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We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated
electron systems which are neither infinite nor small. The excitations are described within Hub-
bard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation ex-
pansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized
“transition” momenta can be assigned to electronic excitations in finite chains. These momenta
link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge
the gap between finite and infinite systems. A key result is the following: Excitation energies E in
polyenes with N carbon atoms are described very accurately by the formula E#=AES +afk (N)g,
qg=1,2,..., where B denotes the excitation class, AEf the energy gap in the infinite system
[@Pk (N)> 0], and k (N) the elementary transition momentum. The parameters AES and o are
determined for covalent and ionic excitations in alternating and nonalternating polyenes. The co-
valent excitations are combinations of triplet excitations 7, i.e., T, TT, TTT, ... . The lowest
singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states.
Available evidence proves that these states can dissociate into separate triplets. The bond struc-
ture of T'T states is that of a neutral soliton-antisoliton pair. The level density of TT states in long
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polyenes is high enough to allow dissociation into separate solitons.

I. INTRODUCTION

Motivated by the aim to develop conducting and semi-
conducting organic materials the properties of conjugated
polymers, in particular, the properties of their prototype
trans-polyacetylene [trans-(CH),] (see Fig. 1), have been
investigated in recent years.! The investigations have
been guided by solid-state-physics concepts developed for
“infinite”’-size materials, i.e., materials characterized by
bands of very densely spaced electronic states. However,
the organic conductors and semiconductors investigated
so far are by no means infinite. Polyacetylene, for in-
stance, consists of strands of conjugated polymers, called
polyenes, which are some hundred carbon atoms long. It
is not known how densely spaced the electronic excita-
tions in such chains actually are and to what extent a
mixing of electronic states is possible. In this paper we
will attempt to bridge the gap between finite and infinite
polyenes. The results will be rewarding: an extrapolation
of the well-known properties of small polyenes® to very
long polyenes provides an estimate of the density of states
of finite, but long polyenes, yields explanations for previ-
ous observations, suggests new observations, and sheds
light on the concepts employed so far to understand the
properties of semiconducting organic polymers.

The concept that has been envoked most often in the
field of organic polymers in the recent past is that of the
soliton, i.e., of a low-energy excitation that involves a
strong coupling between electronic and lattice degrees of
freedom. It has been suggested that solitonic excitations
mediate the conductivity of (CH),. In the pioneering
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work of Su, Schrieffer and Heeger the electron-phonon
coupling had been emphasized at the expense of electron-
electron interactions which had been neglected.>* Subse-
quent theoretical studies on conjugated polymers have at-
tempted, therefore, to evaluate the effect of electron-
electron interactions on the energies and lattice structures
of solitonic excitations in electron-phonon models of po-
lyacetylene.’—!!

Solitonic excitations as suggested by Su, Schrieffer, and
Heeger have not been observed in small polyenes. What
has been observed are vibronic effects on isolated electron-
ic states, e.g., shifts of equilibrium geometries and vibra-
tional frequencies upon excitations from the ground state
to isolated excited states. The question arises whether the
properties of long polyacetylene strands (CH), arise from
isolated stationary, delocalized states as in shorter po-
lyenes or whether wave packets combined from nearly de-
generate delocalized electronic excitations and shaped by
a coupling to lattice distortions manifest themselves. Soli-
tons belong to the latter class of excitations. For an
answer to the question raised one needs to extrapolate the
properties of finite polyenes to the long polyene limit in
order (1) to see how the isolated electronic excitations in
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FIG. 1. Ground state of polyenes and polyacetylene charac-
terized by alternating single and double bonds.
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the short polyenes merge to form bands of excitations in
the longer polyenes, (2) to obtain information on the prop-
erties of the respective excitations, e.g., their bond pattern,
and (3) to estimate the intraband state density of long, but
finite polyenes. This latter information determines to
what extent weak interactions like electron-phonon cou-
pling can induce new states, e.g., solitonic excitations in
(CH),.

The following results of work on finite polyenes appear
to be relevant for current investigations on polyacetylene.

(1) Qualitatively correct and quantitatively accurate
descriptions of electronic spectra require highly sophisti-
cated many-electron methods because the motion of elec-
trons in these one-dimensional materials is dominated by
Coulomb repulsion.

(2) The size of the energy gap between the ground state
and the first optically allowed excited singlet state is deter-
mined by the strength of the Coulomb interaction between
the 7 electrons; bond alternation, i.e., the pattern of single
(long) and double (short) bonds, contributes only a minor
fraction to the energy gap.'>!* The first optically allowed
singlet state is the lowest energy member of a class of ionic
singlet states in polyenes which are either optically al-
lowed or assume rather strong oscillator strengths upon a
breaking of the molecular symmetry, e.g., upon
trans—cis isomerization.?

(3) In polyenes there exist optically forbidden covalent
singlet electronic excitations with energies below the “‘op-
tical” gap. These states are characterized by collective ex-
citations of the spin degrees of freedom of the 7 electrons
and, therefore, do not emerge in single-electron theories as
these theories largely neglect the effect of electron correla-
tion.!*!> The excitation energy of the covalent states de-
pends sensitively on the degree of bond alternation, i.e.,
calculations of the energies of these collective m-electron
excitations have to be based on realistic molecular
geometries in order to render quantitative descriptions.'?
The optically forbidden character of the covalent states is
not affected very much by a breaking of the molecular
symmetry.

(4) The Born-Oppenheimer approximation applies to
calculations of electronic wave functions. Even if pure 7-
electron Hamiltonians are employed for the description of
polyenes the equilibrium molecular geometries in low-
energy states can be estimated from calculated wave func-
tions. These wave functions, on the other hand, are rath-
er insensitive to the model geometry chosen for the carbon
lattice, i.e., in both ground and excited states the electron-
ic structure determines that of the lattice whereas the re-
verse influence is smaller. For instance, the well-known
ground-state structure of alternating single and double
bonds shown in Fig. 1, is revealed by bond orders that re-
sult from a calculation which assumes equal lengths for
all polyene bonds (see also Sec. VI of this paper). Furth-
ermore, it has been shown that excited state bond orders
explain the known photochemical behavior of polyenes.!®
Hence, for a description of finite polyenes an inclusion of
electron-phonon interaction represents an unnecessary
complication.

We note that the ionic states are often termed ‘“‘charge-
transfer” excitations and that the covalent states are often
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referred to as “‘spin-wave” excitations.

Unfortunately, the knowledge on finite polyenes had
been limited until recently' to short compounds with up
to 10 carbons.'*!® These compounds are too short to
identify the asymptotic laws which allow an extrapolation
to very long polyenes. The results obtained in Ref. 13
and in this paper alter this situation. We have presented
in Ref. 13 accurate descriptions of electronic excitations
for polyenes up to 16 carbons long and, in part by using
results presented already there, we will reveal in this pa-
per the asymptotic relationships that link short and very
long polyenes.

The main result of previous studies on finite polyenes is
that electron correlation contributes in an essential way to
the properties of these compounds. Recently, the impor-
tant role of electron correlation has also been deduced by
observations on polyacetylene (CH), and related materi-
als. The occurrence of negative spin densities on alternate
carbon atoms which arises due to electron-electron in-
teraction'* has been observed.!” Single electron theories,
in contrast to more complete theories, predict an absorp-
tion due to the neutral soliton at the ‘“midgap’ position,
i.e., at a position where it has not been found.'® Further-
more, the dependence of photocarriers on the photon en-
ergy indicates electron-hole interactions which are also
not accounted for by single electron theories.!® Conse-
quently, the important effect of electron correlation on the
physical properties ot (CH), has been emphasized.?

Up to now most theoretical investigations of correlation
effects in (CH), dealt with bond alternation,?' ~2® with the
optical gap,'?°73! and with solitonic excitations’~'! in
(CH),. These studies have demonstrated that an assess-
ment of correlation effects on these properties of (CH),
depends on the quality of the approximation employed.
Hartree-Fock?!"?>8 and perturbative treatments®>* have
been shown to render qualitatively wrong predictions on
the implications of electron correlations for soliton ener-
getics?>!! and bond alternation.?*~2® Therefore, we ex-
pect that limited configuration interaction (CI) descrip-
tions like those in Ref. 9 strongly underestimate the effect
of Coulomb interactions on soliton energetics. Any satis-
factory description of electron correlation effects requires
either exact solutions or extend <size-consistent” CI
descriptions. Unfortunately, the enormous dimension of
the many-electron Hamiltonian for polyenes with 12 and
more carbon atoms makes such calculations a computa-
tionally extremely difficult task.’> To surmount this task
we have developed a new multiple-reference double-
excitation configuration-interaction method (MRD-CI)
which allows very accurate calculations of the low-energy
spectra of polyenes comprising up to 16 carbon atoms. A
detailed account of this method, a discussion of its accura-
cy, the results of Pariser-Parr-Pople (PPP) MRD-CI cal-
culations on polyene spectra as well as a discussion of cor-
responding spectroscopic observations have been present-
ed elsewhere.'?3?

For an extrapolation of the properties of small (N < 16,
N =number of carbon atoms) polyenes to long polyenes
we investigate first the Hubbard model that is the most
simple model to describe electron correlation effects in po-
lyenes. For this model exact dispersion relations for the
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infinite polyene are known.>*~%7 Also for this model some
of the optically allowed (ionic) excitations for finite ring
polyenes are known exactly.?> Accurate excitations ener-
gies for covalent states can be calculated by the MRD-CI
method.!* We demonstrate first how dispersion relations
of infinite polyenes allow to approximately express elec-
tronic excitations of finite ring polyenes. This implies that
we determine the momenta k (N) connected with mul-
tielectron excitations in ring compounds of size N. We
find that these momenta obey simple quantization rules
which can be employed to express whole classes of finite
polyene electronic excitations by means of infinite polyene
dispersion relations.

We then attempt to link infinite Hubbard chain disper-
sion relations to excitation energies in finite open Hubbard
chains of size N. The latter excitation energies are deter-
mined by our numerical procedure. We discover, in fact,
a simple asymptotic (N — oo ) behavior for finite Hubbard
chains and, thereby, demonstrate that electronic excita-
tions of finite compounds can be extrapolated accurately
to the infinite compound. Next, we follow the same pro-
cedure to link finite and infinite polyenes as described by
the so-called PPP model. This model provides a realistic
description of the long-range character of the electron-
electron interaction. Fortunately, the results show a close
similarity between the asymptotic (N — o) behavior of
Hubbard and PPP chains. This finding justifies extrapola-
tion of finite polyene calculations to polyacetylene and po-
lydiacetylene. The following properties are investigated:
(1) the structure of the bands of ionic and of covalent elec-
tronic excitations, (2) the level density of these bands as a
function of chain length, (3) the bond structure of ground
state and ionic and covalent excited states.

An important result of our paper is the characterization
of a band of covalent states in infinite polyenes with a
band edge below that of the conduction band. The expec-
tation!’ that a band of “homopolar,”34 i.e., covalent, excit-
ed states should exist in this energy region has been ex-
pressed already previously. This expectation originates
from observations on smaller polyenes. As mentioned
above it had been demonstrated, that the optically allowed
polyene !B, state, which gives rise to the conduction band
of (CH),,'? is not the lowest excited singlet state in these
molecules. Contrary to the predictions of single-electron
theories a strongly correlated “covalent” lAg state®® was
found to be the lowest singlet excitation and, consequent-
ly, to be involved in the photophysics and photochemistry
of polyenes.? Spectroscopic observations and a theoretical
description revealed that the energy gap between the ex-
cited 'B, and the excited ' 4, state increases with increas-
ing polyene length,'’ a result which suggests the expecta-
tion of a low-lying covalent band in (CH),. The lAg state
has been inferred also to explain the long-lived 1.2 eV
luminescence observed at low temperatures in (CH), .3
It is the aim of this paper to substantiate the previous
speculations on the band of covalent states and to discuss
its relation to so-called midgap excitations.

Our paper is structured as follows. In Sec. II we intro-
duce the MRD-CI method, the Hubbard, and PPP model
Hamiltonians and describe briefly the interaction parame-
ters assumed in our calculations. In Sec. III we review
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the characterization of the classes of electronic excitations
in small polyenes. In Sec. IV we investigate the asymp-
totic behavior of excitations in Hubbard rings and Hub-
bard chains. In this section we provide the conceptual
basis of our subsequent discussions. In Sec. V we extend
the investigation to polyenes described by the PPP model.
This section and the following sections deal with the prop-
erties of realistic molecular systems. In Sec. VI we dis-
cuss the bond structure of excitations in very long po-
lyenes as described by the PPP model. In Sec. VII we
provide explanations of previous observations on polyace-
tylene and polydiacetylene compounds and add sugges-
tions for new observations which might reveal the charac-
ter of mid-gap excitations in polyacetylene. Section VIII
summarizes the results and states open questions.

II. METHODS

In this section we will briefly introduce Hamiltonians
and computational methods employed in our calculations.
The Hamiltonians were chosen to represent the 7 elec-
trons in the polyenes and polyacetylene, and in particular,
the effect of electron correlation. For this purpose the 7-
electron Hamiltonians must include at least a kinetic ener-
gy term that describes the delocalization of electrons, and
a Coulomb repulsion term that induces electron correla-
tion. The most simple Hamiltonian of this kind is the
Hubbard Hamiltonian

t t t
HHubzt 2, CngCmo+ U Ecn,ocn,ocn,focn,fa (1)
n,m,o no
n#m

which characterizes electron systems by a single parame-
ter U/ |t |. The fermion creation (annihilation) operators
c:,, (cpy) in this Hamiltonian position the 7 electrons in
an orthornormal set of atomic orbitals labeled by n,m.
The first term in (1) represents the kinetic energy where
the corresponding sum includes only nearest-neighbor
sites n =m=x1. The second term describes the repulsion
between 1 electrons, the latter interaction being restricted
to situations when two 7 electrons reside at the same
atomic site n. The Hubbard Hamiltonian had been con-
sidered for polyenes also in Ref. 2 and by Soos and
Ramasesha.!?

The effective Hamiltonian most often employed for the
description of electronic excitations in polyenes is that
originally suggested by Pariser, Parr, and Pople (PPP).*!
This Hamiltonian assumes that the motion of o and 7
electrons is separable and accounts only for the 7 elec-
trons. We have employed the PPP Hamiltonian previous-
ly to describe the spectra of polyenes with up to 10 car-
bons. 141538 The results were in good agreement with
spectral observations on these polyenes. We have chosen,
therefore, the PPP Hamiltonian also for our work present-
ed in this and a preceding paper!® which extend our previ-
ous descriptions to long polyenes and polyacetylene. The
PPP Hamiltonian employed is in second quantization
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HPPP= 2 Unm+ 2 —I— z Unm crf‘:ocmo

n<m n#m
+
’
+ 2 tnmcnacma
n,m,o
n#m
1 U of ¥ 2)
+ ) 2 1mCnoCnoCmpCmp -
n,m,o,p
(n,0)%(m,p)

The first term describes nuclear repulsion, the second
term attraction between 7 electrons and nuclear cores, the
third term the kinetic energy of the m electrons, and the
last term their mutual Coulomb repulsion. The latter is
not restricted to an intra-atomic interaction as in Eq. (1)
but extends over the whole molecule. The effective
Coulomb repulsion integrals between 7 electrons at sites n
and m are given by the Ohno formula*?

_ U . 3)

(140.6117r2,)!?

nm

With a choice of 11.26 eV for the repulsion energy U of
two 7 electrons at the same atomic site the two-electron
matrix elements U,,, asymptotically, i.e., at long distances
Fum, approach the Coulomb interaction U(r,,,)=e>/7p,,,
whereas at short distances the interelectronic forces corre-
spond to those described by the Hubbard model with
U/|t|=1.53.

In order to study the effect of a possible screening of
the m-electron Coulomb repulsion due to the presence of
electrons in the o core®~® we have assumed in some of
our calculations a short-range Coulomb interaction

U*(r)=U(2r), (4)

which we actually described by scaling the distances r,,,
in (3) by a factor of 2. At large distances this choice im-
plies a dielectric screening like that in a medium with an
optical density n>=2. At short distances the choice en-
tails increased interelectronic forces corresponding to
those described by the U/ |t | =1.95 Hubbard model.

Polyenes and polyacetylene assume a bond structure
that features an alternation of double (short) and single
(long) bonds. This bond alternation will be described in
our calculations by a parameter 8§ which measures the
difference of the lengths of single and double bonds. We
will consider two models for the polyene geometry, that
corresponding to an intermediate degree of bond alterna-
tion as observed in rather short polyenes (N =~10) and as
described by 6=0.10 A, and that corresponding to equal
bond lengths as described by 6=0. The bond length
affects the resonance integral ¢ in the PPP Hamiltonian (2)
that connects neighboring sites. The resonance integral
can be expressed in terms of 8 and is given by (distances 8
in A)

t=—2.4(1.0£0.78) eV, (5)

where the + and — signs refer to double and single
bonds, respectively. In our calculations employing the
Hubbard model we have considered only polyenes
without bond alternation, i.e., with §=0.

The parameterization of the PPP Hamiltonian charac-
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terized above is identical to that employed by Soos et al.
in their exact valence bond calculations on small (N < 12)
polyenes.'>**** The interaction parameters deviate slight-
ly from those in our previous work®!*!>38 and have been
adopted to allow comparisons with the results of these au-
thors.!?

Approximate values for the bond lengths /,,
n=1,...,N —1 between neighboring sites n and n + 1
can be predicted because of the m-bond orders p,. The
bond orders, defined separately for each electronic state,
are the off-diagonal elements S, , ,; of the one-electron
density matrix in the atomic orbital basis. The bond
lengths can be evaluated by means of the empirical formu-
la (bond lengths /, in A)

I, =1.5274—0.2105p, . (6)

Equation (6) represents the linear interpolation which
reproduces the observed single- and double-bond lengths
for polyenes with four (butadiene) and six carbons.*>4¢
The bond orders to be used for this purpose are those
from a PPP-MRD-CI"® calculation for a zeroth order po-
lyene geometry described by §=0.10 A.

To simplify the discussion in Sec. VI on polyene
geometries in different electronic states we will use the or-
der parameter A/, defined by

AL, =(—1D"(1, —1), %)

where T is the average bond length in the respective state.
The order parameter measures the degree of bond alterna-
tion in a polyene and allows a simple identification of soli-
tonic excitations.

In order to describe accurately the spectra of the Ham-
iltonians in Eqgs. (1) and (2) as well as the electronic prop-
erties of the corresponding electronic states we have
applied the multiple-reference double-excitation
configuration—interaction (MRD-CI) method presented in
some detail in Refs. 13 and 32. The MRD-CI scheme*’ is
characterized by an individual selection of the CI basis for
each electronic state. First, the so-called “reference
configurations” are determined that describe the main
contributions to the respective wave function and define
the unperturbed state. Then all those configurations are
included into the CI expansion that in second-order per-
turbation theory can give an energy correction to the un-
perturbed state. The dimension of the resulting MRD-CI
eigenvalue problem depends on the choice of the unper-
turbed state, on the size of the electron system as well as
on the physical nature of the respective state. The MRD-
CI basis may comprise up to several 10* spin-adapted, an-
tisymmetrized functions. For all polyene states investigat-
ed in this paper the description of the unperturbed states
has been chosen identical to that presented in Ref. 13.
An exception is the ground state of the PPP model
without bond alternation (§=0). For this state we have
chosen only two reference configurations instead of three
as in Ref. 13, resulting in a reduction of the predicted ex-
citation energies by =~0.2 eV. With this choice we
achieved a uniform and consistent description of all po-
lyene states in all models considered here. Among these
models only the MRD-CI description of the extremely
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strong correlation effects in the U/ |t | =4 Hubbard
model deserves additional consideration.** But for the
remaining cases all MRD-CI calculations of polyene
ground states are based on a two reference description, for
all ionic excited states one reference has been employed
and for all covalent excited states the description has been
chosen identical to that of the first excited state presented
in Ref. 13.

III. CLASSIFICATION OF POLYENE EXCITED STATES

In the following discussions we will refer to electronic
states of polyenes by the symbols 4, and B, employing
the notation of the C,;-symmetry point group.? The po-
lyene states are eigenstates of the total spin operator. A
singlet total spin is indicated by the superscript 1 in the
symbols 'Ag and !B,. To denote a triplet state the super-
script 1 is replaced by 3. We will consider mainly singlet
states because ground state and electronic states reached
first after optical excitation and internal conversion are of
the singlet variety.

The PPP and Hubbard Hamiltonians give rise to yet
another symmetry, the so-called “Pariser alternancy sym-
metry” or “particle-hole symmetry” (see Refs. 49 and 50).
This symmetry classifies — states, e.g., the ground state as
'4;, and + states, e.g., the lowest optically allowed state
as ‘?Bu““. Though only approximate for real molecules the
alternancy symmetry is useful for two reasons. First, it al-
lows to reduce the computational effort by taking advan-
tage of the fact that the PPP and Hubbard many-electron
Hamiltonians do not mix '4,, '4,", 'B,, and 'B}
states. Of course, we have taken advantage of this chance.
Second, the alternancy symmetry provides a very simple
classification of ionic states which are +, and covalent
states which are —. We will, therefore, refer to ionic states
of polyenes and polyacetylene by an index +, and to co-
valent states by an index —.

The classification of the electronic states is complete
when one numbers the states of each symmetry class as
1,2,... in the order of increasing energy. In this nota-
tion the ground state is referred to as 1 1Ag‘.

Below we will also consider electronic excitations of
Hubbard ring molecules with N =4n +2, n=1,2, ...,
carbon atoms. The excitations can be classified according
to the Dy, -symmetry point group. The classes of excita-
tions which we will consider derive from the point group
D¢;,. The symmetry labels for the many-electron states
which involve only 7 electrons are A4,, By,, B,,, E,,
E,;. For the definition of these classes see Ref. 51.
Pariser’s alternancy symmetry applies within the Hubbard
model to the ring compounds as well and, hence, the exci-
tations can be further labeled as + and — states. For the
singlet states the classifications of Hubbard ring excita-
tions are then 1'Bi,, 1 'E, etc.

IV. HUBBARD RINGS AND CHAINS

Before we investigate the PPP model that provides a
rather realistic description of polyenes we consider the less
realistic Hubbard model since for this model exact results
for the infinite system as well as for finite systems are
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available. Comparisons of our MRD-CI results on the
low-lying singlet excitations of finite systems with exact
results on finite as well as on infinite systems will serve us
to test how our MRD-CI results on finite systems can be
extrapolated to the infinite polyene limit, i.e., to polyace-
tylene (CH),. Our analysis of the size dependence of the
low-lying excitations of Hubbard rings and Hubbard
chains in this section will reveal features that are remark-
ably similar to those presented in Sec. V for the PPP
model.

A. Dispersion relations of the infinite Hubbard chains
and their relationship to electronic excitations
in finite chains

The electronic excitations of the infinite Hubbard chain
form bands which can be classified by certain quantum
numbers which derive from the well-known Bethe an-
satz.’? A most recent study of the subject is that by Woy-
narovich* =37 which provided analytical expressions for
the dispersion relations of the bands of electronic excita-
tions in the infinite Hubbard chain. In the following we
will consider three dispersion relations which we deter-
mined according to the expressions provided by Woynaro-
vich: (1) the dispersion relation for the band of ionic sin-
glet states denoted by E *(k), where k is the momentum
variable; (2) that for the lower edge of the band of co-
valent singlet excitations denoted by E '~ (k); (3) that for
the covalent singlet excitations characterized by four holes
in the A distribution®’ denoted by E*~(k)=3*_,E'~(k,)
with k=3*_ k,. This latter dispersion relation describes
the upper edge of the band of covalent singlet states. All
dispersion relations depend, of course, parametrically on
the Hubbard parameter U/ |t |.

The lowest transitions to ionic and covalent states of
the infinite Hubbard chain have vanishing momenta k.
The corresponding excitation energies—the “optical gap”
E*(0) and the *“covalent gap” E ~(0)—have values
E*(0)s40 and E'"(0)=E*(0)=0, respectively. The
question arises if the infinite chain dispersion relations can
also provide an approximate description of the lowest ex-
citation energies for finite Hubbard chains. For an
answer to this question one has to consider that finite
molecules cannot accommodate electronic states with van-
ishing momenta and that finite size molecules do not con-
serve momentum upon electronic excitation.

An estimate for the smallest momentum change k in-
volved in an electronic excitation of a finite polyene can
be obtained by considering the U =0 case for which
analytical expressions for the excitation energies exist. In
this case the analytical descriptions of the excitation ener-
gies E(N) in finite rings and chains derive from the
dispersion relations E (k) of the infinite chain. A straight-
forward calculation yields the following dispersion rela-
tion E (k) for the energetically lowest particle-hole excita-
tion

E(k)=4|t | sin(k /2) , 8)

where k is the momentum change connected with the ex-
citation and where the lattice constant has been chosen to
be unity. In finite systems the minimum values of k are
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K"(N)— 27 ) represents an attempt of a simple generalization of the
- N U =0 case. But for the moment, to avoid an unnecessary

for rings with N =4n +2 carbon atoms, and

o o
TN +1

for chains with N =2n carbon atoms. The analytical ex-
pressions for the excitation energies E{(N) and E{(N) of
the lowest particle-hole excitations in rings and chains, re-
spectively, are now obtained by inserting k" and k¢ given
by Egs. (9) and (10) into the dispersion relation given by
Eq. (8). Similarly, excitation energies E; and E; for fur-
ther transitions are obtained if one inserts multiples of k"
and k€ into Eq. (8), i.e., for the rings the momenta

k(N)

(10)

ky=qk" (11)
and for the chains the momenta

k;=qk®, (12)
where g =1,2,. .. defines a momentum quantum number

characteristic for the respective transition. From now on
we will use the term transition momentum for the
momentum change involved in an electronic excitation.
For a system of independent electrons the transition
momenta are solely determined by the geometry of the
molecule. In a correlated electron system the character of
an excitation can depend on the strength of the electron-
electron repulsion U. For such excitations the transition
momenta can vary with U. If the character of the excita-
tion is independent of U, the values of the transition mo-
menta provided by Egs. (8)-(12) for the U =0 case apply
to all U values. This is the case, actually, for finite Hub-
bard rings for which the total momenta®’ of the charge-
transfer as well as of spin-wave excitations are integer (or
half-odd integer) multiples of &" such that the transition
momenta are integer multiples of k" as expressed by Eq.
(11).>” However, in the finite open Hubbard chains, for
which no general statements on the functional form of the
transition momenta can be made (see below), the charac-
ter of the excitations can depend on U. We suggest,
therefore, that the transition momenta are given by

kPN, U)=qyB(U)k“(N) (13)

with k¢ defined by Eq. (10), B€{+,1—,4—},
q=1,2,..., and qu(U)Z 1. Values yg(U)> 1 can be in-
terpreted as an effective shortening of the chains due to
electron correlation.

Up to now the transition momentum quantum numbers
g have been determined only for two low-lying ionic exci-
tations in finite correlated Hubbard rings (see below and
Ref. 53). The quantum numbers g associated with the
transitions to the other ionic states and to the covalent
states are still unknown because the Lieb-Wu equations®?
have not yet been solved for these cases. For the linear
chains no analytical results on quantum numbers and
transition momenta are available since equations that are
analogous to the Lieb-Wu equations for the rings have not
been derived yet. In particular, there exists no rigorous
justification for the suggestion in Eq. (13) concerning the
transition momenta qu, such that this suggestion merely

complication of the following discussion, we will assume
that the finite chain transition momenta are independent
of U and, hence, given by Eq. (12) instead by Eq. (13).
Only later, for those cases, for which the generalization
(13) cannot be avoided, we will use this generalization and
try to determine, thereby, the scaling factor 7/5 (o).

For U0 we would like to conjecture now that the
dispersion relations when combined with the transition
momenta provide approximate excitation energies for
finite systems. Thus the excitation energies for finite Hub-
bard ring molecules are approximated by the composite
functions Eq’/j:EBo kg defined by

, 2
EJ(N)=EP |¢7 (14)
and for open chains by the composite functions
E{P=EPok{ defined by
EA(N)=EP |g—L (15)
7 N +1

with BE€{+,1—,4—} and ¢ =1,2,.... In case that the
generalization (13) should apply to the chain transition
momenta, the excitation energies should be approximately
given by inserting the transition momenta k;ﬁ(N, U) in-
stead of the momenta k;(N) into the dispersion relations
EP. Independently of the choice of the functional form of
the chain momenta, however, those intervals of the disper-
sion relations EP(k) that are linear in k, should give rise
to a linear behavior of the excitation energies for finite
rings on a 1/N scale and for finite chains on a 1/(N +1)
scale. These conjectures will be investigated now.

B. Hubbard rings

The excitation energies for the ionic states 1'E{, and
1 IEZJ;3 of finite Hubbard rings with N =4n +2 atoms (see
Sec. IIT for the nomenclature) have been determined by
Hashimoto® by an exact numerical solution of the Lieb-
Wu equations.’® The excitation energies of the 1'E7,
state evaluated by Hashimoto for weak (U/ |t | =1.25),
medium (U/|t|=2.08), and strong (U/|t]|=5)
electron-electron repulsion are presented in Fig. 2 on a
1/N scale. It should be noted here that realistic polyenes
correspond toa U/ |t | ratio of 1.5.

The transition momentum associated with the 1!E{,
excitation is 277 /N, i.e., the momentum quantum number
has the value ¢ =1.>3 In order to test our suggestion that
the dispersion relation E* of the conduction band of the
infinite Hubbard chain provides an estimate of the low-
lying ionic excitations of finite ring molecules we provide
also in Fig. 2 the excitation energies E|* (N) resulting
from Eq. (14).

Figure 2 demonstrates that the exact excitation energies
of the 1!E{, state for large N converge to the function
E{*. In fact, in the cases of weak and intermediate
electron-electron repulsion the exact excitation energies
for all ring sizes follow closely the excitation energy func-
tion E{T derived from the dispersion relation E*. Be-
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FIG. 2. Exact excitation energies of the energetically lowest
ionic singlet state in the Hubbard model of cyclic polyenes for
the cases of weak (U/|t]|=1.25), intermediate
(U/|t | =2.08), and strong (U/ |t | =5.0) electron correlation.
The excitation energies of the 1!Ej, state of the N =4n +2,
n=1,...,12, rings are compared with the corresponding ener-
gies E of the infinite system, which are defined by the momen-
tum k;=27/N of the 1 'E{, state. The 1'E{, excitation ener-
gies have been adopted from Hashimoto’s work (Ref. 53) and the
dispersion relations E * have been calculated according to the re-
sults of Woynarovich (Ref. 35).

cause E;* ~N~? in the limit of large N, this agreement
implies that also the excitation energies for large N con-
verge as N ~2 to the infinite chain optical gap. In the case
of weak and intermediate electron-electron repulsion the
size dependence actually behaves as N ~! for rings with
up to 100 atoms and assumes the N ~2 dependence only
for larger rings. The latter deviation from the N !
dependence for weak and intermediate electron-electron
repulsion is very small. Consequently, for an estimate
AE, of the optical gap in polyacetylene with a known
U/ |t | ratio of about 1.5, one can extrapolate the excita-
tion energies of finite rings as N ~!, i.e., describe the exci-
tation energies by the simple functional dependence

AE=AEy+a/N (16)

without introducing a large error. However, because of
the asymptotic N ~? dependence the gap energy AE, in
this equation will always underestimate the true gap ener-
gy E*(0).

The results in Fig. 2 represent only the lowest lying op-
tically allowed 1'E{, state of Hubbard rings. In Fig. 3
we compare for intermediate electron-electron repulsion
(U/ |t | =2.08) the excitation energies of the 1'E{; state
with those of the 1'E, state. The 1'Ej, state is the
third ionic state in Hubbard rings and according to Hashi-
moto> is characterized by a value g =2 of the transition
momentum quantum number. (The second ionic state,
which is not shown in Fig. 3, is of !B, symmetry. Due
to the degeneracy of the orbital pattern of the N =4n 42
rings this state is nearly degenerate with the 1'Ej
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FIG. 3. Linear 1/N extrapolations of the exact excitation en-
ergies (Ref. 53) of the first (1'E{,) and a the third (1'E;) ionic
singlet state of finite polyene rings described by the Hubbard
model for the case of intermediate electron correlation
(U/|t|=2.08, |t |=2.4eV). For comparison also the excita-
tion energies E]* of the infinite system (Ref. 35) are shown at
the momentum k[ =2m/N of the 1 'E{, state. The 1'Ef{, states
extrapolate (lower straight line) at 1/N =0 to an optical gap
AE*=0.29 eV, i.e., slightly below the exact value
E*(0)=0.4789 eV given by the zero momentum limit of the E*
dispersion relation. The 1'Ej; states extrapolate (upper straight
line) also to 0.29 eV. The slopes of the two extrapolations differ
by a factor of 1.95.

state.>* Unfortunately, no exact results on the 1'Bj,
state are available up to now). The size dependence of the
exact excitation energies has been fitted for both ionic
states to expressions of the type (16). The energy gaps
AE, resulting for the two transitions are identical (0.29
eV) and underestimate the exact value of E *(0)=0.48
eV. The slopes a for the two excitations differ by a factor
of 1.95. This value is close to the value g =2 expected
from predictions based on the dispersion relation E *:
These predictions assign the excitation energies E| (N)
to the 1'E{, state and E5*(N) to the 1'E; state. The
close to linear 1/N behavior of E{™ and E4™ in the range
10 < N <50 implies that the slopes a in Eq. (16) yield in-
formation on the momentum quantum numbers g to be
attributed to the electronic excitations. Thus, the energies
for ionic excitations of Hubbard rings actually follow the

. approximate law

AE=AE;+qa/N, q¢g=1,2,.... (17)

We will consider the size dependence of the excitation
energies involving the covalent states. Figure 4 provides
the excitation energies of the two lowest covalent singlet
states 1'By, and 1'E 2¢ of finite Hubbard rings in case of
an intermediate electron-electron repulsion described by a
U/ |t | =2 ratio. For comparison Fig. 4 also shows the
excitation energies of the lowest ionic singlet state 1'Ej,.
In lieu of an analytical description these excitation ener-
gies had to be evaluated by our MRD-CI method, for
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FIG. 4. For the U/ |t | =2 Hubbard model MRD-CI excita-
tion energies of the 1'By, (crosses), 1 'E{, (circles), and 1'E 3,
(double crosses) states of finite cyclic polyenes are compared with
exact excitation energies of the infinite system at corresponding
momenta. For comparison with the lowest covalent state of the
rings (1'B7,) the lower edge E'~ of the dispersion relations of
the singlet spin excitations of the infinite system (Ref. 37) has
been evaluated at the momentum k§ =27 /N of the 1 'B{, state.
The resulting excitation energies are denoted by E}'~. Because
the lowest ionic state of the rings (1'Ef{,) carries the same
momentum the dispersion relation E * of the particle-hole sing-
let excitation have also been evaluated at this momentum. The
lower dashed line is the tangent to E}'~ at 1/N =0, the upper
dashed line has twice the slope of the tangent.

which reason only data points for rings with 6, 10, and 14
atoms are available. Such limited information does not
yet allow a convincing demonstration of the asymptotic
behavior of covalent ring excitations. Nevertheless, the
following analysis of the data shown in Fig. 4 seems to in-
dicate that the covalent excitations follow the same pat-
tern as the ionic excitations.

The analysis starts from a comparison of the MRD-CI
excitation energies of the 1'B;, and 1'E 7¢ States with
predictions of these energies derived from the dispersion
relations E/~. For small k all dispersion relations
E/~(k), j=1,2,4, of covalent excitations eventually be-
come linear and the linear range extends towards larger
momenta k for larger values of j.3” Thus, all ring excita-
tion energy functions Eq'j_ become linear for large N on a
1/N scale and the linear range extends further towards
small ring sizes N for small momentum quantum num-
bers g and large values of j. As shown in Fig. 4 the linear
range of the ring excitation energy function E}!~ (g =1,
j=1) extends up to about N =10. The excitation ener-
gies of the lowest covalent state 1'By, for large N ap-
proach this function from above. The tangent to the func-
tion E}'~ at 1/N—0, that, according to the arguments
given above, represents an even closer approximation to
the function E*~ (not shown in Fig. 4), provides an ex-
cellent approximation to the 1 'B[, excitation energies for
rings of all the sizes considered. Multiplication of the
slope of the tangent by a factor 2, which according to Eqgs.
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(11) and (14) yields the tangent to the function E}'~
(g =2), provides an asymptotic limit of the excitation en-
ergies of the second covalent state, the 1 1E{g state. We
expect, therefore, that the covalent excitations follow also
the simple law (17) with ¢ =1 for the 1'Bj, state and
q =2 for the 1 lEz'g state. This important observation, so
far only vaguely indicated by the results in Fig. 4, will be
demonstrated more convincingly for open Hubbard chains
and for polyenes described by the PPP model.

The close agreement between the tangent of E}'~ at
1/N—0 and the MRD-CI excitation energies of the
lowest covalent state suggests that the extrapolation of the
MRD-CI excitation energies on a 1/N scale for rings
should be a reliable tool for the determination of the co-
valent gap £ ~(0). If sufficient data on large systems and
on higher excited states are available such extrapolations
according to (17) can also yield the covalent momentum
quantum numbers q.

C. Linear Hubbard chains

We want to demonstrate now that the ionic and co-
valent excitations in linear Hubbard chains exhibit a size
dependence of their excitation energies which is very simi-
lar to that of the ring compounds as described by Eq. (17).
There exist, however, two important differences. (1) Since
the chain momenta k; exhibit a 1/(N +1) behavior in-
stead of the 1/N behavior of the ring momenta, the size
dependence of the chain excitation energies has to be con-
sidered on the appropriate 1 /(N + 1) scale. (2) The transi-
tion momenta k; * of the ionic excitations turn out to be
noninteger multiples of the elementary chain momentum
k¢ with a scaling factor ¥ depending on the degree of
electron-electron repulsion.

First we want to show that Eq. (13) instead of Eq. (12)
applies to the transition momenta k;* and that the factor
v in Eq. (13) assumes values y;(U)>1 if U/|t]|>0.
For this purpose we compare in Fig. 5 the excitation ener-
gies of the lowest (g = 1) ionic states in rings (1 'E{;) and
linear chains (1'B,’) with the chain excitation energy
functions E;*, g =1,2,. These functions have been de-
rived from the dispersion relations E* according to Eq.
(15) which does not take a value vy, (U)1 for
U/ |t | >0 into account.

In the case of vanishing Coulomb repulsion
(U/|t|=0) the analytical solutions for the 1'E{, and
1!B; excitation energies are given by E}*(N) and
E{*(N), respectively. According to Egs. (8)-(10), (14),
and (15) these functions are

E{+(N)=4]1t | sin(w/N) (18)
for the ring (1'E{,) states and
ESH(N)=4|¢ | sin[#/2(N +1)] (19)

for the linear chain (1 'B,}) states. Since the ring momen-
tum k’, given by (9), is about two times larger than the
chain momentum k¢, the ring excitation energies increase
about two times faster than the chain excitation energies
with decreasing molecular size N. This is exhibited in
Fig. 5 by the fact, that the ring 1 'E{, excitation energies
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FIG. 5. The end effect on the excitation energies of the lowest
ionic singlet state of the Hubbard model and its dependence on
electron correlation. The dispersion relations E* for the
particle-hole singlet excitation of the infinite chain evaluated at
one (ES*) and two (E$*) quanta of the finite chain momentum
k¢=m/(N +1) [cf. Eq. (15)] are compared with the exact ener-
gies of the 1'B," state (crosses) of the finite open chains and of
the 1'EY, state (double crosses) of the rings in the case of the
uncorrelated electron system (U/ |t |=0) and with MRD-CI
excitation energies of the 1'B,;" state in the case of a strongly
correlated electron system.

(g =1), given by Eq. (18), are located close to the excita-
tion energies E§ ™ which are associated with the transition
momenta 2k,.

The difference between the energies E[*(N) and
ES(N) has to be attributed to the “end effect.” Equa-
tions (18) and (19) demonstrate that the end effect is large.
This result is at variance with Hashimoto’s treatment of
the end effect® that has been based on first-order pertur-
bation theory. This author determined that the end effect
vanishes faster than 1/N which is obviously not true in
the U =0 limit [cf. Egs. (8)—-(10)].

However, the end effect becomes smaller when the de-
gree of electron-electron interaction increases. This can
be concluded from a comparison in Fig. 5 of the excita-
tion energy of the 1!B;" state (¢ =1) with the excitation
energy functions E{* and E§* for U/ |t |=4. The
former function would provide an estimate for the 1 !B,
excitation energies if the transition momentum k§* would
be solely determined by the geometry, i.e., given by Eq.
(10). That is not the case. However the latter function
which is close to the ring excitation energies E|* (N) lies
also close to the 1B, excitation energies. This implies
that the chain momentum k§* associated with the transi-
tion to the 1!B; state in the case U/ |t | =4 is about
two times larger than the momentum k§* =k° associated
with this transition in the case U/ |t | =0. Consequent-
ly, Eq. (13) instead of Eq. (12) has to be employed for the
description of the transition momenta of the ionic chain
states and the factor ¥ (U) increases from a value
1 (0)=1 to the value y{" (4 |t | ) =2.
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FIG. 6. The end effect on the excitation energies of the lowest
covalent singlet state of the Hubbard model and its dependence
on electron correlation. For the cases of vanishing (U/ |t | =0)
and of strong (U/ |t | =4) electron correlation the lower edge
E'~ of the dispersion relations of the singlet spin excitations in
the infinite chain as well as the upper edge E*~ of these relations
for excitations characterized by four holes in the A distribution
(Ref. 37) have been evaluated at two quanta of the finite chain
momentum k¢=m/(N +1) resulting in the functions E§'~ and
E$*~ [cf. Eq. (15)]. In the case of strong electron correlation
these functions are compared with the MRD-CI excitation ener-
gies of the 2' A4, state of open chains, whereas in the case of
vanishing electron correlation they are compared with the exact
excitation energies of the 1'Bj, state of the rings (double
crosses) and of two 'A4, states of the open chains. The latter
states are characterized by a double excitation from the highest
occupied to the lowest unoccupied molecular orbital (large
crosses) and by a single excitation from the highest occupied to
the second to lowest unoccupied orbital (small crosses), respec-
tively.

Figure 6 compares again for the cases U/ |t | =4 and
U/ |t | =0 the excitation energies of the lowest covalent
states 1 'Bj, in the ring (g =1) and 2'4, in the linear
chain (¢ =2) with excitation energy functions derived ac-
cording to Eq. (15) from the dispersion relations E 1= and
E*~ assuming g =2. Here, the value g =2 for the 2'4,~
state derives from the fact that this state involves an exci-
tation which promotes either a single electron across two
single electron level spacings or promotes two electrons
from the highest occupied to the lowest unoccupied single
electron level, i.e., promotes two electrons each across a
single level spacing. As one can show for the case U =0,
the crossing of each electron level spacing adds a
minimum momentum value k€ to the many electron tran-
sition.

For the case U =0 the ring and chain excitation ener-
gies are very close and asymptotically approach the E§!'~
and the E$*~ excitation energy functions. The latter
function represents the exact solution for the two-electron
excitation (large crosses in Fig. 6) in linear chains. The
two times larger quantum number of the lowest covalent
excitation in the chains as compared to that in the rings
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and the little more than two times smaller value of the
elementary chain momentum k¢ as compared to that of
the ring momentum k" explain why a large, 1/N-type end
effect is missing in the case of spin-wave excitations.

The excitation energies of the lowest covalent state for
the U/ |t | =4 case are seen in Fig. 6 to lie below the
corresponding excitation energies for the U/ |t | =0 case,
i.e., they exhibit an ordering which is opposite to that of
the ionic states for the same difference in the U/ |t | ra-
tions (cf. Fig. 5). This demonstrates the well-known fact
that electron correlation effects decrease the excitation en-
ergies of covalent states and increase the excitation ener-
gies of ionic states. The excitation energies, which were
determined by means of the MRD-CI method, asymptoti-
cally approach the E5'~ and E$*~ excitation energy func-
tions. This behavior indicates that the momentum
changes associated with the covalent states in the linear
chain compounds are not affected by the degree of
electron-electron repulsion, i.e., that ¥y, (U)=1 and that
Eq. (12) applies to these transition momenta.

We want to consider now in further detail the size
dependence of the covalent and the ionic excitations in
linear Hubbard chains. For this purpose we present in

Figs. 7 and 8 the excitation energies for the case
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FIG. 7. Linear 1/(N +1) extrapolations of the Hubbard-

MRD-CI excitation energies of the two lowest covalent singlet
excitations of finite linear polyenes and comparison with corre-
sponding excitation energies in the infinite chain for the case of
intermediate electron correlation characterized by the value
U/ |t | =2 of the Hubbard parameter. The extrapolation (lower
dashed line) of the 2! 4, excitation energies (crosses) represents
a least square deviation fit according to Eq. (20) to the MRD-CI
results obtained for the N =10, 12, and 14 m-electron polyenes,
whereas the extrapolation (upper dashed line) for the 1'B,” state
(double crosses) is the line connecting the excitation energies at
N =12 and 14. The slope of the fit to the 2 ' 4, excitation ener-
gies (g =2) is a=12.15 eV and the ratio of the slopes of the two
extrapolations is 1.46. For comparison with the 2'4, excita-
tion energies the dispersion relations E'~ and E*~ of the infinite
system have been evaluated at two quanta of the finite chain
momentum k‘=m/(N +1) (see text and Fig. 5 caption for fur-
ther explanation).
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FIG. 8. Linear 1/(N +1) extrapolations of the Hubbard-

MRD-CI excitation energies of the two lowest ionic singlet exci-
tations of finite linear polyenes and comparison with correspond-
ing excitation energies in the infinite chain for the case of inter-
mediate electron correlation characterized by the value
U/ |t | =2 of the Hubbard parameter. As a reference the exci-
tation energies (crosses) and extrapolation (dashed line) for the
covalent 2'4,  state are also shown. The extrapolation (lower
solid line) of the 1 'B," excitation energies (circles) represents a fit
according to Eq. (20) to the MRD-CI results obtained for the
N =38, 10, 12, and 14 m-electron polyenes, whereas the extrapola-
tion (upper solid line) for the 1'A4," state (squares) is the line
connecting the excitation energies at N =12 and 14. The ratio of
the slopes of the two extrapolations is 1.67, the extrapolated opti-
cal gap is AE*=0.29 eV and the slope of the fit to the 1 'B," ex-
citation energies (¢ =1) is a=24.11 eV. For an evaluation of
the end effect the 1'B,t and 1'A4,;" excitation energies are com-
pared with corresponding excitation energies of the infinite sys-
tem calculated from the dispersion relation E* at one (E{*)

and two (ES$T) quanta of the finite chain momentum
ké=m/(N +1).

U/ |t | =2 involving the two lowest covalent and ionic
excitations.

Figure 7 compares the excitation energies of the two co-
valent states with the excitation energy function ES'~ de-
rived from the dispersion relation E'~ according to Eq.
(15) assuming g =2. The excitation energies of the 2 lAg’
state approach ES!™ for large N, proving—together with
the results discussed above—that the lowest lying co-
valent excitation carries the momentum k$§=2k°, i.e., that
Egs. (12) and (15) in fact apply to all three strengths of
electron-electron repulsion U/ |t | =0,2,4.

In order to determine which momentum quantum
number is associated with the second covalent excitation
involving the 1'B,” state we present in Fig. 7 the linear
extrapolations connected with the two covalent excita-
tions. The extrapolations shown vanish asymptotically as
required by the fact that the covalent gap energy vanishes
in the infinite Hubbard chain limit. The slopes of the two
extrapolations differ by a numerical factor 1.45. This fac-
tor is close to the value 2. Considering that g =2 for the
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2 lAg‘ state the latter value corresponds to a momentum
quantum number g =3 for the 1'B, excitation. A gen-
eralization of this finding suggests that there is a class of
covalent excitations in linear Hubbard chains which for
large N approximately follows the law

AE=AEy+qa/(N +1) (20)

with ¢ =2,3,4,. ... Equation (20) is analogous to the law
for rings expressed by Eq. (17). The close to linear
1/(N +1) behavior of the chain excitation energies will
actually be documented in further detail for the PPP
model in the next section.

The results in Fig. 7 on the covalent states show that
one can extrapolate indeed numerical excitation energies
for finite chains to the infinite chain limit by means of a
1/(N +1) size dependence if these extrapolations are
based on excitation energies of compounds comprising 10
sites and more.

Figure 8 presents the size dependence of the excitation
energies involving the two lowest lying ionic states. The
excitation energies of the 2 lAg' state are also included in
Fig. 8 to demonstrate for the U/ |t | =2 linear Hubbard
chain that this state lies energetically below the optically
allowed ionic states.

The excitation energies of the ionic state 1'B,; (g =1)
are compared in Fig. 8 with the excitation energy func-
tions E{" and ES™ that correspond to momentum quan-
tum numbers ¢ =1 and g =2 according to Eq. (15). The
results show that for the U/ |t | =2 case the 1'B," exci-
tation carries a momentum k§* =~1.5k¢, e,
i (2|t ])=1.5 a value which is halfway between that for
the U =0 case and the U =4 |t | case.

It is of interest to determine the transition momentum
k$™ associated with the second ionic excitation involving
the I’Ag+ state. The ratio of the slopes of the linear
1/(N +1) extrapolations shown in Fig. 8 for the two ionic
states is 1.67. If k5% would be given according to a rela-
tion like k; * =gk{™, i.e,, if the factor v/ (U) in Eq. (13)
would be independent of g, one would expect a ratio of 2.
There are two possible explanations for this difference. (1)
The difference may be due to an accidental addition of the
errors inherent to our MRD-CI description!® and to our
linear extrapolations. Thus, it may be that a ratio closer
to the value 2 would result if the extrapolations were
based on exact excitation energies for longer compounds.
(2) The deviation of the ratio 1.67 from the value 2 indi-
cates a true physical effect, i.e., ¥, (U) decreases with in-
creasing g. The value 1.67 implies then y; (2|7 | )=1.25.
The U dependence of the transition momentum k;* as
well as its decrease with increasing g could be due to the
development of an excitonic character of the lowest ener-
gy ionic excitations in a linear chain geometry. Such
character would imply that the particle-hole binding ener-
gy decreases for decreasing electron correlation. Further-
more it could also imply that higher excitations are less
affected by this excitonic binding energy, i.e., that
¥4 (U)—1 for both U—0 and g— . Then also for the
ionic transitions Eq. (12) instead of Eq. (13) should hold if
higher excitations are involved and if electron correlation
is small.
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Figure 8 demonstrates that the linear dependence in
1/(N +1) is satisfied very well by MRD-CI excitation en-
ergies for the ionic states. This suggests that finite size
energies can be extrapolated to the infinite chain limit for
ionic states as well. However, the resulting value
AE;=0.29 eV for the optical gap is too small compared
to the exact value E *(0)=0.41 eV. The error in the gap
energy should be less for calculations of realistic polyenes
since these systems correspond toa U/ |t | =1.5 ratio for
which the (N +1)~2 deviation from the 1/(N +1) extra-
polation is less significant.

V. POLYENE AND POLYACETYLENE ELECTRONIC
SPECTRA IN THE PPP MODEL

We want to show in this section that close similarities
exist between linear polyenes as described by the Hubbard
and by the PPP Hamiltonian. The similarities are found
for the asymptotic size dependence of the ionic and co-
valent transitions. We will further investigate in this sec-
tion the effect of bond alternation on the spectra of po-
lyenes, in particular, in the limit of the infinite polyene,
i.e., polyacetylene (CH),. Lastly, we consider to what ex-
tent dielectric screening of the electron-electron repulsion
influences the spectra of polyenes and polyacetylene.

In order to apply the results of Sec. IV we compare the
strength of the electron-electron repulsion in the PPP and
in the Hubbard model. For this purpose one has to deter-
mine the ratio (U;—U; )/ |t |, where U; is the
Coulomb integral for electrons at sites i and j, and ¢ is the
resonance integral given by Eq. (5). Our parametrization
of the PPP Hamiltonian yields the value 1.53 for this ra-
tio. We conclude that the short-range Coulomb repulsion
between the 7 electrons is weaker in the PPP model than
in a Hubbard model with a U/ |t | =2 ratio.

A second measure for the effect of the Coulomb repul-
sion in the PPP and the Hubbard model is the ground
state correlation energy per site. This energy is defined as
the energy difference between the SCF ground state and
the ground state as described by the MRD-CI method di-
vided by the number of carbon atoms. The ground state
correlation energy per site measures about 0.15 eV for the
PPP model with bond alternation, 0.18 eV for the PPP
model without bond alternation,'® and 0.25 eV for the
U/ |t | =2 Hubbard model. This comparison indicates,
too, that correlation effects are weaker in the PPP model
than in the U/ |t | =2 Hubbard model. Consequently,
the results on the Hubbard model let us expect that the
size dependence of the spectra of the polyenes in the PPP
description should obey a 1/(N +1) dependence as ex-
pressed by Eq. (20) for compounds with 10 carbons and
more. Such dependence, actually a 1/N dependence, had
been observed and predicted before for the optical transi-
tion to the ionic 1'B," state of polyenes.’*>

A. Nonalternating model polyenes

In the Hubbard model of linear polyenes as described
by the Hamiltonian (1) all resonance integrals ¢ are chosen
to be identical. This implies according to Eq. (5) that all
bond lengths are assumed to be equal. We will, therefore,
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consider the PPP model of polyenes without bond alter-
nation first, since that should yield the closest similarities
to the results in the previous section.

Figure 9 presents our MRD-CI excitation energies for
the two lowest ionic and covalent excitations in nonalter-
nating polyenes. The calculations were carried out for po-
lyenes with N =4,6,...,14 carbon atoms. The results
in Fig. 9 show that the excitation energies for
N =10,12,14 follow closely a 1/(N +1) dependence.
The gap energies and slopes resulting from a fit according
to Eq. (20) to the lowest ionic (¢ =1) and covalent (¢ =2)
transitions are provided in Table I. In agreement with the
expectation voiced in the paragraph above, the 1/(N +1)
size dependence holds well for polyenes with 10 and more
carbons.

It is a very interesting result of our study that the ener-
gy gap for the covalent transitions vanishes in the limit
N — o for the PPP polyene without bond alternation, i.e.,
this well-known feature of the Hubbard model is not al-
tered when the range of the Coulomb repulsion is extend-
ed in the PPP model. A comparison of Fig. 9 and of the
data in Table I with the results for the U/ |t | =2 Hub-
bard model in Figs. 7 and 8 shows also that the slopes of
the extrapolated size dependences of the covalent transi-
tions are similar for the two models. The similarity be-
tween the ionic transitions is not as striking. The asymp-
toti¢ optical gap is much larger in the PPP model than in
the U/ |t | =2 Hubbard model proving that also long-
range electron interactions contribute to this gap. Howev-
er, the slopes of the respective extrapolations and, in par-
ticular, the ratios of these slopes are similar such that the
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FIG. 9. PPP-MRD-CI excitation energies of four low-lying
singlet states for nonalternating polyenes (§=0) on a 1/(N +1)
scale. The linear 1/(N +1) extrapolations for the ionic states
(solid lines) and for the covalent states (dashed lines) are fits to
the results obtained for the N =8, 10, 12, and 14 w-electron po-
lyenes in the case of the 2' 4, and 1'B; states and, in the case
of the 1'B, and 1 1Ag+ states, are the lines connecting the exci-
tation energies at N =12 and 14. The ratio of the slopes of the
extrapolations is 1.46 for the two covalent states and 1.68 for the
two ionic states, the 1'B," state extrapolates to an optical gap
AE*=1.94¢V.
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TABLE I. Parameters of extrapolations. The parameters of
the 1/(N +1) extrapolations [see Eq. (20)] have been obtained
for the various PPP models of polyenes from fits to MRD-CI ex-
citation energies of the primary covalent and ionic states as
shown in Figs. 9, 10, and 12.

Ul(r) UQ2r)
5=0A 5=0.10A 5=0A 5=0.104A
2'4;  AE, 0.04 1.85 0.04 1.66
a 12.45 8.63 11.15 7.21
1'Bf AE, 1.94 2.87 2.14 2.94
a 20.12 14.85 30.27 24.63

analysis of these ratios, that has been carried out in detail
for the U/ |t | =2 Hubbard model and has lead to the
determination of transition momenta and quantum num-
bers, applies equally well to the nonalternating PPP mod-
el considered here.

B. Spectra of alternating polyenes

We now turn to the most realistic model of polyenes
and polyacetylene that is based on the PPP Hamiltonian
and on a geometry witp bond alternation, the latter being
described by §=0.10 A (see Sec. III). The results of the
corresponding MRD-CI calculations are the most relevant
in this paper. For this reason, the calculations were car-
ried out to the largest degree of completion, i.e., they cov-
er polyenes with 4 to 16 carbons and include three co-
valent (21Ag', 1B, 31Ag') and two ionic (1'B,
1 lA&f) states. The size dependence of the respective exci-
tation energies is presented in Fig. 10.

The overall appearance of the spectra in Fig. 10 is simi-
lar to that of linear Hubbard chains. There are two bands
of excitations, the covalent band and the ionic band. The
size dependence of the excitation energies in both bands
follows an 1/(N +1) behavior as illustrated in Fig. 10.
We have exhibited the 1/(N +1) dependence by fitting
straight lines through the data points in Fig. 10. The
lines have been obtained as follows: We have first drawn
the two lines through the data points for the primary, i.e.,
lowest, covalent state and the primary ionic state for po-
lyenes with 12, 14, and 16 carbons. These lines corre-
spond to a size dependence as described by the function in
Eq. (20) with ¢ =2 for the 2 ]Ag_ state and ¢ =1 for the
1!B,;" state. The corresponding slopes a and the asymp-
totic gaps AE, are presented in Table I. We have then re-
plotted the function describing the primary covalent exci-
tation for g values 3 and 4. The resulting lines are found
in Fig. 10 to coincide asymptotically with the excitation
energies of the 1'B,” and of the 3' 4, state, respectively.
Since the analysis for the Hubbard rings and chains re-
vealed that the 2 lAg‘ excitation carries the momentum
2k€, k€ defined in (10), this latter observation implies that
the 1B, excitation carries a momentum 3k° and the
3 lAg_ excitation carries a momentum 4k ¢, proving there-
by our conjectures in Sec. IV. We have also replotted the
function describing the primary ionic excitation—up to a
very small shift of the asymptotic gap—with a g value of
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FIG. 10. PPP-MRD-CI excitation energies of five low-lying
singlet states for alternating polyenes (8=0.10 A) on a
1/(N +1) scale and extrapolations to polyacetylene. The linear
1/(N +1) extrapolations for the lowest ionic state (lower solid
line) and for the lowest covalent state (lowest dashed line) are fits
to the results obtained for the N =10, 12, 14, and 16 m-electron
polyenes. The optical gap predicted by the extrapolation of the
1B} excitation energies is AE * =2.87 eV and the covalent gap
derived from the 2 ' 4, extrapolation is AE ~=1.85eV. The ex-
trapolations for the higher excited states have been obtained for
the covalent states by multiplying the slope of the 2! 4, extra-
polation with a factor 1.5 for the 1'B,” state and with a factor
2.0 for the 3'4, state. The extrapolation for the ionic 1'4,"
state has been obtained by multiplying the slope of the 1!B," ex-
trapolation with a factor 2.0 and by adding 0.07 eV to the extra-
polated optical gap.

2. The resulting line falls asymptotically on the excitation
energies for the 1 IA; state implying that this excitation
carries a momentum two times larger than that of the
1!B; state. The value 2 determined for the ratio of the
slopes of the ionic-state extrapolations shown in Fig. 10 is
a little surprising in view of the analysis of the momenta
associated with the ionic transitions in the Hubbard mod-
el. This analysis had revealed that these momenta in-
crease with increasing interelectronic forces and, possibly,
decrease with increasing quantum numbers q. The latter
decrease had furnished a possible explanation of the rath-
er small ratio 1.67 determined for the ionic-state extrapo-
lations in the U/ |t | =2 Hubbard model and in the PPP
model without bond alternation. The value 2 found here
in the PPP model of alternating polyenes may imply ei-
ther that alternation decreases the elementary chain
momentum of ionic transitions from the value
k§*T =~1.5k¢ to the value k{* =k¢, i.e., that y{(U)=1
[cf. Eq. (13)], or else that there is no strong dependence of
y; (U) on q in alternating polyenes.

One of the most interesting results shown in Fig. 10 is
the prediction of a finite asymptotic gap of the covalent
states which measures E ~(0)=1.85 eV. This gap has to
be attributed solely to bond alternation. With the value
for a given in Table I one obtains from Egs. (10), (12),
(15), and (20) a linear approximation to the dispersion re-
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lation of the covalent excitations in the infinite alternating
polyene that is given by

E~-(k)=E~(0)+ak (21

with @=a/m=2.75 eV. The gap of ionic excitations
which corresponds to the gap of the conduction band in
(CH), is found to be increased by a third over that of the
polyene without bond alternation (see Fig. 9). Since single
electron theories predict a vanishing optical gap for nonal-
ternating polyenes, this implies that, contrary to the be-
havior of the covalent gap, only about 30% of the optical
gap in (CH), should be due to Peierls distortion, the ma-
jor fraction being due to electron correlation.'?

C. The origin of the covalent gap and the spectrum
of triplet excitations

Before we attempt to relate the results shown in Fig. 10
and Table I to observed properties of (CH), (see Sec. V D)
we would like to give a physical interpretation of the co-
valent gap E ~(0) predicted for (CH),. For this purpose
we first note that the alternation of short and long C—C
distances observed for the ground state of (CH), (Ref. 56)
indicates the existence of stable m bonds. Thus, the
ground state of (CH), can be represented as a sequence of
ethylene units each characterized by a singlet spin pairing
of the 7 electrons [see Fig. 11(a)].

The 2 1Ag‘ state has been characterized as involving
two intraethylene triplet excitations which are coupled to
an overall single state.’®!* In fact, the excitation energy
of the primary covalent excitation measures about twice
the excitation energy of the lowest triplet excitation. A
typical spin coupling diagram contributing to the 2 lAg_
state is shown in Fig. 11(b). Two of the singlet pairings of
the ground-state structure in Fig. 11(a) have been convert-
ed to a triplet pairing. The location of the triplet pairing

(a) IIA;
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|t et T e T et O ot TR Bt B e A
(b) 2'A7
/\/\/\/\/\/\/ a
=4 == = e

FIG. 11. Schematic representation of the electronic structure
of the ground state (a) and of the first excited covalent state (b) of
the polyenes. (a) The ground-state structure of alternating single
and double bonds shown in «a is represented by the singlet spin
pairings within the ethylic units depicted in 8. (b) As indicated
in B the excited state is created by simultaneous spin flips in two
ethylene units, the resulting triplet pair being coupled to an
overall singlet. Each intraethylenic triplet corresponds to a sin-
gle rather than to a double bond as sketched in «.
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TABLE II. Triplet excitations in the N =10 polyene. Exact
excitation energies (AEgc;) of the three lowest covalent triplet
states in the N =0 polyene calculated by Soos and Ramasesha
(Ref. 12) for the PPP model with alternation are compared with
estimates (EqTl ) evaluated from the approximate triplet dispersion

relation (22) by inserting gy quanta of the elementary chain
momentum k.

Triplet AEgct qu,( 10) qr
1B, 1.76 1.71 1
1°4, 2.57 2.49 2
23B, 3.39 3.28 3

is not fixed but one has to imagine that the triplet excita-
tions are moving over the whole polyene.

We would like to demonstrate now that the above char-
acterization of the 2 IAg‘ state as a triplet-triplet (77T) ex-
citation can be generalized to the whole class of low-lying
covalent singlet excitations. This conjecture implies that
one should obtain the excitation energies of the higher co-
valent singlet states (1'B,, 3 lAg‘, etc.) by adding the ex-
citation energies of those covalent triplet excitations which
couple to form the respective TT state.

A polyene of N carbon atoms can accommodate as
many linearly independent covalent triplet states as there
are ethylene units, i.e., N /2. For the N =10 polyene the
PPP excitation energies AEgc of the three lowest co-
valent triplet states (1°B,, 1°4,,2°B, ) are given in Table
II. These energies have been calculated by Soos and
Ramasesha using a complete valence-bond description.'?
By forming irreducible products? of the triplets one ob-
tains the symmetry labels of the TT-excitations, e.g.,
3B, ®°B,)=" Ajg, and by adding the corresponding ener-
gies one obtains an estimate AE, for the excitation ener-
gies of the T'T states. Table III gives for the five lowest co-
valent singlet excitations in the N =10 polyene, the
decomposition into triplet excitations, and compares the
estimates AE,, with exact (AEgc;) and close to exact
(AEqc1) computational results. Again, the exact excita-
tion energies have been taken from Ref. 12 whereas the
close to exact excitation energies have been calculated by
our Q-CI method."3
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As exhibited by Table III the sums AE,, of the triplet
excitation energies furnish a close approximation to the
excitation energies of the 77T states indicating that our
generalization is actually correct. The approximation is a
little worse for the 3 'Ag” and 4 lAg“ states which should
be (nearly) degenerate according to the estimate AE .
These states show a splitting of =0.4 eV centered around
the AE,, value. For a finite compound like the N =10
polyene considered here such splitting had to be expected
because the two states have the same symmetry. The N
dependence of the excitation energies shown in Ref. 13
leads to the expectation that, in fact, the 3’Ag‘ and
41Ag* states are degenerate in the infinite system. The
fifth covalent singlet excitation 2 'B, is characterized in
Table III as the irreducible product '(1°B,®1°B,®1°B,)
of the lowest triplet state and, consequently, should have
three times the excitation energy of this state. Hence, the
2 !B, state is suggested to belong to a different class of
covalent singlet excitations—the class of TTT states—
which, as we will show below, should extrapolate to a co-
valent gap different from that of the 77 states. The char-
acterization of the 2 'B, state as a TTT state as well as
that of the other covalent singlets as TT states has been
checked by us also for the N =12 polyene by means of
comparisons similar to those in Tables III.%*

The characterization of the low-lying covalent singlet
excitations as 77 states suggests that one should obtain
the dispersion relation E7(k) of the covalent triplet states
in the infinite alternating polyene from that of the TT
states, given in Eq. (21), according to

ET(k)=E~(0)/2+ak . (22)

Generalizing the relationship between infinite chain
dispersion relations and finite chain excitation energies ex-
pressed by Eq. (15) to triplet excitations we conjecture
that the dispersion relation ET(k) provides an approxima-
tion EJ(N)=E"(qrk(N)), gr=1,2,...,N/2, for the
excitation energies of covalent triplet states. Table II
demonstrates for N =10 that indeed the approximate ex-
citation energies EqT( 10) compare very closely with the ex-
act values AEgq; for gr=1,2,3.

An intraethylene triplet excitation involves the transfor-
mation of an ethylene double bond to a single bond [cf.
Fig. 11(b)]. Qualitatively one can interpret the triplet gap

TABLE III. Triplet-triplet excitations in the N =10 polyene. The decomposition of covalent sing-
let excitations into products of triplet excitations is illustrated. Exact (AEgc;) (Ref. 12) and close to
exact (AEqc;) singlet excitation energies in the PPP model of alternating polyenes are compared with
sums of exact excitation energies of the associated triplets (AE ;) and with estimates obtained from
the approximate dispersion relation (21) and from Eq. (24) by inserting gs quanta of the elementary
chain momentum k€. The composition principle of singlet quantum numbers g5 from triplet quantum

numbers gr is also demonstrated.

Singlet AEqcr (AEgcr) Triplet-triplet AEm Eq; (10) qs=qr+gr
2'4, 3.42 (3.40) 1°B,®1°B, 3.51 3.42 2=1+1
1'B,; 4.23 (4.23) 1°B,®1°4, 4.32 4.20 3=1+2
34, 4.93 (—) 1°4,81°4, 5.13 4.98 4=2+42
4'4, 5.31 (—) 1°B,®2°B, 5.14 4.98 4=1+3
2'B; 5.34 (5.32) (®1°B,)} 5.27 5.13 3=1+41+1
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E ~(0)/2 in Eq. (22) as the energy required to remove one
of the distinct 7 bonds which make up the ethylene units
of an infinite alternating polyene. The ground state of a
nonalternating polyene is degenerate. Thus there are no
energetically favored singlet spin pairings and the triplet
gap vanishes.

The slope @ of the dispersion relation E’(k) furnishes
the group velocity vy at which an intraethylene triplet ex-
citation moves along the polyacetylene chain. vr is given
by la/#, where I=1.4 A is the average C—C distance,
and measures 0.58 X 10° m/s. The data on the slope a of
the 1/(N +1) extrapolations in Table I show that v; in-
creases with decreasing bond alternation and from the dis-
cussion of the Hubbard model in Sec. IV one finds that v,
decreases with increasing electron correlation.

In the analysis presented above the properties of the
triplet states have been deduced from a decomposition of
the covalent singlet excitations. Reversely, the results on
the triplets can now be used to obtain new insights into
the properties of the covalent singlets. The covalent gap
appears then as the energy required to break the 7 bonds
in two of the ethylene units of (CH),. Furthermore, the
quantum numbers gg=2,3,4,... associated with the TT
excitations are explained as the sums

9s=4qr+qr (23)

of the quantum numbers gy and g7 of the associated trip-
let excitations. Analogously the quantum numbers of the
TTT excitations are given by qs=¢gr+§r+§r and with
Egs. (22), (10), and (12) the N dependence is given by the
law

EJ[TT~(N)=3E ~(0)/2+ags/(N +1) . 24)

We have checked the correctness of Eq. (24) for the lowest
TTT excitation 2'B; using Q-CI results for
N =6,7,...,12.%% Table III shows for the N =10 po-
lyene that, indeed, the 77T state quantum numbers
qr +gr obtained by combination are identical to the
values gg obtained from the slopes of the extrapolations in
Fig. 10 and that the estimates E:;T_ obtained according

to Eq. (20) for the T'T excitations and EqTSTT' obtained ac-

cording to Eq. (24) for the TTT state are very close to the
exact energies.

The composition principle expressed by Eq. (23) pre-
dicts a general pattern of degeneracies of the TT excita-
tions in linear chains with ¢5=2,3,4,5,6,7..., namely
1,1,2,2,3,3. . ., i.e., the first and second 7T singlet excita-
tion is nondegenerate, the third and fourth excitation is
doubly degenerate, etc. In particular, as noted above, the
two T'T states with gg =4, the 3 lAg‘ state, and the 4 ! Ag
state, should be degenerate in the infinite chain. In a po-
lyene with N carbon atoms the N /2 covalent triplets can
be combined to a total of (N2+2N)/8 TT excitations. In
the limit of large N the degeneracy pattern can be ex-
pressed by the equation

(INg—1), ifO<g<N/2+1,
PO=1 )N +1—(g—1)], fN/241<q<N +1.

(25)
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When summed over g, p(q) yields the correct total num-
ber of TT excitations.

At this point we would like to briefly comment on the
question whether the approximate dispersion relations (21)
and (22) are asymptotically correct in the limit k—0. For
the nonalternating polyene with vanishing gaps of co-
valent triplet and singlet excitations a behavior E ~(k)~k
is strongly supported not only by the corresponding be-
havior of the spin-wave excitations in the Hubbard model
but also by the linear dispersion relations of such excita-
tions that result in the much simpler quantum-mechanical
and semiclassical Heisenberg models of the antiferromag-
netic chain.’’ If bond alternation is introduced into the
latter model the linear behavior of E (k) remains un-
changed, the group velocity of the spin waves decreases
like in the PPP model, but, contrary to the latter model,
no gap is found.>* In contrast, a gap appears to exist in
the quantum-mechanical Heisenberg model of the alter-
nating antiferromagnetic chain.’® It may well be that the
development of covalent gaps in alternating polyenes en-
tails an asymptotic E (k) ~k? behavior for the spin-wave
excitations. The fact, however, that Eq. (20) provides ac-
curate excitation energies (see Fig. 10) indicates that such
behavior should be confined to small values of k or large
values of N, i.e., larger than 100.

D. Comparison to spectroscopic observations

The value of 2.87 eV for the asymptotic optical gap (cf.
Table I) is about 0.7 eV larger than the value obtained
from extrapolations of the 1'B,f absorption bands ob-
served for unsubstituted polyenes in solution®>® and about
1.1 eV larger than the value observed in solid state
(CH),.%° The former difference has to be attributed prob-
ably to our assumption of a bond alternation pattern de-
scribed by a 8 value which is (1) too large, (2) size in-
dependent, and (3) homogeneous,'’> whereas the latter
difference has additional contributions due to ‘“‘solvent
effects.” All three aspects of the assumed model
geometry lead to an overestimate of the covalent as well
as of the optical gap energy. For instance, in polyenes the
bond alternation is known to decrease from a value
6=0.12 A for the very short N =4 and N =6 com-
pounds*>*® to a value §=0.08 A in polyacetylene.>® Since
the covalent gap arises from bond alternation, the 20%
overestimate of the bond alternation in our model
geometry (6=0.10 A) entails the prediction that the co-
valent gap should be smaller than 1.5 eV. Corresponding-
ly one finds for the optical gap, which decreases less with
decreasing degree of bond alternation, an upper bound of
2.7 eV if the 20% overestimate of the bond alternation is
taken into account. Solvent effects, which are not ac-
counted for in our calculations and which should lead to
a stabilization of the optical state particularly in long
chains, reduce the true gap further.

These gap energies predicted for the covalent and ionic
bands apply to ‘“‘vertical”” transitions from the ground
state, i.e., do not account for vibrational coupling. Be-
cause of this latter coupling the so-called ‘“0-0” transitions
from the vibrational and electronic ground state to the ex-
cited states in their respective vibrational ground state ac-
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tually occur at lower energy. Knowledge of the respective
energy decrement in finite polyenes'3 allows to conclude
that the covalent transition in (CH), should start at about
1.3 eV, i.e, in the solid state about 0.5 eV below the optical
gap at 1.8 eV, transitions from the ground state extending
to higher energies, transitions to the ground state extend-
ing to lower energies. Thus, the covalent excitations can
explain the long-lived, low-temperature infrared photo-
luminescence observed at 1.2 eV.>***% Furthermore, rapid
internal conversion from the optical band to the covalent
band and subsequent photoexcitation back to the optical
band, which has a large oscillator strength, can explain
the fast transient photoinduced absorption observed re-
cently at =~0.45eV.%!

E. Effect of dielectric shielding

We have pointed out in our discussion above that elec-
tronic excitations in polyenes are affected by the Coulomb
interaction between electrons. In realistic systems this in-
teraction can be modified by dielectric screening. We
have investigated the effect of such screening and replaced
the matrix element describing the Coulomb repulsion (3)
by Eq. (4) which, at large distances, corresponds to a
dielectric medium with an optical density n2=2. We
compare the spectra of unscreened and screened polyenes
in Fig. 12(a) (polyenes with bond alternation) and in Fig.
12(b) (polyenes without bond alternation). The results in-
dicate that the asymptotic gaps of the primary covalent
and ionic transitions, provided also in Table I, are only
slightly affected by the screening. The most important
effect might be that the screening lowers the covalent gap
in alternating polyenes by about 0.2 eV. In contrast, the
influence of the screening on the slopes a is rather large.
Thus, particularly the group velocity of the particle-hole
excitations, which is proportional to the slope, increases
strongly with increasing screening whereas that of the
spin waves decreases only a little.

VI. BOND STRUCTURE AND SOLITONIC
EXCITATIONS

Trans-(CH), is known to assume a geometry of alter-
nating bonds.’® At the first glance the ground state of
this molecule seems to exhibit two energetically degen-
erate structures (A) and (B) of alternating double and
single bonds, one of which (A4) is presented in Fig. 13
(top). The other structure (B) is obtained upon inter-
changing in (A4) double and single bonds. However, a
degeneracy of the (A4) and (B) phases should exist only
in truly infinite (CH), chains. In all finite, i.e., in all
real, (CH), molecules which are composed of an even
number N of carbon atoms the ground state is represent-
ed by that structure (A4) which features the maximum
number N /2 of double bonds. The removal of one of
these bonds upon replacing, for instance, the singlet spin
pair in an ethylene unit by a triplet spin pair requires, as
we have shown in the preceding section, an excitation
energy E ~(0)/2=0.9 eV. Hence, due to the finite size
the degeneracy of structures ( 4) and (B) is lifted in each
(CH), molecule. Structure (B) can be created in part of
a (CH), compound from ( 4) only upon creating a topo-
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FIG. 12. The effect of dielectric shielding of the Coulomb in-
teraction on the excitation energies of the 1 'B," and 2' 4, states
of the polyenes for (a) 5=0.10 A and (b) §=0. The figure com-
pares the linear 1/(N + 1) extrapolations of the lowest covalent
(dashed lines) and ionic (solid lines) singlet state excitation ener-
gies for the cases of an unshielded U(r) and shielded U(2r)
Coulomb interaction.

logical soliton-antisoliton pair. A single topological soli-
ton like the neutral soliton depicted schematically in Fig.
13 (bottom) is a domain wall separating the (4) and (B)
phases. The ground state of (CH), compounds with an
odd number of carbon atoms should have the structure
of a neutral soliton. Topological solitons have been in-
ferred to explain a variety of physical properties of

P e Vo e v d

FIG. 13. One of the two degenerate bond alternation patterns
of the ground state of trans-(CH), (top). Schematic representa-
tion of a neutral topological soliton in trans-(CH), (bottom).
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(CH),, in particular its large conductivity upon dop-
ing.>* In this section we want to discuss the relation of
the covalent 21Ag' state to soliton-antisoliton excita-
tions.

Since in our calculations we do not explicitly consider
the coupling of nuclear and electronic degrees of freedom
we have to resort to empirical relations between m7-bond
orders and bond lengths like that given by Eq. (6) in order
to retrieve information about the polyene geometry in the
various polyene states. The resulting values for the order
parameter Al, [cf. Eq. (7)] are shown in Figs. 14(a)-14(c)
for the 1'4,, 2'B,, and 2'4, states of the polyenes
with N =38,10,...,16 carbons. Solid and dashed lines
refer to the results of MRD-CI calculations for alternating
(6=0.10 A) and nonalternating (6§=0) PPP polyene
models, respectively.

Figure 14(a) demonstrates that the order parameter Al,
for the ground state assumes uniform positive values cor-
responding to that geometry of alternating double and sin-
gle bonds which exhibits a maximum number of double
bonds. The predicted alternation of the bond length de-
creases slightly towards the center of the polyenes, an
effect which is more pronounced for longer compounds.
For the polyene with N =14 carbons the average alterna-
tion of the bond lengths defined as 5 (6=2Al,) is deter-
mined to be 0.104 A. If we assume in our calculation of
the electronic ground state no bond alternation the bond
orders still show a pronounced alternation of double
bonds and single bonds. Applications of (6) to determine
the corresponding bond lengths yields the value §=0.066
A. The small difference between the two 5 values demon-
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on the geometry assumed in calculating the electronic
ground state. Furthermore, both § values are close to the
degree of bond alternation §=0.08 A observed in long po-
lyenes.’® Hence, the bond alternation of the ground state
of polyenes is mainly due to the forces exerted by the
correlated electron system on the lattice whereas the re-
verse influence of the lattice on the electrons is smaller.
The latter coupling increases the degree of bond alterna-
tion by about 40% as measured by the parameter 5. This
result is in harmony with the recent proof that the bond
alternation in (CH), is mainly due to electron correlation
and that the contribution to the alternation caused by the
pure (single) electron-phonon coupling, the so-called
“Peierls distortion,” is of minor importance.?®

In the excited 1'B, state the order parameter Al,
remains positive but, compared to the ground state, de-
creases towards the central region of the polyenes, corre-
sponding to a weakening of the bond alternation. This
behavior is illustrated in Fig. 14(b). For the polyene with
N =14 carbons the average bond alternation obtained is
§=0.028 A. The difference between this value and the
ground state value §=0.08 A explains the large intensity
of the C—C single and double bond stretching modes ob-
served in resonance Raman experiments.

The bonding pattern in the excited 2! Ay state differs
from that in the 1'4,; and the 1'B, states. As shown
in Fig. 14(c) the order parameter Al, in the 2' A, state
becomes negative in the central region of the polyenes.
Negative values of A/, indicate a reversal of the bond al-
ternation pattern. A change of the sign of Al, corre-
sponds to a soliton structure like that depicted in Fig. 13

strates that the predictions obtained from the empirical (bottom). The order parameter of the 2 ‘Ag‘ state of
bond-order—bond-length relation (6) depend only weakly N =10, ...,16 polyenes shown in Fig. 14(c) character-
1A (a) 1M (®) 2'Ag (c)
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FIG. 14. (a) Order parameter A/, of the ground state of the polyenes containing N =8§,10, ...,

bond

16 7 electrons evaluated according to

Eq. (7) from PPP-MRD-CI bond orders. The solid lines refer to alternating (§=0. 1 A) and the dashed lines to nonalternating model

geometries; (b) order parameter Al, of the lowest ionic excited singlet of the N =8, 10, ...,
16 polyenes.

lowest covalent excited singlet state of the N =8, 10, ...,

16 polyenes; (c) order parameter Al, of the
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izes this state as a soliton-antisoliton pair state (see ‘‘note
added”). The distance between the two solitons mea-
sures eight C—C bond units. In case that we assume in
our calculation a nonalternating polyene geometry, the
soliton-antisoliton structure remains, however, the dis-
tance between soliton and antisoliton becomes size-
dependent measuring 9 C—C bond units for N =12 and
10 C—C bond units for NV =14. Since in the process of
the electronic excitation of the 21Ag~ state the (CH),
geometry relaxes from an initially alternating structure to
a structure with a smaller and partially inverted bond al-
ternation, the increasing distance of the two solitons cal-
culated for the nonalternating polyene appears to indicate
that a soliton-antisoliton pair in a long polyene may be
formed initially at a small distance and may then oscillate
or perhaps separate.

The bond structures of the ground state 1 'Ag" and the
primary covalent excited state 2 lAg’ can be explained in
a simple and illuminating manner. This explanation
proceeds along the same lines of reasoning as that on the
covalent gap in connection with Fig. 11 and is based on
the fact that a double bond in a polyene corresponds to a
pair of 7 electrons at adjacent carbon atoms the spins of
which are coupled to a singlet state. The ground state
1 lAg‘ realizes a maximum number of such spin pairings
which define the ethylene units of (CH),, whereas the
2 lAg* state is characterized as involving two in-
traethylene triplet excitations which are coupled to an
overall singlet state. The corresponding spin pairings and
their relationship to bond structure are illustrated in Fig.
15. In order to arrive at a bond pattern for the 2 lAg‘

(it e R I e R St B S AR

[ Y SR T Y O S VR T S—|

s s T s T S8 s 7

FIG. 15. Schematic representation of the electronic structure
of the ground state (a) and of the first excited covalent state (b) of
the polyenes. The representative ordering of neighboring spins
depicted in B can either be interpreted in terms of the valence-
bond structures, that are indicated by the bars in 3, and corre-
spond to the geometries shown in «, or can be interpreted in
terms of singlet S or triplet T spin pairings within the ethylene
units as depicted in y. The excited 2'4, state is generated
from the ground state by a simultaneous flip of two spins and,
accordingly, can be interpreted either as a neutral soliton-
antisoliton pair ba or a simultaneous triplet-triplet excitation
coupled to an overall singlet state (see text for discussion).
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state one has to keep in mind that the intraethylene trip-
lets in Fig. 15(b) are coupled to an overall singlet state.
This implies that the spins can recouple into a new set of
singlet pairings as indicated in Fig. 15(b) by the corre-
sponding connections of pairs of spins. The pairing of
spins shown corresponds to the neutral soliton-antisoliton
structure also presented in Fig. 15(b). Hence, the singlet
spin pairing together with the fact that the primary co-
valent excitation involves a triplet-triplet excitation with
an overall singlet coupling yields the soliton-antisoliton
structure of this excitation. The question arises if this
composite character of the covalent excitation, i.e., that of
a triplet-triplet excitation or that of a soliton-antisoliton
excitation, can manifest itself in polyacetylene through an
observation of its separate components: Does a covalent
singlet excitation yield separate triplet excitations? Does
the covalent excitation yield separate solitons?

VII. DISSOCIATION OF COVALENT EXCITATIONS
INTO TRIPLETS AND SOLITONS

We have shown in the preceding section that the co-
valent excitations in polyenes can be regarded either as
soliton-antisoliton (SS) or as triplet-triplet (T7T) excita-
tions. The wave functions which result from our MRD-
CI calculations on finite polyenes describe delocalized ex-
citations, i.e., excitations spread over the entire polyene
chain. One expects, however, that for very long polyenes
wave packets of these delocalized states can form which
are localized in parts of a polyene. The origin of such lo-
calization can be either specific interactions exerted when
the excitation is initially prepared or can be the coupling
to lattice distortions. In the following we want to investi-
gate the latter possibility. If such localization can be
achieved it might also be possible to observe the single
components of covalent excitations, namely either soliton-
ic excitations or triplet excitations. An argument in favor
of this possibility is that the binding energy between two
triplets in a TT-excitation is small as shown by the fact
that the excitation energy of a TT state is approximately
the sum of the excitation energies of two separate triplet
states.

The prerequisite that electron-lattice interactions of a
magnitude 8E can mix pure electronic states |j) to form
wavepackets like

lo)= S a;|j) (26)
J

is that the energy separation between the states |j) does
not exceed OF by a large margin. Furthermore, our re-
sults on the spectra of polyenes as shown in Fig. 10 allow
an estimate of the level density of covalent states. As we
have demonstrated in Sec. V the low-lying covalent states
in alternating polyenes with §=0.10 A approximately
obey the simple behavior

E (N)=AEy+q—%—,

=2,3,4,... , 7
‘ Ny 27

where the numerical constants, given in Table I, are deter-
mined by the parametrization of the PPP Hamiltonian (2).
In the limit of large N the degeneracy p(g) of these states
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is given by Eq. (25) such that we can estimate the density
of covalent states in long polyenes in the energy range
above AE,.

With respect to their coupling to the lattice there
should be a qualitative difference between dissociated SS
and TT excitations in long polyenes. Dissociated SS exci-
tations are topological excitations that require the distor-
tion of the complete lattice between soliton and antisoliton
whereas dissociated 7T excitations require strictly local
distortions only. This difference is schematically indicat-
ed by the difference between the bond structures (a) in
Figs. 15(b) for the SS-pairs and 11(b) for the TT excita-
tions. An upper bound for the electron-lattice interaction
energy 8F, estimated from Eq. (5) as the difference of the
resonance integral ¢ for single and for double bonds, is
0.34 eV. This upper bound for 8E should apply to the
case of a topological lattice distortion connected with a
distant SS pair. However, in the case of a strictly local
lattice distortion delocalized states will only experience an
effective interaction of about 0.34 eV/N since local ampli-
tudes of delocalized states are proportional to N ~!/2,
The question arises if an interaction of that order of mag-
nitude suffices to induce localized covalent excitations in
long polyenes, i.e., two localized triplets and close SS
pairs. Since the spacing between covalent states according
to Eq. (27) is also proportional to 1/N, perturbation
theory does not provide an answer. Instead we need to
derive a nonperturbative estimate. For this purpose we
introduce the following strong assumption regarding the
matrix elements of the perturbation 8V originating from a
local distortion of the lattice

(j |8V |k)=8E <0, (28)

i.e., the values of these matrix elements are assumed to be
independent of |;j) and | k) and negative. Here |j) and
| k) are delocalized covalent excitations as defined in
(26). The latter assumption is plausible for both SS and
TT pairs because from the 7-bond orders of the covalent
states |j) one expects SE to be negative if the distorted
lattice exhibits a less distinct bond alternation than that
defined by 6=0.10 A. Such lattice distortion, however,
should accompany localized triplets as well as solitonic
excitations. The eigenvalue problem of the perturbed
band of covalent excitations is defined by the equation

Eja; +8E 3 ay=¢a; , (29)
k

where E; and a; are the energies and expansion
coefficients of the unperturbed states |j). In the follow-
ing all energies will be defined relative to the band edge
AE,. The expansion coefficients can be expressed formal-
ly as follows

SF
a; =

'1 — .
e—E;

>a - (30)
k

Iterating this equation once yields®?

1
e—E;

1=8E'S, (31)

J

The solution of Eq. (31) provides the energy spectrum g;
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of the perturbed band of covalent states. This spectrum is
located close to the unperturbed band of energies E; ex-
cept for the eigenvalue of one state which is moved far
below the unperturbed band. To demonstrate the ex-
istence of this state we consider Eq. (31) in the limit of
large N. Then one can replace the sum by an integral to

obtain

1=sE [N¥+'pl9dg (32)
0 E—E‘;

where the energies E, of the covalent states are given by
Eq. (27) and their degeneracies p(g) by Eq. (25). The in-
tegral can be evaluated and in the limit | € | >>a one finds

ez%E—NZz—(om eV) N . (33)

In fact, this expression proves that the interactions in the
band of covalent excitations induce a state which for large
N is strongly shifted and, hence, localized.

The important property of relationship (33) is that the
energy shift increases linearly with N, i.e., one expects
that for some length N of a polyene localization will set
in. However, it is impossible to estimate this length since
expression (33) overestimates the energy shift. There are
three reasons. First, the assumption | €| >>a used in the
derivation entails a crude approximation of the energy ¢
of the localized state. Second 8E=~ —0.34 eV/N only
provides an upper bound for the coupling to lattice distor-
tions since we assumed an extreme reversal of single and
double bonds in estimating its value. Third, the matrix
elements of the perturbation are not as homogeneous as
assumed by Eq. (28) but rather one has to expect a spread
of the values of these matrix elements and even sign rever-
sals. All that implies a reduction of the energy shift.
Nevertheless, Eq. (33) indicates that if the interaction
(j |8V | k) is homogeneous over a sufficiently broad
band of energies a local lattice distortion can produce lo-
calized excitations. The possibility that topological distor-
tions like solitons can be formed by coupling to the lattice
follows in a straight forward way by perturbation theory.

We want to argue now that there exists indeed strong
experimental evidence for a separation of the covalent
states in polydiacetylene into separate, i.e., localized trip-
lets. Such triplets would be observable after photoexcita-
tion of the material into the band of ionic states, internal
conversion to the band of covalent states and dissociation
of a TT state into separate triplets. Evidence for the ap-
pearance of fast photoinduced triplets has been provided
recently by Robins et al. on the basis of magnetic field
modulated optical absorption and microwave absorption
experiments.®® However, the observations of these authors
do not reveal the route of triplet production. In a recent
microwave absorption experiment with nanosecond time
resolution Sixl et al. found that initially all triplets sub-
levels are equally populated, i.e., the triplets formed are
completely unpolarized.** Triplets formed through the
strongly orientation-dependent interactions of an intersys-
tem crossing route are always polarized to some degree.
The puzzling observation of Sixl ez al. can be explained
readily, however, if the triplets are born from a covalent
TT excitation. In this excitation the two triplets denoted
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by 3T\ and 3T % are coupled to an overall singlet state
1S¢ according to the scheme
1
ISk = 7 3TV 3@, 3T 3TR) 4 37 371

(34)

Since the numerical (Clebsch-Gordon) coefficients for all
triplet sublevels, except for a phase factor, are identical in
this scheme neither of the triplets is polarized. This fol-
lows formally from the fact that the matrix elements for
the spin operator S, of triplet *T\), i.e., ('S& | Si5|'S%),
B=x,y,z, vanish. Consequently, the observation of Sixl
et al. proves unequivocally that the covalent singlet exci-
tations are the parent states of the photoinduced triplets
observed in polydiacetylene. We note that the proposed
TT state dissociation is analogous to the singlet exciton
fission observed in organic crystals.>%¢

The covalent excitations may also decay into separate
spin-1 solitons which have been characterized schemati-
cally in Fig. 13 (bottom), though no proof exists so far for
this process. The solitons formed by this route should
give rise to photoinduced ESR signals which also should
be unpolarized because of their singlet parent state. The
decay route, i.e., either to triplets or to solitons, should
depend on the material involved. For example,
polydiacetylene’s bond structure is unfavorable for soliton
formation, hence the triplet route is more favorable. Po-
lyacetylene can accommodate solitons, hence the decay to
solitons should be observed in case the decay to triplets is
less efficient. This might actually be the case since the
perturbation for triplet localization is 8E ~1/N, whereas
that for solitons is likely to be independent of N.

The fact that photoinduced triplet pairs and possibly
also soliton pairs are born in a pure singlet quantum state
can be proven by a magnetic field dependence of their
recombination dynamics. If a large enough fraction of
triplet pairs or solitonic spin-1 pairs in polyacetylene at a
time ¢ after their birth can reform to the singlet covalent
state or to the singlet ground state this process acts as a
filter for the singlet character of the pair at time . An
external magnetic field acting together with either the fine
structure interaction (triplet) or the hyperfine interaction
(spin-4 solitons) leads to a yield of free triplets or solitons
with a characteristic magnetic field dependence. The
theory of this process has been described for such recom-
bination processes in liquids in Ref. 67.

VIII. SUMMARY AND OUTLOOK

The properties of polyacetylene and of related one-
dimensional conducting and semiconducting polymers are
dominated by the effects of electron correlation. The po-
lymers are not of “infinite” length but typically consist of
a few hundred to a few thousand elementary units. The
description of the excitations of a correlated electron sys-
tem that is neither ‘“infinite” nor ‘“small” falls into a
domain of physics that is located between molecular phys-
ical and solid state physics. In this paper we have demon-
strated, using polyacetylene as an example, how these
branches of physics can be bridged. Our approach is
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based on four fundamental assumptions the validity of
which has been investigated in detail.

(1) The physical nature of excitations in infinite and in
large, but finite, many-electron systems is identical. Thus,
the energy-momentum relations valid in the infinite sys-
tem for the various classes of excitations, like covalent
(spin-wave) or ionic (particle-hole) excitations, should ap-
ply also to finite systems.

(2) In finite systems the wavelength of an excitation
cannot exceed the system length L if the system is cyclic
and 2L if it is linear. According to the de Broglie rela-
tion, therefore, the energetically lowest excitations of each
class is associated with an elementary transition momen-
tum. Equations (9) and (10) give the lower bounds for the
elementary transition momenta in cyclic (N =4n +2) and
linear N-electron systems, respectively.

(3) The values of the elementary transition momenta
are solely determined by the geometry of the finite system,
i.e., are given by the lower bounds.

(4) The momenta associated with transitions to higher
excited states are integer multiples of the elementary tran-
sition momenta [cf. Egs. (11) and (12)]. Consequently, as
expressed by Egs. (14) and (15), the discrete energies of a
finite system are obtained by evaluating the energy-
momentum relations of the infinite system at multiples of
the elementary transition momenta. Conversely, the
dispersion relations of the infinite system can be deter-
mined from the energy spectra of finite systems if the
values of the transition momenta are known.

For the investigation of the validity of these assump-
tions we have first selected the Hubbard model since it is
the most simple model of one-dimensional many-electron
systems that describes both the kinetic energy and the
Coulomb interaction of the electrons, and since it is the
only model for which exact results on finite as well as on
infinite systems are available. In those cases, in which ex-
act excitation energies for finite systems were unavailable,
we have employed a multireference double-excitation
configuration interaction expansion (MRD-CI) which re-
cently has been developed by us'® for the calculation of
accurate excitation energies. We have demonstrated that
assumptions (1), (2), and (4) render excellent and asymp-
totically (for large N) correct approximations. Assump-
tion (3) has been shown to be valid for covalent (spin-
wave) excitations in rings and chains and for ionic
(particle-hole) excitations in rings, whereas it turned out
to be invalid for ionic excitations in chains. The transi-
tion momentum associated with the lowest ionic excita-
tion in chains was found to increase with increasing
Coulomb interaction of the electrons [see Eq. (13)]. Such
increase, though possibly smaller, appeared to exist also
for higher ionic excitations. A more detailed study of
these effects requires analytical results on the Hubbard
model of finite linear chains. It would be desirable, in
this respect, to derive equations for finite Hubbard chains
that are analogous to the Lieb-Wu equations® for finite
rings.

For Hubbard interaction parameters, which apply to 7
electrons in polyenes, the dispersion relations of ionic and
covalent excitations are nearly linear over a wide range of
momenta. In this linear regime assumptions (1)—(4) allow
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the construction of approximate dispersion relations from
the energy spectra of finite polyenes by means of
1/(N +1) extrapolations. Assuming that a linear approx-
imation of the energy-momentum relation also holds for
polyenes described by the Pariser-Parr-Pople (PPP) model
we have evaluated dispersion relations for nonalternating
and alternating polyenes using the results of MRD-CI cal-
culations.

The gap of the band of covalent singlet excitations is
found to vanish for nonalternating polyenes and to be
large for alternating polyenes. We have estimated for this
gap in (CH), a value of about 1.3 eV.

The covalent singlet states of long polyenes can be
characterized as being composed of two or more triplet
spin waves combined to an overall singlet state. This
characterization allowed the derivation of the momentum
quantum numbers of the covalent singlet states from those
of the triplet states and of the state density in the covalent
band. The same connection between covalent triplet and
singlet states has been exploited by Woynarovich for the
Hubbard model in his derivation of singlet spin-wave
dispersion relations from those of triplet states.*’

The dispersion relations of the covalent states in nonal-
ternating polyenes are strictly linear in the limit of small
momenta. It is uncertain if that is also the case for alter-
nating polyenes which exhibits a covalent gap. The com-
pounds investigated by us are not long enough to allow
definite statements. For an answer to this question one
should try to obtain an analytical solution of the Hubbard
model of alternating polyenes (using periodic boundary
conditions).

For the ionic excitations only the asymptotic “‘optical”

4357

gap has been estimated from extrapolations. No disper-
sion relations could be derived because in linear chains
the transition momenta depend on the Coulomb interac-
tion of the 7 electrons and can be determined from extra-
polations only up to a scaling factor. Due to electron
correlation the optical gap is large (=~2.2 eV) in nonalter-
nating polyenes and is found to increase by about 40%
upon bond alternation.

The bond orders calculated from the MRD-CI wave
functions have provided insight into the bond structure of
long polyenes in ground and excited states. It has been
found that covalent singlet states exhibit the bond struc-
ture of a soliton-antisoliton pair. The density of states in
the covalent band has been estimated to be high enough to
allow in long polyenes a localization of such excitations
through coupling to the lattice degrees of freedom. We
have interpreted the results of recent microwave experi-
ments® as evidence for the decay of covalent singlet states
into separate localized triplets.

Note added. Recently Hayden and Mele have present-
ed results of renormalization-group (RG) calculations on a
16-site Hubbard-Peierls chain.®® The order parameters
calculated for the ground and 1!B," states are similar to
those shown in Fig. 14(a) and 14(b). But for the 2 1Ag"
states a structure of four solitons is predicted instead of
the soliton-antisoliton structure exhibited in Fig. 14(c).
The prediction of an additional soliton-antisoliton pair, lo-
cated at the center of the 16-site chain, may be an artifact
of the RG procedure that constructs 16-site wave func-
tions from two 8-site chains employing quite restricted
many-electron basis sets.

*Also at Institute for Theoretical Physics, University of Califor-
nia, Santa Barbara, CA 93106.
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