level may cause the crossover from
the heavy-fermion state to the Kondo-impurity-like state.

In Sec. II we give the formalism for the Anderson lat-
tice at a finite temperature, and derive the Dyson equa-

tions for the self-energy, the spin fiuctuations, and the ver-
tex functions. In Sec. III we describe the procedure of
solving the equations numerically and present the result
of the calculation for the density of states of the f electron
and the conduction electron. In Sec. IV the importance
of the many-body effect in this system is especially em-
phasized.

II. FORMULATION

Let us consider the Anderson-lattice model described
by the Hamiltonian

H = g J d xIP (x)c( —V )P (x)+Epg (x)i/i (x)+ V[/" (x)P (x)+P (x)P (x)]+—,'UP (x)it" (x)P (x)P (x)I, (2. 1)

with

s( —V' )= — V' —p .
1

2m
(2.2)

Here, P (x) and P are the Heisenberg fields, respectively,
for the conduction electrons and f electrons, Ep is the
atomic f-electron level measured from the chemical po-
tential p, V is the mixing parameter, and U is the correla-
tion energy between f electrons. Throughout this paper
we use the units 4=k~ ——1. In the following calculations
we utilize the formulation of thermofield dynamics (TFD)

H=H —H,
where

(2.3)

to extend the theory for the Anderson lattice presented in

paper I to that of finite temperature. In the TFD formal-
ism the tilde Heisenberg fields which anticommute (com-
mute) with the Heisenberg fields for fermions (bosons) are
introduced to incorporate the temperature effect. ' We
denote these tilde Heisenberg fields for the conduction
and f electrons, respectively, by P (x) and P (x). The
system is then described by the total Hamiltonian,

H= g f d x[g (x)E( —V' )P (x)+Epg "(x)P (x)+V[/ (x)P (x)+P (x)P (x)]+—,'UP (x)it (x)P (x)P (x)I .

(2.4)

Following Ref. 7, we define the thermal doublet:

P (x) for a=1,
P (x)=

P "(x) for a=2, (2.5)

where

a 1 for a=1,
—1 for a=2 . (2.9)

Now let us introduce the causal Green's functions for the

f and conduction electrons:

iI) (x) for a= 1,
P (x)=

(x) for a=2 .
(2.6)

(2.7)

Hamiltonian (2.3) leads to the following equations for P
and P:

g ~(x —y)=(0(P)
~

'rP (x)[Pg(y)]"
~

0(P))

4p g
cxP p e iP (x —y )

(2m. )

C ( —y)=(0(P)
~

&g ( )[P(y)] ~0(P))

d4 CaP(~) iPix —y)

(27r )"

(2.10)

(2.11)

(iB, —Ep)P (x)=V/ (x)+Uc [P (x)] P (x)P (x),
(2.8)

where
~
0(p) ) is the temperature-dependent vacuum state,

P being the inverse temperature, 1/T. The equations for
g ~ and Cf can be derived using Eqs. (2.7) and (2.8):
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(iB, E—p)g ~(x —y)+iV g f d zS ~(x —z)g~~(z —y)
y

=i5I I(x —y)+ UE (0(/3) T[P (x)] P (x)P (x)[P~(y)]
~

0(/3) ), (2.12)

C (x —y)=S (x —y) —V f d z~d zq g S '(x —z~)g ' '(z~ —zq)S ' (zq —y), (2.13)
~1~~2

where S ~(x —y) is the unperturbed conduction-electron Green's function and is given by

S ~(x —y)= f d p S ~(p)e'~
(2~)

with

(2.14)

S P(p)=

CF(po) dF(po)+
po —

C& + l'7f pO —
E&

—1'77

—CF(pp)dF(pp) CF(po)dF(po)+
po —E,p + l'77 po —cp —l'g

—CF (pp )dF (p p ) CF (po )dF (po )
+

po —~p +&'9 po ~p '9
dF(po) CF(po)+

po —cj +ig po —c~ —~ I

(2.15)

where g is an infinitesimal positive number, and Then, substituting Eq. (2.22) into Eq. (2. 12) and making a
Fourier transformation, we obtain

CF(po)=e /(e ' + 1) dF(po)= 1/(e ' + 1)

(2.16) g [(pp —E~)5 z
—V'S ~(p) &~—(p)]g~ (p) =1

y

(2.23)

cp ——p /2m —p . (2.17)

We note that the Green's function (2. 15) can be rewritten
in a more compact form:

Since the self-energy function can be separated into its
real and imaginary parts in the following form -from the
requirement of its analyticity,

1

UF(pp) pp —E~+iq
S P(p) =

po —cp —l 'g

UF(p p)

X ~(p)=X~~(p)5~p —iX2 (p)[UF(pp)rUF(pp)] (2.24)

substitution of expression (2.24) into Eq. (2.23) yields the
formal solution of the f-electron Green's function as fol-
lows:

or

S ~(p)=

where

po —Ep

(2. 18)

5 p i~5(pp —e~—)[UF(pp)rUF(pp)] ~,

(2. 19)

g ~(p)=g~ (p)5~p —ig2 (p)[UF(pp)~UF(pp)] ~,

where

pp Ep —&) (p) ——V'/(pp —E~)
g~ (p) =

2 2 2
[po Eo —Xi (p) —V /(p—o —e&)] +X&~(p)

(2.25)

(2.26)

CF(po ) dF(po )

UF(po) =
dF(pp) CF(pp)—

1 0
0 —1

(2.20)

(2.21)

&2 (p)
g~ (p)= 2 2 2

[po Ep ~1 (p) V /(po Ep )] +~2cr(p)

(2.27)

We define the f-electron self-energy function X ~(p) by
the relation

Uc, (0(/3)
~
T[P (x)] P (x)P (x)[P~(y)]

~

0(P))

C ~(p)=S ~(p)+ V g S '(p)g ' '(p)S ' (p)
] 1~] 2

=C~ (p)5 p
—iCq (p)[UF(pp)rUF(pp)] (2.28)

The Green's function for the conduction electron is also
obtained from Eq. (2. 13) as

f d'p & (p)g ~(p)e' '

(2~)
(2.22)

where
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&i (p) =

&. (p)=
V X2 (p)+

[po —Eo —&1 (p)l'+&z (p)'

V'[po —Eo —&1 (p) l
po —ca-

[po —Eo —&1 (p)]'+ &a~(p)'
r

V [po E—o —Xi (p)] V X2 (p)
po —~p-

[po —Eo —&i.(p)l +&2.(p) [po —Eo —&i.(p)] +&2 (p)
+ 2 2

V X2 (p)

[po Eo ~1 (p)] +~& (p)
2 2

V [po —Eo —&i (p)]
po —ca-

[poo

—Eo —& i (p) ]'+ &z (p)'

2

'2

(2.29)

(2.30)

Let us consider the Kondo regime where f-electron energy levels are deeply below the Fermi level. In this regime spin
fluctuations dominantly contribute to the many-body correction to the f-electron self-energy at low temperatures. There-
fore, we set up the Dyson equation for the self-energy function in terms of the spin-IIuctuation and f-electron Green s
functions. To do so let us define the spin-fluctuation Green's function at a temperature T as

b. ~(x —y)=(0(P)
I
Tcr+(x)o~ (y)

I
0(P)) = f d p b ~(q)e q'"-~',

(2'�)
(2.31)

cr+(x)=c, [P, (x)] P, (x) and cr (x)=E [P, (x)] (t, (x) .
/

The vertex functions I +s(p;q;r) and I ' s(p;q;r) are introduced by expressing the three-point functions as

(0(P)
I

Tcr+(x)g~t(xi )[Pr(xp)]"
I
0(P) )

(2.32)

f d'p d'q s g~~ (p)gi'(p+q) —g ~'(q)l +s(p q p+q)gt'(p)gi'(p+q) e
(2') h, a, b

(o(P)
I
T~ (x)y~(x, )[yI'(x, )]'

I
o(P))

(2.33)

d 4 d4 a f3' + ay gba gab + . . pa + g by '[& +ql l 'q 'P

6,a, b

(2.34)

We note that the two-particle Green's function (2.22) can be expressed in terms of the above three-point functions:

—(0( ) T ( ), ( ) ~(y) 0( ))
(0(P) T[y ( )] y ( )y ( )[(()'(y)] Io(P))= .

—(0(p)
I
Ta+(x)p, (x)[p~(y)]'0(p)) for cr = ( .

(2.35)

Therefore, substituting the three-point functions (2.33) and (2.34) into (2.35), and using the relation (2.22), we obtain the
equations for the self-energy functions,

X,~(p)= Unfed (3+ U d'q a'q r ~& p+q;q;pg, ' p+q,
(2~)

(2.36)

X,~(p)= Unfo g+ U

where we used the relation

d q 6 q I+~~p —q;q;pg, 'p —q
(2~)

(2.37)

4(2~)
(2.38)

The equation for the spin-fluctuation Green's function can be constructed with the use of the three-point functions by
noticing the relation

or

(0(/3)
I
Tcr+(x)o (y)

I
0(p)) = —(0(p)

I
Tcr+(x)p, (t, y)[p~(t +0, y)] I

0(p))E

&o«)
I
T~+«)~-(y)

I
0(» & = —&o«)

I

T~ —(y)4 (ty y)[4"(ty+0 y)l'
I
0(p) &E

(2.39)

(2.40)
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Using the relations (2.31), (2.33), and (2.34), we thus have

b, ~(q) =— f d'ue g~i V»gi~V +q)s~+, f d'S g ~'(q)1'+bV;q;u+q)gt V»gi V +q)E~
(2m) c (2m') ~ ~bs

(2.41)

or

b;~(q) =— f d'~E g~ V)gi V +q)E'+ ', f d'u r, &"(q)l"-'su+q qV)gt V)gi V+q)s'.

(2.42)

Here, the integration path c is taken in the upper half-
plane of complex po, i.e., Impo &0. Equations (2.41) and
(2.42) indicate the relation for the vertices:

I +bs(p;q;p +q)=1 's(p +q;q;p) . (2.43)

UI +s(p+q;q;p) = UI +s(pF, O;pF ) =A,„5,s5bs, (2.44)

where pF = (0,pF ), pF being the Fermi momentum, and
is the renormalized coupling constant. Then Eqs.

(2.36) and (2.37) become, respectively,

X„~(p)= Un, 5 ~+A„ , f d q b~ (q)g, ~(p+q),

(2.45)

Equations (2.36), (2.37), (2.41), and (2.42) provide a set of
coupled equations to determine the f-electron and spin-
Auctuation Green's functions when the vertex functions
are given.

As discussed in paper I, we approximate the vertex
function in Eqs. (2.36) and (2.37) in the following way:

Let us proceed to the discussion about the equation for
b, ~(q). As discussed in paper I, to maintain the correct
low-energy behavior of b, ~(q) in an approximate calcula-
tion, the spin-rotational invariance of the system should
not be violated. Therefore we seek an approximation for
5 ~(q) which is consistent with the approximation done
for the self-energy functions (2.45) and (2.46) in a sense
that the spin-rotational invariance of the system is main-
tained. To do so, the vertex functions I +"s in Eqs. (2.41)
and (2.42) approximated so as to satisfy the Ward-
Takahashi relations which stem from the spin-rotational
invariance of the system. For deriving the Ward-
Takahashi relations, we add the following symmetry-
breaking terms to the total Hamiltonian (2.3):

—g Ph, E [P (x)] o3$ (x)+ —,'hfE [P (x)]to3(b (x)),

(2.47)

where o.3 is the Pauli matrix. In the presence of the above
terms the following equation for the three-point functions
(2.33) can be derived:(2.46)

X,~(p)=Unf5 ~+X'„, f d'q b ~(q)g~~ (p q) . —
L

( —'& +hf)(0(p)
~

T ( )y~( |)[y ( 2)] ~0(p)&= 5 p5"'(x — ])E g ( ] — 2) —5 y5 "( —x2)E g~ ( 1
—2)

—Ve (0(P)
~
TI[P, (x)] P, (x)

—[P;(x)]'P;(x)Iy', (,)[y~(, )]'
~

0(P) & . (2.48)

If it is noted that

(0(P)
~

T [P (x)] @ (x)P~(x )[P~(x )]
~

0(P) & = iV f d z—Q S,~(x —z)(0(P)
~

T [P„(x)]P~(z)P~(x, )[P~(x )]'
~
0(P) &,

(2.49)

~0(p)
~
T[Q ( )] p ( )p~( )[p~( )]

~

0(p) & = —V f d' g (0(p)
~

T[y', ( )]'y;( )y~(x )[y', ( )]'
~
0(p) &&', ( — ),

(2.50)

a Fourier transformation of the two-particle Careen s function appearing on the right-hand side of Eq. (2.48) is expressed
as
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(0(lii)
i T[[P,(x)] P, (x)—[P, (x)] P, (x)IP~(x, )[gr(x )] i

0(/3))

l 4 4
—O'0+ ~s + ~p+q —~pf d'p d'q ' '

g (p)g "(p+q)
(2') (po+qo —c,~+~ ——,

' h, )(po —E~ + —,
' h, )

d4kl 4
—9'0+h, + ca+q —t

(2n) (ko+ qo —sa+q ——,
' ".)(ko &k —+ —,

' h. )

x g g g, '(p)g, '(k+q)r'„', ", ' '(p, k+q;p+q;k)

61y, spa, , ipx I +iqx —i (p +q)xp
Xg& (p+q)g& (k) (2.51)

Here, we introduced the vertex function with four f-electron external points I ri'„(p, q;r, s). Substitution of Eqs. (2.33)
and (2.51) into Eq. (2.48) gives

g, '(p) —g, '(p+q) = —(qo —hf)5 ~+(qo —hf) g 11 (q)I +s(p;q;p+q)+ V [S, (p+q) —S, (p)]

+V2 l 4 QP+A~+Eg+q cg

(2') (ko+qo —sk+, —
—,'h, )(ko Ek+ —,'h, )

where

II (q) g Erb, r (q)
y

a, b, y

(2.52)

(2.53)

As shown in Appendix A, this equation leads to the following Ward-Takahashi relations in the limit of q~O and
h, =hf~0:

r

=+,'a, y r;~,(p;0;p),
~~f g —0

(2.54)

ar;I', (p)

Bh,

1 l 4

o 2 (2m)

V g gr'(k)g „r(k)I '~ (p, k;p, k),
(ko —ea )

(2.55)

ar;I', (p) =~,y r;1's(p;0;p)—
h=0

V2f d k —,g gr'(k)g, r(k)1, ;~"(p,k;p, k),
(2~) (ko —&a),, b, r

(2.56)

where

as;~(p)
Bp A =0

l f d k, g gr'(k)g", (k)I „'~,'(p, k;p, k),4 V2 BRA

(2 ) (ko —si, )'
(2.57)

a, =11'(0), (2.58)

which is independent of 5. The signs + and —in Eq. (2.54) and —and + in Eq. (2.55) are taken for the spin suffices
& and & of the self-energy respectively.

Let us now determine the vertex function I +s(p;q;p +q), using Eq. (2.52) and the Ward-Takahashi relations
(2.54)—(2.57). Following paper I, we approximate the last term on the right-hand side of Eq. (2.52) by its form for small

q:

V f d k — g gr'(k+q)g", r(k)1, i~„"(p, k+q;p+q, k)
l —go+~s+~I +q —~e

( 2~ ) ( k Q +q Q E& + ~
—

—,
' h, ) ( k o —Ea + —,

' h, ), b r

=( —qo+h, ) —f d k
(2~)

V g g r'(k)g, r (k)1,; 'P~(p, k;p, k)
(ko —Ea )

+q. , f d k g gr'(k)g', r(k)r, ;,'P,'(p, k;p, k) . (2.59)l 4 V BEk

(2~) (ko —E )'
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Here, we assumed h, =0. The integrals on the right-hand side of (2.59) can be replaced by the derivatives of the self-
energy function (2.55) and (2.57):

1 g gP(k+q)g, (k)I, P, (p, k+q;p+q, k)
gp+ hs+ Ek+q k

(2~) 0+qp sk +~ 2
h )(kp Ek +

&& ~(p)
=2(qp —h, )

S 6=0

BX„~(p)

ap h=o
(2.60)

Substituting Eq. (2.60) into Eq. (2.52), we find the approximate equation for the vertex function I +s(p;q;p +q):

(qp —hf) g II (q)I +s(p;q;p+q)=g, '(p) —g, '(p+q) +(qp —hf)5 p
—V [S, (p+q) —S„(p)]

ar;~(p)—2(qp —hf )
Bh, 6=0

&& ~(p)

Bp h=0
(2.61)

As can easily be checked, the vertex function I +~ given in the above equation satisfies the Ward-Takahashi relation
(2.54). This Ward-Takahashi relation is a result of the spin-rotational invariance of the system as shown in Ref. 8, so
that the use of Eq. (2.61) for the vertex function in Eq. (2.41) leads to the approximate equation for b, ~(q) which does
not break the spin-rotational invariance. Thus we have the following equation for the spin-fluctuation Green s function:

(qp —hf )II~(q) =Mf —V
(2m )

—gp+ Aq +Ep+q —Cpf d'p g g~~ (p)g i~(p+q)e~
(pp+qp —e~+~ —i h, )(pp —E~+

l ar (p)—2(qp —hf), f d'p g g~t'(p)
(2~)'

g', ~(p +q)E~
/1 =0

ar (p)—q, f d'p gg~t'(p)
(2~) ~, g ~P

g", (p +q)E' .
6=0

(2.62)

In deriving Eq. (2.62) we used the relation
0

f d p[gP(p+q) g~~(p)]a~=—n „n,=Mf—.
(2vr) c

(2.63)

When the limit of hf, h, ~O is taken in Eq. (2.62), we
should be careful with the real part of II~(q), especially in
its static limit, since the real part has a pole term,
Mf /(qp —hf ). The limit of hf, h, ~0 should follow after
the static limit q0~0 is taken in calculating II~(0) (see
Appendix B). The equation along with Eq. (2.45) or
(2.46) provides a set of coupled equations to determine the
self-energy and the spin-fluctuation Green's function. In
Sec. III those equations are approximately solved.

III. NUMERICAL CALCULATION

To solve the coupled equations (2.45), (2.46), and (2.62),
we introduce the following spectral representations for
g ~(p) and b, ~(q), '

g~ (p)= f dw p~(w, p)[UF(w)(pp —w +i&)'UF(w. )]

(3.1)

(q)=f dw D(w, q)[Ug(w) r(q 0—w+i6r) 'Us(w)]

(3.2)

where p (w, p) and D(w, q) are the spectral functions. We
assumed that the spin-Auctuation Green's function is bo-
sonlike. Then the matrix Us(w) is given by '

Cs(w) ds(w)

ds(w) Cs(w) (3.3)

with

Cs(w)=e i /(e i —1) and ds(w)=1/(e i —1) .

(3.4)

Substituting the expressions (3.1) and (3.2) into Eqs. (2.45)
and (2.46), we rewrite the equations for the self-energies
as follows:

Xf J(p)=Un, , 6e+ f dwX2, , (w, p)[UF(w)(pp —w+l57)'UF(w))

where

(3.5).

+2(, i (p) =&,' f dqp f p, ,(p+q)D (q)(2')
1 1

qo iT (qo+po)/T+
e —1 e +

(3.6)
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Note that the right-hand side of Eq. (3.5) can be divided into the real and imaginary parts as

X,
,

~i(p)= Unf, + f dw
1

~2i, i( w, p) 6~g &n—X2, , (p)[ UF(po)&UF(po) l (3.7)

Comparing this with Eq. (2.24), we find
&i(p) = &i(p) —Xi(0,pF )

Xi (p)= Unf, + f dw

X2 (P)=~22 (P) .

1
X2 (w, P),

P0 —lS
(3.8)

(3.9)

1 1—
X2(w, P)+ X2(w, PF )

P0 —N
iT =0

(3.12)

In the case of no external field the self-energy does not de-
pend on the spin direction, so we drop the spin indices
hereafter.

In the following numerical calculations we choose a re-
normalized f-electron level

Eo =Ep+ &i(0 PF )
i T =0 (3.10)

Ep+ Xi(p) =Ep+ &i(p), (3.11)

with

as a parameter, where the second term is the real part of
the self-energy at the Fermi level and at absolute zero.
Since the bare f level always appears through the com-
bination of Ep+Xi(p) in our theory, as seen in Eqs.
(2.26), (2.27), (2.29), and (2.30), this combination is writ-
ten as

In the above the temperature dependence of the f-electron
number is assumed to be neglected. If the imaginary part
of the self-energy function is known, the real part of the
self-energy is calculated from Eq. (3.12) and thus the f
and conduction-electron Green's functions are obtained.

To solve Eq. (3.6) we will try to make an iterative cal-
culation. In the present paper, the lowest-order calcula-
tion is performed in the following. Following paper I, as
the zeroth-order spectral function for the f-electron
Green's function we consider the Hartree-Fock spectral
function in which the Hartree-Fock f level Ep+ Unf is

replaced by the renormalized f level Ep

p(w, p)-po(w, p) =6(w Ep —V—/(w —cF )) . (3.13)

Thus, using the spectral function (3.13) for the f-electron
Green's function in Eq. (2.62), we calculate the spectral
function for the spin-fluctuation Green's function from
Eq. (2.62). To do so, we first calculate the derivatives of
the self-energy function in Eq. (2.62). In this stage of the
iterative calculation the derivatives are obtained as

ar (p)

BA,
/1 =0

anf
Bhs g 0

1 a
fiab f dw, &2(w~pF) 2 +s Xgfigb

ur Bh,
(3.14)

ar, (p)

dp /1
—0

(3.15)

where

1.= —2
anf,

(3.16)

U,*=U — dw —Xp w, pF
1 1

s s
{3.17}

The explicit expression for X, and some discussion on the parameter U, are given in Appendix B. Therefore, Eq. (2.62)
is reduced to

(qp —hf)H~(q)=Mf+ — f d p U,*X,(qp —hf) —V
(2ir)

g 0 +As + Cp + q gp

(po+qo —E&+q —
—,'h. )(po —cF + —,'h, )

&&&g i (p»)g i~(p+q)e~. (3.18)

Thus, using the spectral representation (3.1) for the f-electron Green's function in (3.18), we find
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(qp —hf )11 (q) =Mf ~ f dw [U*p, (qo —hf ) 2 (w q) —V'8( w q)] g 8"[ Ua(w)r(qo —w+ l 6r) ' Ull(w)] (3.19)

where

I (w q)= fdpo, p1(po p)pl(pp+w p+q)dp
(2lr )

1

(po ~w)/T
e ~1

1

pp/T
1

(3.20)

d p
—w + h~ + Ep ~ q

—Ep
&(w q)= fdpo, ', h' ' ',

h
P1(po P)P1(po+w p+q)(2~)' po+w —E, +, ——,'h, Po s, + —,

—h.
1

(po+w)/T
e ~1

1

e +po/T

(3.21)

In obtaining Eq. (3.19) we used the formula

f d p s g~1 (p)g, ~(p +q)s~= f dw A (w, q)[Us(w)r(qo —w+ifir) 'Ult(w)] ~,
lr c

(3.22)

l 4
& f dp, , E g~1 (p)g, ~(p)e~= f dw 8(w, q)[US(w)&(qo —w +i5r) 'Ult(w)] ~ .

—qo+h, +Ep+q —cp

(2lr)~ (pp+qp —e~+, ——'h, )(pp —E~ ~ —'h, )

(3.23)

Noting the definition (2.53) for II~(q) and using the spectral representation (3.2), we derive the equation for D(q) from
Eq. (3.19) in the limit of h„hf ~0 as

dp, V ( —qp+s~~q —e~)D(q)= f dpo f, U.*Xs — po(p)po(p+q)
(2lr) qo Po+qo —eq+q Po —Ep

1

(pa+ qo )/T
e

1

e +po/T
(3.24)

In further calculations we shall con6ne ourselves to the region of low-temperature where the system exhibits the behavior
of heavy fermions and calculate the self-energy functions up to second order in T. To make the low-temperature expan-
sion, it is convenient that the integrals (3.6) and (3.24) are rewritten with the changes of integral variable as

X2(P)=i,„ f dqp f 3Pp(P +q)D(q)[B(qp) —B(qp+qp)]
(2lr)

+ T f dz A, „ f [pp(po+ Tz, p+q)D (Tz, q) —p(pp —Tz, p+q)D( —Tz, q)]
oo 2 dq 1

(21r)' e'~1

1+ [p(Tz, p+q)D(Tz —pp, q) —p( —Tz, p+q)D( —Tz —pp, q)]
e +1

(3.25)

dp „V( —qp+s~+~ —e~ )
D(q)= f dpo f 3 U. X.— po(p)po(p+q)[8(po) —e(po+qo)]

(2lr) qo Po+qo —Eq ~ Po —Eq

1 dp
e'+1 (2~)'

2V ( —qo+E, +, —s, )
U,*X,— po(Tz, p)po(Tz +qp, p+q)

qp Tz +qp —e& ~& Tz —
E&

2V ( —qp+ep~q —E~)
U X— pp( —Tz, p)pp( —Tz +qp, p+q)

qp( —Tz +qp —e~+~ )( —Tz —e~ )

2V ( —qp + e~ ~ q
—E~ )

U~g po(Tz —qp, p)pp(Tz, p+q)
qp(Tz —ez+~ )(Tz —qp —Ez )

+ U, g, — V ( —qp+Ep~q —Ep)
2

po( —» —qo p)po( —», p+ q)
qp( —Tz —Ez +~ ) ( —Tz —qp —sz )

(3.26)

The first terms on the right-hand side of Eqs. (3.25) and (3.26) give, respectively, the values of &2(p) and D(q) at abso
lute zero. Expansion of the integrands in Eqs. (3.25) and (3.26) with respect to T gives the low-temperature expansion of
the self-energy and the spectral function of the spin-fluctuation Green s function. For simplicity of the numerical calcu-
lations, we evaluate the temperature-dependent terms in Eqs. (3.25) and (3.26) in the low-energy region, i.e., pp 0 fol
X2(p) and qp-0 for D(q). After some calculations, we obtain the following results up to second order in temperature
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X2(p) =A,„ f dqo f 3 po(p +q)D (q)[e(qo) e—(qo+po)]+ ,'A, „—(AT) —f po(p +q)D (q)(2~)' ~qo (2~)'
qp ——0

(3.27)

dp, V ( qo+—e~+q —E~)D (q) = fdpo, U:X.— po(p)po(p +q)[8(po) —e(po+qo)] .
(2~) qo(po+qo —ep+q )(po —eq )

(3.28)

the spectral function p(p) is given by

(3.30)

Here, we used the relation (2.25). The density of states of
the f electrons is obtained by summing the spectral func-
tion over the momentum p space:

1
Ny(po ) = —g g2 (po, p) .

~
P

(3.31)

In the same way we obtain the density of states for the
conduction electrons as

1
N, (po)= —QC2(po, p) .

P

(3.32)

Let us now present the numerical results. We chose the
normalized quantities, Eo/gz, V/g~, U,*p, (g~ ),

A, „p,(g~ ), and D/g~ as parameters, where

p (g )=(2m')' 'g' '/(2~)'

g~~ =pp/2m, and D =p, /2m, p, being the cutoff
momentum. The definition of the Fermi momentum pF is
given in paper I. In the following numerical calculations
we present the results for two cases of the parameter
Ep = —0.003 and 0.003. The values of the other parame-
ters are fixed as V/g~ =0.02, Up, (g'~„) =0.02,
A.„p, (g~ )=1.0, and D/g~ =1.5. In these choices we sup-

pose the cases in which g~ —10 K, V- 10 K, D —10
K, and the renormalized f level is very close to the Fermi
level. For the selection of the values k„and U,*, see Ap-
pendix B. First, we show the f-electron spectral function
near the Fermi level at two different temperatures,
T/g~ =0 and 0.002 in the case of Eo= —0.003. In Fig.
1(a) the energy dependence of the spectral function at ab-
solute zero is plotted for three different momentums. The
spectral function has a sharp peak near the Fermi level
and a resonance peak above it. Since the position of the

The integrals in Eqs. (3.27) and (3.28) can be evaluated by
following the procedure given in paper I. Using the nu-
merical results for Xq(p), we can calculate the Green's
functions for the f and conduction electrons from Eqs.
(2.25) —(2.30), (3.11), and (3.12). The spectral functions
and the density of states of the electrons are obtained
from the Green's functions in the following way. Since
the spectral representation for the f-electron Green's func-
tion (3.1) is rewritten in the form

6 p
g ~(p)= f dw p(w, p) —i~p(p)[Up(po)rUI";(po)] ~,

P0 —W

(3.29)

sharp peak varies with momentum and its width becomes
infinitesimal at p =pF, the sharp peaks correspond to
quasiparticle excitations, so that our system behaves as a
Fermi liquid at the low-energy region. As shown in paper
I, the effective mass m* of the quasiparticle can be es-
timated from the dispersion of the sharp peak and is ob-
tained to be

~

m*/m
~

-400 in the present case. Thus,
the choice of the above parameter values leads to a
heavy-fermion state in the Anderson-lattice system. The
result for a finite-temperature case is given in Fig. 1(b).
As seen in the figure, we have two peaks also at this tem-
perature. The peak near the Fermi level is, however,
much broader than that at absolute zero. Furthermore,
the peak has a finite width even in the case of p=pF.
This change is caused by a large magnitude of the imagi-
nary part of the self-energy even at the Fermi level at a
higher temperature. This fact indicates that the heavy-
quasifermion state which is well defined at very low tem-
peratures becomes unstable and changes to a resonance
state as temperature increases. We further note that the
position and the shape of the resonance peak centered on
the Fermi level are almost independent of momentum.
This means that the spatial correlation of the resonance
state is very weak and then the resonance state is almost
localized on the lattice sites, in contrast with the quasifer-
mion state. Therefore, the resonance state which is
changed from the quasifermion state is similar to that in a
single-impurity Kondo system. As is well known, heavy-
fermion systems show a crossover effect from a heavy-
fermion state to an impurity Kondo-like state with in-
creasing temperature. The temperature variation shown
above in the f-electron spectral function corresponds to
the crossover effect observed in heavy-fermion systems.

Obtaining the spectral function, we can calculate the
density of states from Eqs. (3.31) and (3.32). We show
the result for the f-electron system near the Fermi level in

Fig. 2 for several temperatures. The values of the param-
eters are the same as those in Fig. 1. We see a very sharp
peak centered on the Fermi level and a broad peak above
it at T=0.0005. As understood from the f-electron spec-
tral function shown in Fig. 1(a), this sharp peak originates
from the heavy-quasifermion levels around the Fermi lev-

el, so the peak width gives the quasifermion bandwidth,
i.e., an energy scale of the coherence. As temperature in-
creases the sharp peak broadens and its height decreases.
This temperature variation of the f-electron density of
states is induced by the crossover effect from the heavy-
fermion state to the Kondo-impurity-like resonance state.
The width of the resonance peak at higher temperatures
gives a measure of the resonance state without coherence.
Thus, from the result of the temperature variation of the
f-electron density of states, we may speculate that the two
characteristic energy scales exist at low temperatures in
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PF

temperature variation of the density of the states of the
conduction electrons is similar to that of the f electrons.

In Figs. 4 and 5 the results for another choice of pa-
rameter values are presented. A positive value of Fo,
Eolg~ =0.003, is taken and values of the other parame-

ters are unchanged. The structure of the density of states
and their temperature dependence are similar to those in

the previous case, except that the broad resonance level

appears below the Fermi level.
Finally, the dependence of the f-electron density of

states on the mixing parameter is shown in Fig. 6. For
the small mixing parameter [Fig. 6(a)] the heavy-fermion
peak is sharp and very high, and the broad resonance
peak is close to the heavy-fermion peak. On the other
hand, when the mixing parameter is larger [Fig. 6(b)], the
peak height is lower and the resonance peak is shifted
away from the Fermi level.

IV. DISCUSSION AND SUMMARY
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U,*p, (g~ )=0.02, D/g~ =1.5, and (a) V/g~ =0.02, (h)

V/g~ =0.03.

the Anderson lattice. In Fig. 3 we plot the density of
states of conduction electrons near the Fermi level for
several temperatures. As seen in the figure, the sharp
peak corresponding to the heavy-fermion state appears
also in the conduction-electron channel, although its in-
tensity is weaker than that in the f-electron channel. The

In this paper we calculated the density of states of the
Anderson lattice near the Fermi level, taking account of
the effect of the spin fluctuations in a one-loop approxima-
tion, and investigated the temperature variation of the
heavy-fermion state. In paper I we discussed the nature
of the low-energy excited states in the Anderson lattice in

a metallic case on the basis of the calculated result of the
f-electron spectral function at absolute zero. We found a
well-defined quasiparticle state very near the Fermi level

and a resonance state outside the quasifermion state. The
effective mass of the quasiparticle is very large when the
renormalized f level Eo is close to the Fermi level. Ac-
cording to this fact, we claimed that the heavy-fermion
state or the so-called coherent state in the Anderson lat-
tice at low temperatures can be characterized by the ex-
istence of the well-defined heavy quasipartiele states in the
vicinity of the Fermi level. As shown in Sec. III, the
present calculation shows that a very sharp peak centered
on the Fermi level appears in the density-of-states curve.
This sharp peak corresponds to the heavy quasiparticle
state. The states outside the sharp peak are not single-
partiele-like, but are resonance states because these states
have short lifetime. The characteristic energy scale associ-
ated with the eoherenee may be obtained from the quasi-
particle bandwidth, so the width of the sharp peak in the
f-electron density of states at absolute zero gives a mea-
sure of coherence energy.

To obtain a better understanding of the heavy-fermion
state, let us compare the present result of the density of
states with that in the Hartree-Fock approximation. In
Fig. 7 we plotted the density of states of the f electron in
the Hartree-Foek approximation along with that calculat-
ed for a temperature T=0.0003 in Sec. III. The parame-
ter values used in both cases are the same. As seen in
Fig. 7, the density of states in the present calculation is
much smaller than that in the Hartree-Fock approxirna-
tion and has a peak at the Fermi level. On the other
hand, in the Hartree-Fock approximation the hybridiza-
tion gap lies near the Fermi level and no peak structure
appears at the Fermi level. We note that the value of the
density of states at the Fermi level in the present calcula-
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renormalization constant and is expressed by
[I—BX(po,pF)/Bpo

~ ] '. Since z(pF) is very small in
heavy-fermion systems, the excitation density is very
large.

The quasiparticle state cannot be well defined at finite
temperatures greater than the coherence energy. As
shown in Sec. III, this can be seen in the temperature
variation of the f-electron spectral function, i.e., the
quaiparticle peak changes to a resonance peak with a
small temperature increase. As a result, the levels around
the Fermi level consist of the resonance levels at high
temperatures, which are similar to those in the single-
impurity Kondo state. Associated with this change, the
sharp peak in the f-electron density-of-states curve
broadens and its height decreases. We consider that it is
this change in the electronic states that causes the cross-
over from the heavy-fermion state to the single-impurity-
Kondo-like state observed in the heavy-fermion com-
pounds. To confirm our understanding for the crossover
effect in the Anderson-lattice system, it is desirable to cal-
culate physical quantities such as resistivity, so we are
planning to calculate the temperature variation of the
resistivity on the basis of our theory.
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APPENDIX A

In this appendix we derive the Ward-Takahashi rela-
tions (2.54) —(2.57) from Eq. (2.52).

From Eq. (2.23) we note that the inverse f-electron
Green's function in the presence of the term (2.47) is
given by

g.— (p)-P=(po Eo,hf~3)h. p V2S:f'(p) X:P(p) .

(A 1)

Substituting the Green's function (Al) into Eq. (2.52), we
have the following relation between the self-energy func-
tion and the vertex functions:

X,~(p +q) —X„~(p)=(qo —hf) g II (q)I +~s(p;q;p+q)

2 l 4
—go+~. +~I +q —~j+V

(2m)~ (ko+qo — 8k+9 A )(ko 8k+ —'h, )

X g gr'(k+q)g, r(k)I, ; ~, (p, k +q;p +q, k) .
a, b, y

(A2)

First, we take the limit q~0. In this limit Eq. (A2) is reduced to
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~~~(p) —~i~(p) =hypo g r+~s(p»q p+q)

—h, V —f d "k —,„,„gg ~'(k)g, ~ (k)I r"~,"(p, k;p, k) .
(27r) (ko —ei,. ——,'h, )(ko —Eg+ —,'h, ), b

(A3)

Here, b, o is defined by the relation (2.58). When only linear terms with respect to h~ and h, are retained, Eq. (A3) is re-
duced to

ax, ~(p)
+2h,

Bh,

ar;~(p)—2h,

a&)~(p)
X, ~(p) —X,~(p) =2h~

ahf

ar;~(p)
ah f a=0

6=0

, /7=0

l
2

=h~a, y r ~,(p;0;p) h, —, f d'k —, y gr (k)g', ~(k)r;;P'(p, k;p, k) .
0 —Fk aha

This relation indicates the Ward-Takahashi relations (2.54) and (2.55) in the limit of hy, h, ~0:
ax;~(p)

~=O

ar;~(p)
ah,

/1 =0

ar;~(p)
Bh, A=0

ar;~(p)
=-,'a, y r ~,(p;op),f, e=o

(A5)

f d k — g gr, '(k)g, r(k)1, P,"(p,k;p, k) .
(2ir) (ko —Ei,. ), b r

Furthermore, noting the relation in the case of q~0,
&i~(p+q) —» (p)=l&~ (p+q) —~i (p)f —l~t'(p) —~i~(p)j

ar;~(p) ar (p)

Bp
—[~~'(p) —~i (p)1

A=0I7 =0

we obtain the Ward-Takahashi relations (2.56) and (2.57) from Eq. (A2) in the limit of q, h~, h~~o:

a&)~(p) B&,~(p)

BP0 BP0

=a, y r, (p;o;p)—
6

f d4k —,y gr'(k)g", &(k)r;;/", (p, k;p, k),
(2~) (ko —E~)' ., ~,,

(A8)

ar;~(p)
Bp 6=0

ax, ~(p)

Bp 6=0
r

y g, .(k)g', (k)r; P(p, k;p, k) .
(2rr) (ko —Eg )

APPENDIX B

In this appendix the explicit expression for g, used in the numerical calculations and some discussions on the renor-
malized parameters U, and A.„are given. We consider the case of absolute zero in the following, since we need only the
values of those quantities at absolute zero for the calculation of the self-energy function up to second order in tempera-
ture.

Let us first obtain the equation for 60 at T =0 K from Eq. (2.62), taking the limit q~0:
fj 2

hgbp=Mg —h, —f d p —,
, g)(p)g((p)

(2ir)4 c (po —E~+ —,'h, )(pp —Ep
—

—,'h, )

+2hs ~ pgl p
I BX,(p)

(2~)4 c ah,
gi(p) (B1)
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Mf = —hfho+h, g, . (B2)

Here, we dropped the off-diagonal components such as
g'2(p) and 2' (p), and replaced g" (p) and 2" by g (p)
and X (p), which are the f-electron Careen's function and
self-energy function at absolute zero, respectively, since
the off-diagonal components vanish at absolute zero and
the (l, l) components are equal to those of absolute zero.
As shown in paper I, Mf is written as

When the approximate spectral function (3.13) is used for
the Green's functions in (B8), the vertex function
I +(p;0;p) should be taken to be a constant from the con-
sideration of the Ward-Takahashi relation (2.54), because
in this case the self-energy function is independent of p.
Therefore, we can replace the vertex function in Eq. (BS)
by the renormalized coupling constant A,„. Thus we have
the relation in the limit of h„hf ~0:

Substituting the relation (B2) into Eq. (B1), we have the
following equation in the limit of h„hf ~0:

g, =R (1—A,„Ap) .

b, o can be obtained from Eqs. (B7) and (B9) as

(B9)

l p2
, g (p)g (p)(2~)' ~ (po —E~ )'

4 dpg, p
(27r) c

ar, (p)

Bh,
/7 =0

(B3)

X, =R+ U,*QX, , (B4)

When the approximations (3.13) and (3.14) are used, Eq.
(B3) is reduced to

b,o= —( U,*/A, „)Q/( I —U,*Q) . (B10)

To see the relation between U,* and A.„, we consider the
Ward-Takahashi relation (2.55). When the approximate
spectral function (3.13) is used, we can approximately esti-
mate the integral at absolute zero as

BX,(0,pF)
Bh, 6=0

———,'I »R, (Bl 1)

where I » is the value of the vertex function at the Fermi
level, so that the use of the relation (3.14) yields

where

p2
R =, ,p, (g~, ),2+ p2

U,*-r„R/x, =r„(1—U,*g),
and this relation leads to the estimation

U,'-r„/(1+r„g) .

(B12)

(B13)
y4

E~(E2 I 2)P &~F, ( ), (B6)

X, =R/(1 —U,*g) . (B7)

p, (gz ) being the density of states of the bare conduction
band at the energy g~ =pF/2m. Thus, X, is determined
to be

Let us consider the case that the renormalized f level Eo
is very close to the Fermi level, i e., EO —0 and
V/

~

Eo
~

&&1. In this case, as seen from Eq. (B6), Q is
very large and

Q -0(( I'/Eo)'p. (gp, ) )

Let us next consider the relation given by Eq. (2.32) in
paper I:

Therefore, if we assume I » —k„, we find the relation

U,* «A, , (B14)

(2~) I d'p
(po —e~ ——,'h, )(po —e~+ —,'h, )

&& [I—EDI +(p;0;p)]g, (p)g, (p) . (BS)

Therefore, the choice of the values of U,* and k„used in
Sec III, i..e., U,*p, (gz ) =0.02 and A, „p, (g~ ) = 1.0, is

reasonable.
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