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A systematic study of the conduction bands of the (001) GaAs/Al, Gal „As and
Al Gal „As/A1As superlattices using a one-band Wannier orbital model is presented. The pa-
rameters in the Wannier orbital model are fitted to correctly describe the 1owest conduction band
of the bulk semiconductors over the entire Brillouin zone, including the correct eA'ective masses.

Using this model, we have examined the dependence of the superlattice conduction-band energy
levels on layer thicknesses, alloy composition, and wave vectors, as well as external hydrostatic
pressure. We have found that there can be substantial mixing between the I -valley states and the
(001) X-valley states. The symmetry of the confined X-valley states is found to be critically depen-
dent on whether the slabs with higher A1 concentration contain an even or odd number of mono-

layers. As a result, the amount of I -X mixing is extremely sensitive to the layer thicknesses. An

experimental procedure for observing this efT'ect with use of high-quality samples of superlattices
with ultrathin layers is proposed. Our calculations also show that the pressure coefficients associ-

ated with the I -like quantum-well states decrease with well width; the results are in good agree-

ment with experimental data. In addition, mixing between states derived from the (100) and (010)
X valleys is also reported.

I. INTRODUCTION

In 1970 Esaki and Tsu' first proposed fabricating su-
perlattices from alternating layers of semiconducting
materials. Since then a variety of superlattices have
been grown. ' Because of their technological impor-
tance, superlattices have been widely investigated both
experimentally and theoretically. The theory of super-
lattice valence bands has recently been extensively stud-
ied by a number of groups. The conduction bands of
superlattices can be treated adequately by the Kronig-
Penney model, provided that the superlattices are made
from a direct-band-gap semiconductor where only the
I -valley electrons need to be considered. Recently, how-
ever, there has been considerable interest in systems such
as the GaAs& P„/GaP (Refs. 7 and 8) and the GeSi/Si
(Ref. 9) strained-layer superlattices (SLS) and the
Al„Ga& As/A1As superlattice which are made from
indirect-band-gap semiconductors. For these systems we
must take into account electrons associated with the
various conduction-band valleys (I, X, L, etc.). More-
over, even for a GaAs/Al Ga& As superlattice which
is made entirely from direct-band-gap semiconductors,
external hydrostatic pressure can be applied to drive the
I -valley states up in energy so that the X-valley states
become the lowest conduction-band states.

Recently, several experiments have been performed to
determine the band offset in Al„Ga& As heterostruc-
tures by probing the X-valley states in the G aAs/
Al„Ga, As (Refs. 10 and 11) and Al„Ga~ „As/A1As
(Ref. 12) heterostructures. Strong optical transitions be-
tween the Ga& „As„P/GaP superlattice valence-band
states and the X-valley states have been observed. Exci-
tons associated with the X-valley states in the ultrathin
GaAs-A1As superlattices have recently been seen. ' To

understand these experimental data, detailed knowledge
of the X-valley states in superlattices is needed. In order
to investigate the properties of these superlattices
theoretically, realistic band structures with correct
effective masses for both I and X valleys must be includ-
ed. Previously, Jaros and co-workers studied the
GeSi/Si SLS (Ref. 14) and the GaAs/Al Ga& „As (Ref.
15) superlattice with the pseudopotential method which
uses a plane-wave basis; Ting and Chang also investigat-
ed the GeSi/Si SLS with a two-band model' which em-
ploys a localized basis with two basis orbitals per unit
cell. In this paper we present another method which
uses a localized basis for treating the conduction bands
of superlattices. This model is simpler and numerically
more efficient than the two-band model. ' In our model
the superlattice conduction-band states are constructed
from the Wannier orbitals associated with the lowest
conduction band of the constituent bulk semiconductors.
The advantages of this approach can best be illustrated
by comparing it with another method which uses a local-
ized orbital basis, namely, the nearest-neighbor tight-
binding (NNTB) model. For III-V compound semicon-
ductors, typically eight or ten orbitals per unit cell are
used in the NNTB model, while only one orbital per unit
cell is needed in our model. This accounts for the com-
putational efficiency of our model. In addition, while
our model incorporates the correct effective masses for
the various conduction-band valleys, the NNTB model
suffers from having an infinite transverse X-valley
effective mass, leading inevitably to the wrong con-
clusions on the superlattice X-valley states. It should be
noted that the pseudopotential method also has difficulty
in getting accurate effective masses. We point out that
the present one-band model yields information only on
the superlattice conduction bauds. The valence bands
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must be obtained separately by other methods. Addi-
tionally, the one-band Wannier orbital model implicitly
assumes that the superlattice conduction bands of in-
terest (i.e., the lowest few bands) have contributions only
from the lowest conduction band of the bulk semicon-
ductors. Therefore it is not suitable as the two-band
model' is, for the treatment of superlattices such as the
GeSi/Si SLS where the lowest two conduction bands are
degenerate at the X point and contributions from both
bands must be taken into account. Note that this is not
a problem for the Al Ga& As systems under considera-
tion in this paper.

By exploiting the computational efficiency of the one-
band Wannier orbital model, we have been able to exam-
ine the conduction bands of the (001) GaAs/
Al Ga& „As and Al Ga& As/A1As superlattices under
a wide variety of circumstances. Specifically, we have
studied the dependence of the superlattice conduction
bands on layer thicknesses, alloy composition, wave vec-
tors, and hydrostatic pressure. The remainder of this
paper is organized as follows. In Sec. II we describe the
one-band model and how it is implemented to treat su-
perlattices. In Sec. III we present our results on the
(001) GaAs/AI„Ga& As and AI„Ga, „As/A1As super-
lattices. The summary is given in Sec. IV.

impose a cutoff on the range of interaction and only re-
tain those terms with

~
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(Rc, where Rc is a chosen
cutoff value. The set of (0
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R)'s are treated as ad-
justable parameters, and are obtained by fitting the band
structure. For convenience, we shall call these fitted ma-
trix elements one-band parameters. Two sets of one-
band parameters must be fitted, one each for the well
and barrier materials. Proper band offsets are added to
the on-site elements ((0

~

H
~

O) ) of the two materials
to ensure the correct band lineup in a superlattice. The
effect of external hydrostatic pressure on the band struc-
ture is included by properly modifying the one-band pa-
rameters. A more-detailed discussion on the one-band
Wannier orbital model is given in the Appendix.

Figure 1 shows the lowest conduction band of GaAs.
The open squares represent the values obtained by the
pseudopotential method, but slightly adjusted so that the
effective masses and positions of the symmetry points
agree better with experimental values. The solid curve is
the one-band Wannier orbital model band structure
which we fitted. As we can see, the one-band model can
give us a good description of the lowest conduction band
over the entire Brillouin zone.

B. Implementation of the slab method

II. THEORY

In this section we present a theoretical method for
studying the conduction bands of superlattices whose
well and barrier materials can be either direct- or
indirect-band-gap semiconductors. In this method the
superlattice conduction bands are constructed from the
lowest conduction bands of the bulk well and barrier
materials; the valence bands and the higher conduction
bands are discarded to achieve numerical efficiency.
Thus, for instance, only the fifth band of Al Gai As
and the fifth band of A1As are used to construct the con-
duction bands of the Al„Ga& As/A1As superlattice.

In this section we describe how we compute superlat-
tice conduction bands using the one-band Wannier orbit-
al model and the "slab method. " The slab method is a
standard method for obtaining the band structure of su-
perlattices. We will discuss how this method is imple-
mented for our one-band Wannier orbital model.
Specifically we will be considering superlattices made
from semiconductors with diamond and zinc-blende
structures, and in particular we wi11 be studying super-
lattices whose interface planes are perpendicular to the
normal vectors n=(0, 0, 1) and n=(1, 1, 1)/&3. The
(0,0, 1) and (1,1,1) superlattices are the most commonly

A. One-band Wannier orbital model
3.9

We use the one-band Wannier orbital model to de-
scribe the lowest conduction band of bulk semiconduc-
tors. Let

~

k) be the lowest bulk conduction-band state
with energy E(k). The Wannier orbital located at the
lattice vector R is defined as

R) = —g exp( —ik R1

3.4

2.9

2.4

where N is the number of primitive cells in the bulk.
The conduction-band energy E (k) is related to the Wan-
nier orbitals as follows:

E(k) = (k
I

H
I

k ~ =+ exp(ik R)(O

1.9

1.4

X U, K

where (O
~

denotes a Wannier orbital located at the ori-
gin.

Note that in the above expression we sum over an
infinite number of Wannier orbital matrix elements
(0

~

H
~

R) to obtain the energy E(k). In practice we

FIG. 1. Lowest conduction band of GaAs. The open
squares represent the values obtained by the pseudopotential
method, but slightly adjusted so that the e6'ective masses and
positions of the symmetry points agree better with experimen-
tal values. The solid curve is the one-band Wannier orbital
model band structure which we fitted.
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grown superlattices. A feature shared by the (0,0, 1) and
(1,1,1) superlattices is that they both consist of alternat-
ing cation and anion atomic planes perpendicular to the
growth axis. We refer to a pair of adjacent cation and
anion planes as a "monolayer, " or simply a "layer. " A
period of the superlattice will be referred to as a "super-
layer. " We assume that each superlayer of the superlat-
tice under consideration consists of L~ layers of well
material and Lz layers of barrier material. Our designa-
tion of well and barrier materials is determined by the
valence band, i.e., the material with the higher valence-
band top is designated as the well material. Note that
the material with the lower conduction bottom could ei-
ther be the well material or the barrier material. We
will discuss this more when we present our results on the
GaAs/Al Gal As and Al Ga& As/A1As superlat-
tices.

We proceed to describe how we implement the slab
method for the one-band Wannier orbital model. We be-
gin by changing our notation of the Wannier orbitals to
make it more suitable for the treatment of superlattices.
In our current notation we refer to the Wannier orbitals
by their Cartesian coordinates. In a superlattice, it is
more convenient to refer to the Wannier orbitals by the
planes they belong to, and by their positions within a
given plane. Thus we define the following:

where Nfl is the number of unit cells in a layer.
The superlattice basis is formed by taking a Bloch sum

of all planar orbitals which have the same relative posi-
tion within the superlayer they belong to:

q) 1/2 X exp(i q'd)
I

+~ kll)
1

(~ )
1/2 (4)

X=1,2, . . . , L .

In the above expression Xz is the total number of su-
perlayers or periods in the superlattice, L =L~+Lz is

En the above equation the unit cell label R is now bro-
ken into components parallel and perpendicular to the
superlattice interfaces

R=Rll+Ri,
with the perpendicular component rewritten as

R1 ——(R-n)n=odn=od,

where o. is an integer used to label the monolayers, and
d is the distance between two adjacent monolayers.

We now define the planar orbitals. In a superlattice
the perpendicular component of the crystal momentum
k is no longer a good quantum number. However, since
translational invariance is still valid in the directions
parallel to the interface planes, kll is still a good quan-
tum number. Accordingly we could define planar orbit-
als by taking the Bloch sum of all Wannier orbitals
within a given atomic plane parallel to the interfaces:

1
I
o, k~~ )=,/2 g exp(i k~~. R~~ )

f R~~o ),
(XII)1/2 R

the number of layers in a superlayer, S is an integer used
to label the superlayers, A, specifies the position of a layer
within a superlayer, and q=qn is the perpendicular
component of the wave vector in the mini-Brillouin-
zone. Note that q takes on values between —(miLd. )

and (m ILd). For the well material, 1 & A, (L~, and for
the barrier material, L~+ 1 & X & L ~+Lz. Note that
for a fixed wave vector kll+q there is a set of L such
basis vectors corresponding to the L layers. Since the
superlattice Hamiltonian is diagonal in kll+q, the band
structure is obtained by diagonalizing the Hamiltonian
within this basis set.

To obtain the matrix elements of the superlattice
Hamiltonian, we start out by writing the matrix ele-
ments between the superlattice basis vectors in terms of
matrix elements between planar orbitals:

( X;k1q I

H
I

A, '; k((q )

=g exp( iSLq.—d)(SL+A,
klan f

H
I

A,
' k

S

Note that if the separation between the two planes in-
volved exceeds the cutoff' interaction range of the one-
band Wannier model, then the matrix element is 0. In
fact, if we choose L~d and Lzd to be greater than the
cutoff interaction range (typically a few layers), then
only one term in the above summation could be nonzero:

(
iraq I

H
I

A kiiq

=exp( iSoLq-d)—(SoL +k;k

where So is —1, 0, or 1, whichever minimizes the sepa-
ration between the two planes at SoL +A, and A, '.

The matrix elements between planar orbitals can in
turn be written in terms of the matrix elements between
the Wannier orbitals as follows:

In the above equation we have used the fact that
kll-Rz ——0 to make the exponential phase factors depen-
dent on the lattice coordinates rather than their parallel
components; this is done to make computation more
efficient. Note that some of the terms in the above equa-
tion involve interactions between Wannier orbitals be-
longing to diff'erent materials. In such cases we take the
interaction to be the average between those of the two
materials.

To summarize what has been done thus far: %'e have
constructed a superlattice basis set out of the one-band
Wannier model basis orbitals, and then reduced the su-
perlattice Hamiltonian matrix elements in terms of the
one-band parameters which we know from the preceding
section. We are now able to compute the matrix ele-
ments of the superlattice Harniltonian. Diagonalizing
this matrix yields the conduction-band structure of the
superlattice.
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C. Superlattice envelope functions

The superlattice Hamiltonian can be diagonalized to
yield the superlattice energy and eigenstates:

I
n k//q& =/CD«//q) I

~ k//q& . (10)

+F„(k((q,gl, B)
I k~&(q+gq);B &],

where F„( k~~q, g~, W) and F„(k~~q, g~,'B) are, respectively,
envelope functions in k space for the well and barrier
materials. Note that in our notation for the bulk eigen-
states we have added an extra index to specify the type
of material (well or barrier) the eigenfunction belongs to.
The g~'s are the reciprocal-lattice vectors in the perpen-
dicular direction associated with the mini-Brillouin-zone
of the superlattice. They are given by

g~
——(1 —1)(2m/Ld)n, 1 =1,2, . . . , L . (12)

Note that due to the periodicity of the superlayers in
the superlattice, a superlattice eigenstate with the wave
vector k~~+q has only contributions from the bulk eigen-
states with wave vectors k~~+(q+g&), 1 =1,2, . . . , L.

The envelope functions themselves are given by

1
F„(k~~q, g~;j)= —g exp[ —~'(q+gi ) Xdlc~(k ~q),

j =W,B, (13)

where the notation A, Ej is used to specify whether A, is
in the well or the barrier material. For instance, A, E W
means that k is in the well, i.e., 1 (A, (L~.

III. RESULTS AND DISCUSSION

In this section we examine the conduction bands of
the (001) GaAs/AI„Ga& As and AI„Ga& As/A1As
superlattices as obtained by the one-band Wannier orbit-
al model. The A1GaAs superlattices are suitable candi-
dates for treatment by the one-band Wannier orbital
model. Both GaAs and A1As are wide-gap semiconduc-
tors for which the conduction bands and valence bands
can be treated separately. In addition, for both materi-
als the second conduction band is sufficiently higher

In the above equation C~(k~~q) is the envelope func-
tion in coordinate space. By plotting Cq(k~~q) against X,
the layer label, we can find out how the superlattice
wave function is distributed in space. It is often more
useful, however, to examine the envelope functions in k
space. this can be done by taking the equation above
through a series of linear transformations and writing
down the superlattice eigenfunctions in terms of the
eigenfunctions of the bulk well and barrier materials.
The derivation is straightforward but rather tedious. We
will just write down the results:

L

I

~ kiiq&= 2 [F.(kiiq gi'~) lkii(q+gi) ~&

than the first so that the superlattice states of interest
are derived almost completely from the lowest bulk con-
duction band. More precisely, in both GaAs and A1As,
the lowest point of the second conduction band is at the
X point, and the separation between X3& and X&& for
GaAs and A1As are 0.4 eV (Ref. 17) and 0.2 eV (Ref.
18), respectively. Our one-band results are valid for en-
ergy range sufficiently below the X3& point.

The one-band coefficients for GaAs, Alo 5Gao 5As, and
A1As are obtained by band-structure fitting, and are list-
ed in the Appendix. Coefficients for other compositions
of the Al Ga& As alloy are obtained by quadratic in-
terpolation. Using a quadratic rather than a linear inter-
polation scheme allows us to include the bowing of the
band gaps. ' In our calculations we use a conduction-
band offset of Q, =0.7, ' '" meaning that 70% of the
direct-band-gap difference between the well and the bar-
rier materials is associated with the conduction band.
Also, we choose the valence-band top of bulk GaAs to
be zero in energy. We shall use the notation (L~,L8 )-
(001) Al, Ga~ As/Al„Ga& „As to denote a super-
lattice with growth axis along the [001] direction, and
with each period of the superlattice consisting of L~
layers of Al Ga

&
As followed by Lz layers of

Al„Ga& As. Also, since for (001) superlattices k~~ hasXg

nonzero components only along the x and y directions,
and q along the z direction, for simplicity we will denote
k~~ by the ordered pair (k, k~ ), and q by the scalar q.
For convenience, wave vectors will be given in units of
(2n/a), a being the lattice constant.

Before we present our results, we first make a few sim-
ple observations about the A1GaAs superlattices which
will help us interpret our findings. Recall that we have
designated the slabs with lower Al concentration as the
well material and the slabs with higher Al concentration
as the barrier material. With the Q, =0.7 band offset,
the X minima of the barrier material are always lower
than those of the well material. The I minimum, on the
other hand, is always lower in the well material. This
means that in an A1GaAs superlattice, the electrons near
the X minima see the slabs with higher Al concentration
as the wells, while the electrons near the I minimum see
the slabs with lower Al concentration as the wells. For
convenience, we will call these the X wells and I wells,
respectively. For example, in the Al Ga] As/A1As su-
perlat tice, the A1As layers are the X wells, and
Al Ga& As layers are the I" wells. It should be noted
that the I wells are always deeper than the X wells.
However, depending on the compositions of the well and
barrier materials, the bottom of the X well could be
lower than the bottom of the I well.

An important factor in determining the superlattice
band structure is the electron eff'ective masses. (Recall
from the simple particle-in-the-box model that the
quantum-well energy levels are inversely proportional to
the particle mass. ) For the (001) superlattice, the three
important effective masses are the I -valley effective mass
(mr), the X-valley longitudinal eff'ective mass (m~), and
the X-valley transverse effective mass (m, ). They are, as
obtained in our model, respectively, 0.067mo, 3.86mo,



4363„As ANDz' / M&x&NN& gN ~aAs/Al 6 ' —"36

p. 124m 1.82m p and39mp o '
f GaAs is in g

an
]A The I mass o

2' The other
0.23m p for A

ted experiment
]] - our

a] value.men w ith the accep
'

h d experimenta yes are less well
with the various exp

estab]is e
eI'1-

men. ta 1 values compi e
er here» that the ]ongitu ina

d the
t thing to remem

ass is smaller, andthe transverse X mass iX mass is large, t e ra
I mass is very smsma]1.

its which are orgaanized intosent our resu ts, w
e de endenceIII A d hIn Sec.

o
'

n in Sec.
got ree

bands on a oy
tic res-

f the conduction
f external hydrosta i p

o e
ne the efFects o ex e

endence on
III B we examine

investigate the depenSec. III C we inves
'

ence on layerdd't o dth wave vecto rs. In a i
1 d as we go alo g.n .t icknesses will also be exp ore

2.0

1.8)
Ul

1.6A. Composition depe endence

freases the numbet substantia]]y deerI--we]] states it su
11 .d states in the & '

2(b) ~oing «
confine s

Fi . 2(a) to»g.Next we compare g.
h I--we]] width to se decrease t e

I -we]]
Fig 2(b) to 2(a) we

the well wi'dth squeezes the
3 the

Decreas»g
h t fo«& p. 6,

]ayers.
energy so t a

s iie
fi d states up '

X-we]1 state, in p

con ne
~

d state»»ct,ion-

of the conduction-n-bandthe dependence o
As and

We examine

h 11oA1A superlattices onAs/ s
ow the con duction-

Al QaI
res 2(a,) 2(b) and 2(c) sh

states (k =0,
tion x. Figu

the zone-center

28 28)]; (c) L ~ ——28,

) for the even-p
b (28,7)]. e

- arity states, anid lines (

states. ere p
ect to the center of thedfi ed wit sp

ih do d]'b dhave een
lk I an dX~ - ~ f 0 p

Th bo tto

fixed at
p p

.r- .f ----.- ~

bo tto fito oft e
h'1 k

' 't t
P

1 to 'd t'f t}1
well w ie

his makes it very simp e o
Th fo th

xe
I - ll and the X-weell states: e

h bounded above yb the
I -we

x and are ou
se with

es increase wit
s' curves decreas

states i
d the X-we sbulk I ]eve, a

bounded below y
these graphs.

x and are ou
iso be seen on e

h 1' b 1

d states can also e
Most of the sta hates that ie

rth th k
states.

the GaAs (

to etherd o 1o 1that the -w
This is due to t e

Inuantization mass t an
n layers

we
d

hi k 1„
idth is ecr

ers.while the I -we]l widt is( 20 A),
We see that while t is as

1.5

1.4

2.0

1.9

1.8
O

CD

1.6

1.5

14

2.0

1.8
O

CD

(D
C

1.6

1.5

(c) (28,7)

1.4
0.0 0.2 04 0.6 0.8 1.0

levels of the k~~
——=0, q=On-band energy ev

s functions1

L h'k
The superlattice e g ree energies are

states and
7,28), (b) (28,28), an

for the even-panty sr
'

lid lines ( ) or
h dd-

are drawn in wibulk Al Cxal As a oyX —X

or codotted lines (.



4364 D. Z.-Y. TING AND YIA-CHUNG CHANG 36

of the fact that the bottom of the I well is about 300
meV lower than the bottom of the X well. Note that the
I -well states are much more sensitive to the change in
well width than the X-well states. By comparing Fig.
2(c) to 2(b), we see that for the GaAs/A1As superlattice,
decreasing the X-well width from 80 to 20 A raises the
lowest X-well state by about 40 meV. Comparing Fig.
2(a) to 2(b), we see that the same change in the I -well
width raises the lowest I -well state by about 300 meV.
This is due to the fact that the I effective mass is much
lighter than the longitudinal X mass, which in this case
is the quantization mass for the X wells. Recall from the
simple particle-in-the-box model that the energy levels
are inversely proportional to the product of the particle
mass and the square of the well width. Therefore the
changes in energy levels due to changes in well width are
amplified by a factor inversely proportional to the
effective mass.

We now turn to the case where the barrier material is
fixed as A1As while the composition of the well material
Al„Ga& As is varied. Figures 3(a), 3(b), and 3(c) show
the conduction-band energy levels of the zone-center
states (k~~

——0, q =0) of the (001) Al Ga, As/A1As su-
perlattice as functions of alloy composition x for the fol-
lowing layer thicknesses: (a) L ~ ——7, Lz ——28; (b)
L~ ——28, Ls ——28; (c) L~ ——28, Ls ——7. The legends used
in this figure are the same as in Fig. 2. In this case, the
top of the I well is fixed at 2.48 eV while the bottom of
the I well increases with x, as indicated by the dotted
line corresponding to the bulk I level. The bottom of
the X well is fixed at 1.69 eV while the top decreases as a
function of x, as indicated by the bulk X level. So,
again, the curves for the I -well states increase with x
and are bounded below by the bulk I level, and the X-
well states' curves decrease with x and are bounded
above by the bulk X level.

The dependence of the energy levels on the layer
thicknesses is again evident as we compare the three
graphs in Fig. 3. In Figs. 3(b) and 3(c), the lowest
conduction-band state changes from a I -well state to an
X-well state as we increase x. For Fig. 3(a), however,
the I well is so thin that the lowest state is always an
X-well state. An Al Ga

&
„As/AlAs superlat tice in

which the lowest conduction-band state is an X-well
state is considered a type-II superlattice; that with a I-
well state being the lowest conduction-band state is con-
sidered type I.

Whether an Al Ga& As/A1As superlattice is type I
or type II depends on the layer thicknesses and the alloy
composition. Typically, as in Figs. 3(b) and 3(c), when
we increase x from 0, the superlattice changes from type
I to type II at some composition xc. We call x& the
"crossover composition. " Note that we can immediately
conclude that xc must be less than 0.4, since for x & 0.4
the I -well bottom is higher than the X-well top, so the
lowest state must be an X-well state.

In Fig. 4 the crossover composition of the (001)
Al Ga& As/A1As superlattice is plotted as a function
of the well width L~ for several fixed values of Lz.
Note that by decreasing the I -well width L~ we can
substantially lower the crossover composition. In fact,
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FIG. 3. Conduction-band energy levels of the k~~
——0, q =0

states of the (001) Al Ga~ „As/A1As superlattice as functions
of alloy composition x. Layer thicknesses are as follows: (a)
(7,28), (b) (28,28), and (c) (28,7). The superlattice energies are
drawn with solid lines ( ) for the even-parity states and
dashed lines ( ———) for the odd-parity states. The energies
of the bulk A1„Gal As alloy at I and X are drawn in with
dotted lines ( - ~ ) for comparison.

as we have seen in Fig. 3(c), for L~ sufficiently small,
the superlattice is always type II, regardless of the alloy
composition. Note also that x& decreases as the X-well
width Lz is increased. This is because widening the X
well lowers the X-well states, making them easier for the
I -well states to overtake. The dependence of xc on the
X-well width, however, is not as strong as the depen-
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these graphs 1 & A, & 28 corresponds to the Alo 28Gao 72As
layers, with the remaining corresponding to the A1As
layers. The well and barrier centers are indicated by
vertical dotted lines. Note that at q =0, the superlattice
wave function is invariant under a translation of distance
Ld along the z direction; hence the parities of the states
with respect to the well center and the barrier center are
the same. We first look at the (28,8) case where the
lowest I -well and X-well states do not interact. The
n =2 state is the lowest I -well state and its envelope
function is just the typical particle-in-the-box ground-
state wave function. The n =1 state is the lowest X-well
state. In general, the X-well state wave functions can be
described by the particle-in-the-box wave functions
modulated by a phase factor exp(iX R), since the X-well
state comes from electrons near the X=(0,0, 1)(2vr/a)
point in the Brillouin zone. For the lowest-lying X-well
state, the particle-in-the-box wave function is even with
respect to the barrier center, and the parity of the state
is determined by the phase factor. We write the phase
factor as cos(2nR, /a)+i sin(2nR, /a), where R, is the z
component of R measured from the barrier center.
When the X well consists of an even number of layers,
R, must take on values like (m + —,

' )(a /2), where m is an
integer; thus the cosine term in the phase factor vanishes
and the wave function is odd with respect to the barrier
center. This explains why the lowest X-well state in the
(28,8) superlattice is an odd parity state. When the X
well consists of an odd number of layers, R, must take
on values like m (a/2); thus the sine term vanishes and
the wave function is even.

For the (28,7) superlattice, the lowest X-well and 1-
well states have the same parity; they interact when they
are brought close together in energy at the crossover
composition. The I -X mixing results in the mixture
states that we see in the bottom two graphs of Fig. 6.

Since we are looking at the superlattice envelope func-
tions, we should point out another interesting
phenomenon. The superlattice states we have examined
so far all have q =0. Recall that the superlattice en-
velope functions carry a q-dependent phase factor
exp(iSLq d), which is a constant within a superlayer but
changes from one superlayer to the next. In general, be-
cause of this modulating phase factor, the superlattice
envelope functions do not have definite parities, except
when q =0, where the phase factor is always 1. There is
another q for which we can associate parities with the
superlattice envelope functions, and that is q =(n/Ld)
—:q,„. At q,„, the phase factor becomes ( —1), alter-
natingly assuming the values of 1 and —1 going from
one superlayer to the next. This forces the envelope
functions to have the opposite parities with respect to
the well and barrier centers. This is demonstrated in
Fig. 7, where we have plotted envelope functions for the
same superlattices as in Fig. 6, except here we have

q =q „ instead of q =0. As we can see, each of the
q =q,„states is at once both even and odd, depending
on whether parity is defined with respect to the center of
the I well or the X well.

An interesting consequence of all this is that the I -X
crossing and anticrossing rule for the q =q „case is the

E
U
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CO

(28,8),:n =

(28,8) n = 1

Ah, t

V:V'

AAIAi

vyvy

(28,7); n = 2

n
V I

(28,7): n = 1

I I

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.(

FIG. 7. Coordinate space envelope functions of the lowest
two k~~

——0, q =q,„states for the (28,8)-, and (28,7)-(001)
Alo 28Gao»As/A1As superlattices.

opposite of the q =0 case. At q =0, when the curves for
the lowest I -well and X-well states meet, they cross if
Lz is even, and anticross if Lz is odd. For q =q,„, the
opposite is true. This can be seen by comparing Figs. 6
and 7. For Lz ——8, the lowest I -well and X-well states
are decoupled at q =0, but mixed at q =q,„. The op-
posite is true for Lz ——7.

B. Pressure dependence

In this section we study the effects of hydrostatic pres-
sure on the superlattice conduction bands. In general,
applying hydrostatic pressure to bulk Al Ga

&
As

moves the I valley up and X valley down. In addition,
the I -valley effective mass also increases with pressure.
We know this from the k.p theory which tells us that
the I -valley effective masses increase as the direct band
gap widens. In the k p theory, we have mo/m& ——1

+C!Eg(P), where C is a constant proportional to the
squared momentum matrix element between the
conduction- and valence-band states. In our model the
pressure-induced changes of the I"-valley effective mass
and the I -, X-, and L-valley positions are incorporated
by modifying the one-band coeKcients.

In Fig. 8 we plotted the energy levels of k~~q=0 states
for the (25,50)-(001) GaAs/Alo 3Gao 7As superlattice as
functions of applied hydrostatic pressure. For CxaAs,
the I -, X-, and L-valley pressure coe%cients we used are,
respectively, 10.7, —1.3, and 2.8 (in units of
meV/kbar). ' ' For A1As, the corresponding pressure
coe%cients are 9.9, —0.9, and 2.8.' ' " As we can see
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from the numbers, the effect of hydrostatic pressure is to
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compositions which we discussed in Sec. . e c
identify the curves for r-like states by their positive
slopes, and the X-like states by their negative slopes.
Note that att P=29 kbar the lowest I -like state over-
takes the lowest X-like state, indicating a type-I to type-

transition occurs is called t'he "crossover pressure. "
In Fig. 9 we plot the crossover pressures for the (001)
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open squares represent the experimental values for the
n = 1 quantum-well state obtained by Venkateswaran
et al. ' Our theoretical values are in good agreement
with the experimental results. We note first of all that
while az for bulk GaAs is 10.7 meV/kbar, the superlat-
tice a&'s are noticeably smaller. At first we might
suspect that this is due to the leakage of the superlattice
wave functions into the AlQ 3GaQ 7As slabs in which the
pressure coeKcient is smaller (9.9 meV/kbar). A simple
calculation will show that this effect is too small to ac-
count for the difference between the bulk GaAs and the
superlattice aI-'s. The real explanation is due to the fact
that the I -valley effective mass increases with pressure.
This in turn causes the I -well energy levels relative to
the I -well bottom to decrease with pressure. This
means that the rates of increase for the I -well levels
with respect to pressure is smaller than that for the bulk
I" valley, resulting in ez's that are smaller than the bulk
value.

A general feature of the az curves is that they de-
crease with increasing n, and, except for the "hooks" at
the end of the curves, decrease with decreasing L~. To
explain this we recall that for the particle-in-the-box
problem the energy levels relative to the well bottom are
approximately given by (assuming large barrier height):

m. An
22IL g

(14)

We see that the decrease in E„due to the pressure-
induced increase in effective mass is amplified by factors
of n and 1/L ~. Since decrease in E„causes the
quantum-well az's to be reduced from the bulk value, we
expect this reduction to increase with n and decrease
with L~. Note that one of the effects of the finite bar-
rier height is the "hooks" that we see. The hooks are
associated with quantum-well levels near the well top
which cannot be approximated by (14).

Recall from our discussion in Sec. III A that when the
E versus x curves belonging to I -well states and X-well
states meet, they either cross or anticross, depending on
whether there is I -X mixing. Recall also that the cross-
ing or anticrossing behavior depends critically on the
thickness of the X well, and that changing the X-well
thickness by one monolayer would reverse the crossing
or anticrossing patterns completely. Here we shall sug-
gest a way by which this dependence of crossing or an-
ticrossing patterns on whether the X well consists of an
even or an odd number of monolayers might be observed
with pressure experiments.

Consider an experiment in which we are trying to ob-
serve the luminescence associated with transitions from
the lowest conduction subband to the highest valence
subband as functions of pressure. When pressure is in-
creased, the lowest conduction-subband states cross over
from I -like to X-like, while the highest valence subband
states remain I -like. Since the overlap between the
conduction-band X-like state and the valence-band I-
like state is small, we would expect the luminescence in-
tensity to drop off as we increase the pressure past the
crossover point. How quickly the intensity drops off de-
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FIG. 11. Square of the k-space envelope function
(

l
F„( ~~qk, g~,'j), j = W, B) of the lowest conduction-band state

at k~~
——0, q =0 for the (7,7)- and the (8,8)-(001) GaAsl

Alo 3Gao7As at several different pressures near the crossover
point. The j = W (we11 component) is represented by the solid
curve, and the j=B (barrier component) is represented by the
dotted curve.

pends on whether we have a "crossing" or an "anticross-
ing. "

The difference between I -X crossing and anticrossing
is illustrated in Fig. 11 where we have plotted the square
of the k-space envelope function [ l F„(k~~q, gl', j)

l

j = W, B] of the lowest conduction-band state at k~~
——0,

q =0 for the (7,7)- and the (8,8)-(001) GaAs/
Alp 3GaQ 7As at several different pressures near the cross-
over point. In the (7,7) (anticrossing) case, the wave
function gradually changes from being I -like (consisting
mainly of components from near k, =0) to X-like (con-
sisting mainly of components from near k, =1), with in-
termediate states being I -X mixed states. In the (8,8)
(crossing) case, the I -X crossover is abrupt, with no I -X
mixing. From this we would expect the luminescence in-
tensity as a function of pressure to drop off gradually for
the anticrossing case, and abruptly for the crossing case.

However, the story is not quite this simple. Recall
that for a given superlattice subband the crossing and
anticrossing patterns are the opposite for q =0 and

q =q,„. Typically we would not be able to isolate these
crossing and anticrossing patterns from each other if the
subbands associated with the states of interest have small
dispersion in the z direction, so that the states with
different q's in the lowest subband would all be occupied,
giving us a q-averaged luminescence. However, in the
case when the well and barrier thicknesses are ultrathin,
the lowest subband can actually have considerable
dispersion as a function of q. This is illustrated in Fig.
12 where we have plotted the q dispersion curves for the
(7,7)- and the (28,28)-(001) GaAs/Alo 3Gao 7As at k~~

——0.
As we can see, whereas the lowest subband for the
(28,28) case is virtually dispersionless, the energy
difference between the q =0 and q =q,„states for the
lowest subband for the (7,7) case is around 250 meV.
This means that in the ultrathin case, we only need to
consider the states near q =0 for luminescence.
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FIG. 12. q dispersion curves for the (7,7)- and the (28,28)-
(001) GaAs/Alo. 3Gao. 7As at k~~

——O.

Figure 13 shows the luminescence for the (7,7) and the
(8,8) superlattices as a function of pressure. The
luminescence is simulated by calculating the square of
the overlap of the envelope functions for the k~~

——0, q =0
states of the lowest conduction subband and the highest
valence subband. In the (7,7) case, we have I -X mixing
and the luminescence drops off gradually. For the (8,8)
case, the I and X states do not mix, and the lumines-
cence drops oft' sharply. In fact, it drops oft' to zero
since the lowest q =0 X-well state for the (8,8) case is
odd. This is one way by which the crossing or anticross-
ing dependence on the X-well thickness might be ob-

C. Dependence on k
I~

So far, we have only looked at states at k~~
——0. In this

section we examine the dependence of the superlattice
energy levels on k~~. In Fig. 14 we plot the energy levels
of the (28,28)-(001) Alp p5Gap 75As/A1As superlattice as
functions of k, with k~ and q fixed at 0. Again, the
solid and dashed curves are used to identify the even-
and odd-parity states, respectively. The parity is for
reflection about a plane parallel to the interface and
through the well center. The interesting feature of Fig.
14 is that, as a result of zone folding, it contains infor-
mation about quantum-well states associated with all
three of the X valleys as well as the I valley. To distin-
guish the (100), (010), and (001) X valleys we shall refer
to them as, respectively, the X, X~, and the X, valley.
Note that here X valleys and I valley refer to the X val-
leys of A1As and the I valley of A1GaAs.

To illustrate how the various X valleys come into play,
in Fig. 15 we plotted the lowest conduction band of bulk
A1As along the direction of zone folding (z) for fixed
values of k and k~. The solid curve ranges from
k=(1,0, —1) to (1,0, 1), and describes the bulk states that
are folded into the k~~

——(1,0) superlattice states which
appear on the right-hand side of Fig. 14. This includes
the (100) (X ) and the (010) X-valley (X~) states. [Note:
the (010) point is equivalent to the (101) point in k space
because they differ by a reciprocal-lattice vector (111).]
It is interesting to note that the band structure is sym-
metric with respect to the line k, =0.5(2m. /a). The dot-
ted curve ranges from k = (0,0, —1 ) to (0,0, 1), and de-
scribes the bulk states that are folded into the k~~

——(0,0)
superlattice states which appear on the left-hand side of
Fig. 14. This includes the X,-valley states.
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FIG. 13. Simulated luminescence for the (7,7)- and the
(8,8)-(001) GaAs/Alp3Gao7As superlattices as a function of
pressure.

FIG. 14. Energy levels of the (28,28)-(001)
Alp 2gCiap 75As/AlAs superlattice as functions of k, with k~
and q fixed at 0. The solid and dashed curves are used to iden-
tify the even- and odd-parity states, respectively.
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X (100)
Xy (010)
X, (001)
r (000)

TABLE I. Effective masses of the I and X valleys.

[100] mass
(dispersion mass)

m

mr

mr

[001] mass
(quantization mass)

m,
m,
m

mr

Note from Fig. 15' that the [001] effective mass is
different for the three X valleys. For the X, valley, it is
the (heavier) longitudinal mass ml, and for the X and

X» valleys, it is the (lighter) transverse mass m, . The
mass along [001] is important because it is the quantiza-
tion mass in the (001) superlattices. The other important
quantity here is the [100] effective mass. The [100] mass
accounts for the dispersion along [100], the direction
along which the band structure is being examined in Fig.
14. The types of effective masses associated with the I
and the X valleys are summarized in Table I.

We are now able to identify the various subbands in
Fig. 14. First of all, we know that the X,-valley states
are folded into the region around k~~

——(0,0) along with
the I -valley states. If we look at the left-hand side of
Fig. 14, we can see that there are two subbands associat-
ed with the I valley (starting at about 1.7 and 1.86 eV).
The I subbands are marked by their larger curvature
due to the smaller I -valley dispersion mass. The other
subbands are associated with the X, valley.

Turning to the right-hand side of Fig. 14 (near
K =1), we again see two sets of curves. As we have
discussed earlier, both the X - and X~-valley states are
folded into the region near k~~

——(1,0). From Table I we

see that X„-valley states have a larger dispersion mass
than the X~ valley. We can therefore identify the set of
curves with the smaller curvature as the X -valley states,
and the other set as the X~-valley states.

We note that all the X - and X~ -valley states at
k~ ——(1,0) come in degenerate pairs. The X, — and X»—
valley states are in the same quantum well (the X well),
and they have the same quantization mass, so we might
expect them to be degenerate. However, the degeneracy
is not necessary. In Fig. 16 we plotted the band struc-
ture along k again, keeping the circumstances the same
as in Fig. 14, except changing the layer thicknesses from
(28,28) to (27,27). Note that this time the degeneracy at

k~~
——(1,0) is lifted. Comparing this band structure with

that in Fig. 14, we note that they are almost identical,
except that the parities of all the X~-valley states have
been reversed. The dependence of parity on layer
thicknesses reminds us of the I -X crossover in Fig. 5.
And in fact, the explanations in both cases are the same.
Once again, the envelope functions for the k~~

——(1,0)
states associated with the X valley are essentially the
particle-in-the-box wave functions as in the case of the
I -valley states, while those associated with the X~ valley
[(101) X valley] are particle-in-the-box wave functions
modulated by a phase factor. When the modulating
phase factor is an odd function (Lz even), the X„and X»
states have different parities, and they do not interact.
But when the modulating phase factor is an even func-
tion (L~ odd), the X„and X» states have the same parity
and interact with each other to lift the degeneracy. We
shall call this interaction "X -X~ mixing, " in analogy to

190
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FIG. 15. Lowest conduction band of bulk A1As along the
direction of zone folding (z) for fixed values of k and k~. The
solid curve corresponds to (k„,k~ ) =(1,0), and the dotted
curve corresponds to (k„,k~ ) =(0,0).

FIG. 16. Energy levels of the (27,27)-(001)
Alp z5Gao 75As/A1As superlattice as functions of k, with k~
and q fixed at 0. The solid and dashed curves are used to iden-
tify the even- and odd-parity states, respectively.



36 I -X MIXING IN GaAs/Al Ga~ As AND. . . 4371

1.85

1.80

1.75

1.70

1.65
10.0 20.0 30.0 40.0 50.0 60.0 70.0

FIG. 17. Energy levels of the lowest I -well state (I ' ' '), the
lowest X-well state at k~~

——(0,0) (X' ' '), and the lowest X-well
state at k

~~

= (1,0) (X"") for the (N, N)-(001)
Alp 25Gap 75As/A1As superlattice as functions of layer thickness
N. A solid circle is used to denote an odd-parity state, an open
circle denotes an even-parity state, and a solid square denotes a
degenerate pair of even and odd states.

I -X mixing (hereafter referred to as the I -X, mixing to
avoid confusion with the X„and X» states). We point
out that both X -Xy mixing and I -X, mixing can be
seen in Fig. 16. We have chosen the alloy compositions
such that we are at a I -X, crossover point. In Fig. 14,
the lowest I -well state and the lowest X-well states at
k~~

——(0,0) are (accidentally) degenerate. In Fig. 16, the
degeneracy is lifted, giving us I -X, mixing states at
k~i

——(0,0).
Another feature that can be seen in Figs. 14 and 16 is

the role of quantization mass. By comparing the energy
levels of the lowest X-well states at k = (0,0) and

k~~
——(1,0), which we abbreviate as X ' ' and X" ', we

see that X ' is always lower in energy. This is because(0,0)

X' ' ' is associated with the X, valley, which has a larger
(001) quantization mass than the X or the X» valley.
To illustrate this further, in Fig. 17 we plotted the ener-
gy levels of X' ' ' and XI' ' for the (N, N)-(001)
Ala 2gGao 75As/A1As superlattice as functions of layer
thicknesses N. For comparison I ' ' ', the lowest I state,
is also included. We keep the I -well and X-well widths
the same (L~ L~ =N——) so we can make reasonable
comparisons between the I -well and X-well states. Solid
circles are used to indicate an odd-parity state, open cir-
cles for an even-parity state, and solid squares for a de-
generate pair of even and odd states. Note that, due to
its larger quantization mass, X' ' ' is always lower than
X''0', which is either an X -X» mixed state (Lq odd) as

in Fig. 16, or an X„,X twofold-degenerate state (Lz
even) as in Fig. 14. I Ioo~, as we have mentioned before
in Figs. 2 and 3, is lower than the X states at large N,
but is higher than the X states for small N. Note that
there are some wiggles in the I curve at small N where
I ' ' ' is higher than X' ' '. This is due to the interaction
between the lowest I -well state and some higher X-we11
states. The wiggles in the X" ' curve are due to the
fact that the X -Xy mixing occurs only if Lz is odd. As
we can see, X -Xy mixing is more pronounced at smaller
values of N.

IV. SUMMARY

We have developed an efBcient and realistic model for
studying the conduction bands of superlattices made
from indirect-band-gap semiconductors. Using this
model we have made a systematic study of the conduc-
tion bands of the (001) GaAs/Al„Ga, As and
Al Ga& As/A1As superlattices.

In treating this problem we found that it is convenient
to think of the superlattice as consisting of different
types of quantum wells: I well for the I -valley elec-
trons and X well for the X-valley electrons. In the
Al Gal As superlattices, the I wells and the X wells
are staggered, with the I well in the slabs with lower Al
concentration and the X well in the slabs with higher Al
concentration.

A primary objective of ours is to study the confined
states associated with the indirect valleys which are fold-
ed into the reduced Brillouin zone. In the case of the
(001) Al„Gal As superlattices, for instance, we have
the X, valley which is folded into k~~

——(0,0), and the X»
valley which is folded into k~~

——( 1,0). The envelope
functions of these confined states can be considered as
particle-in-the-box wave functions modulated by a spa-
tially varying phase factor. This phase factor has an im-
portant effect on the property of the envelope function.
At q =0, for example, the modulating phase factor asso-
ciated with the X, and the Xy valleys is either an even-
or an odd-paritied function, depending on whether the
width of the X well, Lz, is an odd or an even number,
respectively. Therefore, in this case the overall parity of
the envelope functions is dependent on the thickness of
the X well.

The phase factor is important because it can deter-
mine how the confined states interact with one another.
By appropriately adjusting the alloy compositions or
external hydrostatic pressure, we can bring the confined
states associated with the different conduction-band val-
leys close together in energy to see how they interact
with each other. In our case, the I -valley states and the
X,-valley states can be brought together at k~~

——(0,0),
and so can the X, and the X» valleys at k~~

——(1,0). We
find that I"-X, mixing and X -Xy mixing are similar in
nature. The only difference is that the (100) and the
(010) X valleys have the same quantization mass, while
the I valley and the (001) X valley have different quanti-
zation masses. At q =0, states from different valleys can
mix only if they have the same parity. Since the parity
of the zone-folded states is determined by the X-well lay-
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er thickness, we find that I -X, and X -Xy mixing is
dependent on the X-well thickness. In addition, we also
found that I -X, and X -Xy mixing also depend on the
superlattice wave vector q. For instance, if for a particu-
lar superlattice I -X, mixing occurs at q =0, then the I
state and the X state are noninteracting at q =q

In studying the pressure dependence of the (001)
GaAs/Al Gal As superlattice, we found that the pres-
sure coefficient of the superlattice states associated with
the I valley are all smaller than the bulk ez. The
amount that they deviate from the bulk az depends on
the well width Lz and the principal quantum number n.
In general, the deviation decreases with L ~ and in-
creases with n. This is explained in terms of the depen-
dence of the I -valley effective mass on the applied hy-
drostatic pressure. The theoretical results obtained with
our model are found to be in good agreement with ex-
perimental values.

One of our findings is that both I -X, mixing and X-
Xy mixing are enhanced when the layer thicknesses are
small. Our calculation also shows that pressure experi-
ment on high quality samples of superlattices with ul-
trathin layers can offer us a way to observe the depen-
dence of I -X, mixing on the X-well width.

In conclusion we would like to remark that we have
found the one-band Wannier orbital model to be invalu-
able in our studies of the properties of Al Gal As su-
perlattices. Its numerical efficiency allows us to generate
data on different aspects of the problem quickly, and its
simplicity makes interpreting the data easy. We believe
this method can be a valuable tool in studying other
types of superlattices as well.

Note added. We would like to direct the readers' at-
tention to a paper by Jaros and co-workers which ap-
peared after our manuscript was submitted. In that arti-
cle the electronic and optical properties of the
GaAs/Al Ga& As superlat tice as functions of alloy
composition and hydrostatic pressure are studied using
the pseudo potential method. The results that they
presented are in general qualitative agreement with ours.

ture in the one-band Wannier orbital model is related to
the matrix elements between Wannier orbitals as follows:

E(k)=g exp(ik. R)(O
~

H
~
R),

R
(A 1)

E(k)=g C;S;(l;,m;, n;;k), (A2)

where summation index i' runs over the shells, and S; is
the "shell structure factor" associated with the ith shell:

S;(1;, mn;; )k= g exp(ik R) .
R E i th shell

It can be shown that S; is given by

(A3)

where R specifies the coordinates of the unit cell in
which the Wannier orbital

~

R) is located, and 0 is the
origin. For convenience, in the remainder of this section
we shall write R in units of a /4, and k in units of 2'/a,
where a is the lattice constant. In these units, R is given
by a triplet of integers (l, m, n).

We define a "shell" as a collection of all lattice points
located at equivalent positions relative to the origin [e.g. ,
R=(2, 2, 0) and R'=(0, —2, 2) are on the same shell].
We label the shells by the index i, and specify the ith
shell by the triplet (l;,m;, n; ), the coordinates of a lattice
point on the ith shell. In our calculations 21 shells are
used. A listing of (l;, m;, n;) is given in Table II. Note
that even though (6,6,0) and (8,2,2) are equidistant from
the origin, they are considered to be on two separate
shells.

Due to the symmetry of the Wannier orbitals, if R
and R' are on the same shell, then ( 0

~

H
~

R )
=(0

~

H
~

R'). We can therefore use a single number
C; to denote the matrix element (0

~

H
~

R"), whereR" could be any lattice point on the ith shell. For con-
venience, we refer to the C s as the one-band parame-
ters. By grouping the terms involving R's on the same
shell together in Eq. (Al), we can write E (k) as
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APPENDIX

In this appendix we discuss the details of how the
one-band parameters are obtained, and how they are
modified phenomenologically to account for the effects
of hydrostatic pressure.

1. Fitting one-band parameters

where N; is the number of points in the ith shell, and the
sum is taken over all permutations (P) of (l, m, n). F is
given by

'jjF(l, m, n;k)=cos jk& —cos mkq —cos nk3—

(A5)

mo

mr
1

96Ry
ao g C;N;(1; +m; +n; ), (A6)
Q

Equation (A2) is used in our band-structure fitting
procedure. In fitting the band structure, one of the most
critical quantities is the I"-valley effective mass mz. It
can be shown that the I -valley effective mass is given by

, 2

We first derive an expression for E(k) which we use
in fitting the one-band parameters. The bulk band struc-

where Ry is the Rydberg constant, mo is the free-
electron mass, and ao is the Bohr radius.
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TABLE II. Al Gal As one-band coefficients for x =0, 0.5, and 1. Coefficients for other composi-
tions are obtained from values given here by quadratic interpolation. The onsite energy (C& ) listed in

this table are adjusted to give E (k=0) =0. For use in superlattices, the offset of
1.425+ Q, (1.155x+0.37x') eV should be added to the onsite values. "
Shell index R '2

N; GaAs

C;((0
~

H ~jR)) (eV)

Alo. sGao. sAs A1As

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

(0,0,0)
(2,2,0)
(4,0,0)
(4,2,2)
(4,4,0)
(6,2,0)
(4,4,4)
(6,4,2)
(8,0,0)
(6,6,0)
(8,2,2)
(8,4,0)
(6,6,4)
(8,4,4)
(8,6,2)

(10,2,0)
(10,4,2)

(8,8,0)
(8,6,6)

(10,6,0)
(8,8,4)

0
8

16
24
32
40
48
56
64
72
72
80
88
96

104
104
120
128
136
136
144

1

12
6

24
12
24

8

48
6

12
24
24
24
24
48
24
48
12
24
24
24

3.0864
—0.0297

0.0064
0.0492

—0.1212
0.0012

—0.0216
0.0110
0.0819

—0.0528
—0.0252

0.0053
0.0079
0.0041
0.0041

—0.0016
—0.0029
—0.0388
—0.0199
—0.0094

0.0014

3.2219
—0.0033
—0.0467

0.0206
—0.1099

0.0105
—0.0137

0.0269
0.0060

—0.0741
0.0014
0.0279

—0.0014
0.0027

—0.0136
—0.0203

0.0030
—0.0154
—0.0013

0.0007
—0.0124

3.4322
0.0309

—0.0989
—0.0163
—0.1065

0.0256
0.0015
0.0483

—0.0775
—0.0946

0.0356
0.0497

—0.0175
0.0032

—0.0376
—0.0478

0.0094
0.0112
0.0191
0.0173

—0.0259

The band-structure fitting procedure is as follows:
First, E (k) at 60 point along the path
L —I —X—U —L —8 —K —I —8' —X in the Brillouin zone
is computed by using the pseud opotential method.
Where necessary, the E (k)'s are adjusted slightly to give
better agreement with known experimental values. A
search in the parameter space IC; I is then conducted to
find the set of one-band parameters which, when used in
Eq. (A2), yields the band structure which most closely
approximates the adjusted pseudopotential band struc-
ture. In the fitting process, more weight is given to the
points with lower energies since the superlattice states of
interest come mainly from bulk states in this energy
range. Also, heavy emphasis is placed on obtaining a
good fit to the I -valley effective mass.

The one-band parameters for GaAs and A1As are list-
ed in Table II. The pseudopotential form factors for
GaAs and A1As used in band-structure fitting are taken
from Caruthers and Lin-Chung.

2. Pressure eÃects

In treating the effects of hydrostatic pressure we try to
account for the changes in the energies of the I, X, and
L valleys and the change in the I -valley effective mass
by modifying the values of the one-band parameters.
The pressure-induced changes in energy at the I, X, and
L points are given by

Er(P) =Er(0)+arP,
Ex(P) =Ex(0)+axP

EL (P) =El (0)+aL P,

(A7a)

(A7b)

(A7c)

771 p (=1+
mr(P) Er(P)

(A8)

The procedure we use to modify the one-band parame-
ters to account for these changes involves two steps.
First we scale all the parameters by the pressure depen-
dent factor f (P):

where P is the pressure, and the a's are the bulk pres-
sure coefficients associated with the three conduction-
band valleys. Note that we have assumed that the
valence-band tops of the well and the barrier materials
do not move relative to each other as a function of pres-
sure. In other words, the pressure changes in the band
gaps have been completely assigned to the conduction
band. This assumption is in good agreement with recent
first-principles calculations by Van de Walle and Mar-
tin which showed that in A1GaAs heterostructures the
pressure-induced change in the difI'erence of the
valence-band tops (hE, ) is more than an order of mag-
nitude smaller than the change in the band-gap
difference ( b.Es ).

The change in the I -valley effective mass, as described
in Sec. III B, is given by
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C =f(P)C;,
mr(P =0)f (P)=

mr(P)

(A 9a)

(A9b)

EI =a„P+ [1 f (P) ]Er—(P =0),
~=axP + [1 f (P)]E—x(P =0),
bL =aLP + [1 f (P)]El —(P =0) .

(A10a)

(A lob)

(A10c)

As we can easily verify by using Eq. (A6), the scale pa-
rameters I C I give us a band structure with the desired
mr(P). In fact, as we can see from Eq. (A2), the entire
band structure is now scaled by a factor of f (P).

We next try to simulate the changes in I, X, and L.
We note that by scaling the one-band parameters we
have modified the energies of I, X, and L. These
changes must be compensated for in addition to the
pressure-induced changes. Therefore, we now need to
modify the scaled one-band parameters to affect the fol-
lowing changes in the I, X, and L energies:

b, C'( ——(6 b I +18~+24 bL)/49,

DC2 ——(5 b I —3 ~—
I'LL)/49,

bC', =(1 bI +3~ 4bL)l—49,
DC' ——( —1 b I +1 KL)/49 .

(A 1 la)

(A 1 lb)

(A 1 lc)

(A11d)

We mention that the reason we did not simulate the
changes in the I", X, and L energies and mi- by modify-
ing the one-band parameters associated with the four
smal'lest shells alone is that it would give us grossly dis-
torted band structure in the rest of the Brillouin zone
even at moderate pressures. The procedure that we used
avoids this problem.

In addition, we have to ensure that whatever new
changes we now make in the one-band parameters do
not disturb the already correct mr(P). This is done by
modifying the scaled parameters associated with the four
smallest shells (C&, C~, C3, C&). It can be shown that
the proper changes that need to be made are

'L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
2L. L. Chang and L. Esaki, in Progress in Crystal Growth and

Characterization, edited by B. R. Pamplin (Pergamon, Ox-
ford, 1979).

R. Dingle, Festkorperprobleme, edited by J. Trensch (Per-
gamon, New York, 1975), Vol. 15, p. 21.

4Y.-C. Chang and J. N. Schulman, Appl. Phys. Lett. 43, 536
(1983); Phys. Rev. B 31, 2069 (1985).

5M. Altarelli, Phys. Rev. B 32, 5138 (1985).
G. D. Sanders and Y. C. Chang, Phys. Rev. B 31, 6892 (1985);

35, 1300 (1987)~

7G. C. Osbourn, J. Vac. Sci. Technol. 21, 469 (1982).
8P. L. Gourley and R. M. Biefeld, J. Vac. Sci. Technol. 21, 473

(1982).
J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T.

Lynch, Appl. Phys. Lett. 44, 102 (1984).
' U. Venkateswaran, M. Chandrasekhar, H. R. Chandrasekhar,

B. A. Vojak, F. A. Chambers, and J. M. Meese, Phys. Rev. B
33, 8416 (1986); Proceedings of the Second International
Conference on Superlattices, Microstructures and Microde-
vices, Goteborg, Sweden, 1986 (unpublished).
D. J. Wolford, T. F. Keuch, J. A. Bradley, M. A. Gell, D.
Ninno, and M. Jaros, J. Vac. Sci. Technol. B 4, 1043 (1986).

' B. A. Wilson, P. Dawson, C. W. Tu, and R. C. Miller, J. Vac.
Sci. Technol. B 4, 1037 (1986).

' E. Finkman, M. D. Sturge, and M. C. Tamargo, Appl. Phys.
Lett. 49, 1299 (1986).

' I. Morrison, M. Jaros, and K. B. Wong, J. Phys. C 19, L239
(1986)~

'5M. A. Gell, D. Ninno, M. Jaros, and D. C. Herbert, Phys.

Rev. B 34, 2416 {1986).
D. Z.-Y. Ting and Y.-C. Chang, J. Vac. Sci ~ Technol. B 4,
1002 (1986)~

%. P. Dumke, M. R. Lorenz, and G. D. Pettit, Phys. Rev. B
5, 2978 (1972).

' T. C. Chiang, J. A. Knapp, M. Anono, and D. E. Eastman,
Phys. Rev. B 21, 3515 (1980).

~9H. J. Lee, L. Y. Juravel, J. C. Woolley, and A. J. Spring
Thorpe, Phys. Rev. B 21, 659 (1980).
J. Menendez, A. Pinczuk, A. C. Gossard, J. H. English, D. J.
Werder, and M. G. Lamont, J. Vac. Sci. Technol. B 4, 1041
(1986).

'H. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers
(Academic, New York, 1978), Pt. A.

Landolt-Bornstein: Numerical Data and Functional Relation-
ships in Science and Technology, edited by O. Madelung, M.
Schulz, and H. Weiss, Group 3, Vol. 17(a) (Springer-Verlag,
Berlin, 1982).
See, for example, W. A. Harrison, Solid State Th eory
(McGraw-Hill, New York, 1970), p. 141.
M. Chandrasekhar (private communication). The pressure
coefficient is determined by a linear fit to the photolumines-
cence at 80 K as a function of pressure for pressures between
0 and 40 kbar.
M. A. Gell, D. Ninno, M. Jaros, D. J. Wolford, T. F. Keuch,
and J. A. Bradley, Phys. Rev. B 35„1196(1987).
Ed Caruthers and P. J. Lin-Chung, Phys. Rev. 8 17, 2705
{1978).
C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 8154
(1987).


